
Accepted Manuscript

A generic fuzzy approach for multi-objective optimization under uncertainty

Oumayma Bahri, El-Ghazali Talbi, Nahla Ben Amor

PII: S2210-6502(17)30486-8

DOI: 10.1016/j.swevo.2018.02.002

Reference: SWEVO 355

To appear in: Swarm and Evolutionary Computation BASE DATA

Received Date: 16 June 2017

Revised Date: 28 January 2018

Accepted Date: 7 February 2018

Please cite this article as: O. Bahri, E.-G. Talbi, N.B. Amor, A generic fuzzy approach for multi-objective
optimization under uncertainty, Swarm and Evolutionary Computation BASE DATA (2018), doi: 10.1016/
j.swevo.2018.02.002.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.swevo.2018.02.002


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

A Generic Fuzzy Approach for

Multi-objective Optimization under Uncertainty

Oumayma Bahria,b,∗, El-Ghazali Talbia, Nahla Ben Amorb

aINRIA Laboratory, CRISTAL-CNRS, 59650 Villeneuve d’Ascq, Lille, France
bLARODEC Laboratory, ISGT, 2000 Le Bardo, Tunis, Tunisia

Abstract

Multi-objective optimization under uncertainty has gained considerable at-
tention in recent years due to its practical applications in real-life. Many
studies have been conducted on this topic, but almost all of them trans-
formed the problem into a mono-objective one or just neglected the effects of
uncertainty on the outcomes. This paper addresses specific uncertain multi-
objective problems in which uncertainty is expressed by means of triangular
fuzzy numbers. To handle these problems, we introduced a new approach
able to solve them without any transformation by considering fuzziness prop-
agation to the objective functions. The proposed approach is composed of
two main contributions: First, a fuzzy Pareto dominance is defined for rank-
ing the generated fuzzy solutions. Second, a generic fuzzy extension of well-
known evolutionary algorithms is suggested as resolution methods. An ex-
perimental study on multi-objective Vehicle Routing Problems (VRP) with
uncertain demands is finally carried to evaluate our approach.

Keywords: Multi-objective optimization, Fuzzy sets, Triangular fuzzy
numbers, Pareto dominance, Evolutionary algorithms, Vehicle routing
problem

1. Introduction

Multi-objective optimization is an important and complex field in decision
making in which many scientific and industrials must cope. Indeed, in many
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real-world applications, the decision maker is often confronted with several
conflicting objectives that should be simultaneously optimized. Hence, the
most common purpose is to choose the best trade-offs among all the prede-
fined objectives. A wide variety of resolution methods and techniques for
solving combinatorial multi-objective problems have been developed in the
literature [1, 2, 3]. Despite the massive number of proposed methods, there
are still many open issues in this topic. For example, there is no consideration
of uncertainty aspect in the classical multi-objective concepts.

However, uncertainty characterizes almost all practical applications in
which the big amount of data provides certainly some inevitable imperfec-
tions. These imperfections might result from using unreliable information
sources caused by inputting data incorrectly, faulty reading instruments or
bad analysis of some training data. It may also be the result of poor decision
maker opinions due to any lack of its background knowledge or the difficulty
of giving a perfect qualification for some costly situations. The classical
way to deal with uncertainty is the probabilistic reasoning originated from
the middle of the 17th century [4]. Nevertheless, probability theory was
considered for a long time as a very good quantitative tool for uncertainty
treatment, but as good as it is, this theory is only appropriate when prob-
ability distributions are available which is not always the case. Otherwise,
there are some situations like the case of total ignorance, which are not well
handled and so can make the probabilistic reasoning unsound. In this con-
text, a panoply of non-classical tools for handling uncertainty appears such
as fuzzy sets [5] to which we are interested in this work.

Moreover, the combination of uncertainty and multi-objectivity aspects
has not been deeply studied so far. In particular, this combination leads
to specific optimization problems characterized by the necessity of optimiz-
ing simultaneously many objectives while considering that some input data
are not known beforehand. The challenge of solving these problems lies in
their computational complexity. In fact, the effects of unavoidable uncer-
tainties in preference parameters, decision variables, constraints, and/or ob-
jective functions could make such problems more complicated and difficult.
Unfortunately, almost all existing approaches have been limited to trans-
form the uncertain multi-objective problem into one or more mono-objective
problems by using for example aggregation functions [6, 7]. Some other ap-
proaches have been focused on treating the problem in its multi-objective
context while ignoring the propagation of uncertain inputs to the objectives
and obviously to the resulting solutions [8]. Only few studies have been de-
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voted to handle the problem as-is without erasing any of its characteristics
by developing an interval-based multi-objective approach [9, 10].

The aim of the present study is to introduce a novel approach for deal-
ing with fuzzy multi-objective problems, in which fuzziness is modeled via
triangular fuzzy numbers. We first present details of our fuzzy Pareto dom-
inance previously introduced in [11]. We next use it to extend two popular
Pareto-based evolutionary algorithms to our fuzzy setting, namely SPEA2
and NSGAII algorithms, briefly studied in [12]. In addition, we propose
a fuzzy extension of another competitive and third generation algorithm,
namely IBEA [13].

The remainder of the paper is organized as follows. Section 2 recalls the
basic definitions and concepts on which our approach is based. Section 3
describes in detail our proposal. Section 4 illustrates the application of the
proposed approach on a multi-objective vehicle routing problem with fuzzy
demands and finally section 5 summarizes the obtained results.

2. Background

This section first presents basic definitions related to deterministic multi-
objective optimization [14] and then gives an overview of existing approaches
for the uncertain case.

2.1. Deterministic multi-objective optimization

Deterministic multi-objective optimization is the process of optimizing
systematically and simultaneously two or more conflicting objectives subject
to some constraints. Contrary to the single-objective case, multi-objective
optimization does not restrict to find a unique global solution but it aims
to find a set efficient solutions. The following definitions gives more details
about multi-objective concepts. Without a loss of generality, we only con-
sider, throughout this paper, combinatorial minimization problems.

2.1.1. Definitions

Formally, a multi-objective optimization problem (MOP) consists of solv-
ing the following mathematical program:

min F (x) = (f1(x), f2(x), . . . , fn(x)) s.t. x ∈ S (1)

where F (x) is the vector of n (n ≥ 2) objective functions to be minimized
and x = (x1, . . . , xk) is the vector of decision variables from the set of fea-
sible solutions S associated with equality and inequality constraints. In a
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combinatorial MOP, the feasible region S becomes a discrete set of solutions.
Besides, F (x) maps the decision variables x from the decision space to the
objective space by assigning a cost function y ∈ Y that evaluates the quality
of each solution.

F : X → Y ⊆ Rn, F (x) = y =

 y1
...
yn

 (2)

where Y = F (S) represents the feasible points (solutions) in the objective
space and yi = fi(x) is a point of this space that represents the solution
quality or fitness.

In order to identify efficient solutions of a given MOP, other concepts
should be considered known as Pareto optimality.

An objective vector y = (y1, . . . , yn) Pareto dominates another objective
vector y′ = (y′1, . . . , y

′
n) (denoted by y ≺p y′) if and only if no component of y′

is smaller than the corresponding component of y and at least one component
of y is strictly smaller:

∀i ∈ 1, . . . , n : yi ≤ y′i ∧ ∃i ∈ 1, . . . , n : yi < y′i. (3)

A solution x∗ ∈ X is Pareto optimal (also known as efficient, non-dominated
or non-inferior) if for every x ∈ X, F (x) does not dominate F (x∗), that is,
F (x) ⊀p F (x∗). A Pareto optimal set P ∗ is defined by:

P ∗ = {x ∈ X/∃x′ ∈ X,F (x′) ⊀p F (x)}. (4)

The image of this Pareto optimal set P ∗ in the objective space is called
Pareto front PF ∗ defined by:

PF ∗ = {F (x), x ∈ P ∗}. (5)

Finding the Pareto front is known to be a difficult task [14]. In fact,
identifying the Pareto optimal (non-dominated) solutions is generally an NP-
hard problem. Thus, the main goal is to identify an approximation of the
Pareto optimal set, from which the decision maker can choose a best solution
based on the current situation. A good approximation of Pareto solutions
should satisfy two properties: (i) convergence or closeness to the exact Pareto
front and (ii) uniform diversity of the obtained solutions around the Pareto
front.
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2.1.2. Multi-objective evolutionary algorithms

Although a large variety of methods have been developed to solve MOPs,
the family of multi-objective evolutionary algorithms (MOEAs) is the most
widely used and successfully applied in diverse areas [1]. Otherwise, MOEAs
have proved to be powerful and suitable for multi-objective optimization
because of their population-based search and ability to find multiple optimal
solutions with a good spread. These algorithms are mainly based on the
following three components:

- Fitness assignment: allows to guide the search process toward Pareto
optimal solutions for a better convergence. Examples of fitness assign-
ment strategies are: Dominance-based approach and Indicator-based
approach.

- Diversity preservation: allows to generate a diverse set of Pareto so-
lutions by using density estimation techniques such as Nearest neighbor
method, crowding strategy, etc.

- Elitism: allows to use and preserve the best solutions found during the
search process. An elite population, called archive, is generally used to
store the Pareto optimal solutions.

Almost all MOEAs follow the main steps described in the flowchart given
in Figure 1. The process starts with an initial population generated ran-
domly. This is followed by an evaluation of candidate solutions in the popu-
lation using a fitness assignment strategy. Thereafter, a diversity preservation
step is performed to select diverse efficient solutions. An external population
or archive is then used to maintain the selected solutions. However, every
solution is reproduced using variation operators (e.g., crossover and muta-
tion) to generate new offsprings. At the last step, a replacement scheme is
applied to determine which solutions in the population will survive from the
offsprings and the parents. These steps are iterated until a stopping criteria
hold.

2.1.3. Multi-objective quality indicators

Several quality indicators have been proposed in the literature in order
to assess the performance of two sets or approximations of Pareto solutions.
They can be classified depending on several features:
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Figure 1: General scheme of MOEAs

- Arity (Unary/Binary): A unary indicator represents the quality of each
approximation by a unique scalar-value, whereas a binary indicator
allows to compare the performance of two approximated Pareto fronts.

- Performance goal : It is mainly the convergence (or closeness) toward
the optimal Pareto front and/or diversity of solutions along the front.

- Required parameters : They are usually defined by the user such as
reference set, reference point, and/or ideal point.

In this paper, we concentrate our interest on two well-known indicators [15]:

(i) Hypervolume indicator IH : considered as one of few indicators that
measure the approximation quality in terms of convergence and diversity si-
multaneously. It belongs to the class of hybrid metrics and exists in both
unary and binary forms . In its unary form, this indicator measures the vol-
ume of the objective space dominated by a given approximation. It requires
the specification of a reference point Zref that denotes an upper bound over
all the objectives (i.e. The higher this volume is, the better is the approxi-
mation). Its binary form, the so-called hypervolume difference I−H evaluates
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the quality of a given output set A in comparison to a reference set R. It
computes the difference between these two sets by measuring the portion of
objective space weakly dominated by R and not by A:

I−H(A) = IH(R)− IH(A) (6)

where smaller values correspond to higher quality in contrast to the unary
hypervolume IH .

(ii) ε−indicator Iε: dedicated to the measure of approximations quality in
term of convergence. The epsilon indicator family comprises a multiplicative
and an additive version, both exist in unary and binary form. The unary
additive ε-indicator (Iε+) gives the minimum factor ε by which an approxi-
mation set A has to be translated in the criterion space to weakly dominate
a reference set R. It is formally expressed by:

I1ε+(A) = Iε+(A,R) = min{∀x ∈ R, ∃x′ ∈ A : x′i − ε � xi,∀i ∈ 1 . . . n} (7)

Notice that, all the above concepts are only dedicated to deterministic MOPs
where all inputs data are known in advance (i.e. with crisp values). There-
fore, in presence of imperfections, all these concepts should be adapted and
extended to uncertain setting. In the following, we propose a classification
of existing approaches for handling uncertainty in MOPs.

2.2. Uncertain multi-objective optimization

Multi-objective optimization under uncertainty is nowadays one of the
most important and difficult research fields in decision making. This field has
attracted increasing attention since it appears in many real-life applications
and poses several interesting challenges [16, 17, 18]. In general, a MOP under
uncertainty is characterized by the necessity of optimizing simultaneously
several conflicting objectives in presence of some uncertain input data.

However, the main issue is how to identify the type of inevitable uncer-
tainties and their impacts on the results and optimal decision making. The
purpose at this level is to analyse the manner in which such uncertainties are
propagated through the optimization process. Usually, uncertainty propaga-
tion leads to an excessive increase in problem’s complexity and difficulty for
finding optimal solutions. In particular, the resolution stage will be much
more complicated since propagating uncertainties may affect the key ele-
ments of multi-objective optimization process such as preference parameters,
decision variables, constraints and/or objectives. Many studies addressing
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the effects of uncertainty propagation in multi-objective setting have focused
on the case where uncertainty is assumed to occur in the objective functions.
Yet, uncertainty in the objectives presents a critical and sensitive obstacle
because it may influence the search process and consequently hamper the
identification of efficient solutions. A MOP with uncertain objectives may
be defined as:

min F (x, ξ) = min[f1(x, ξ), f2(x, ξ), . . . , fn(x, ξ)] s.t. x ∈ X, ξ ∈ U (8)

where F is the set of objective functions that may depend on uncertainty
scenarios U, x is a decision variable vector from its admissible region X ⊆ Rn
and ξ = (ξ1, ξ2, . . . , ξq) is a vector of independent uncertain variables. Clearly,
the problem here is that each fi(x, ξ) is an uncertain quantity induced by ξ.

Once the uncertain scenarios and their effects are identified, the second
relevant challenge consists to find a suitable way for handling uncertainty in
multi-objective resolution methods. Nonetheless, very little research works
have been proposed so far to deal with uncertain multi-objective optimiza-
tion. Besides, although uncertainty in the objective functions has gained
attention in recent years, the efforts devoted to this problem are still limited.
In Figure 2, we propose to classify the existing approaches according to how
the uncertain multiple objectives are managed.

   Handling Uncertainty in  
        Objective Functions   

Aggregation  
based  
approaches  

Approximation 
based 
approaches 

Indicator 
based 
approaches 

Robustness 
based 
approaches 

Interval 
based 
approaches 

Figure 2: Taxonomy of approaches for MOPs with uncertain objectives

The first attempts to cope with uncertainty in objectives belong to the
category of aggregation-based approaches [6, 7]. The basic idea of these
traditional approaches is to combine the multiple objectives into a single
uncertain one. In other words, they convert the MOP into a one or a set
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of single-objective problems. Furthermore, the different objectives can be
rewritten into an aggregate objective fA by applying a weighted sum function
as follows:

fA(x, ξ) =
∑

[f1(x, ξ), f2(x, ξ), . . . , fn(x, ξ)] (9)

These approaches have the advantage of simplicity because they do not re-
quire a particular development for uncertain multi-objective optimization.
Indeed, the existing methods for handling uncertainty in single-objective op-
timization can simply be applied. Yet, these latter still not efficient since
they limit the objective space, ignore the significant role of multi-objectivity
and also relationship between the conflicting objectives. In consequence, the
obtained results are very often useless and far from reality.

The second category encloses approximation-based approaches that use
statistical functions to convert the uncertain objectives into their crisp equiv-
alents [19, 8]. Otherwise, these approaches still abide to the certainty of
objectives and usually allow to carry out an approximation of observed un-
certainty. In this case, a statistical function may be applied to approximate
each objective function as follows:

Φ(f1(x, ξ)),Φ(f2(x, ξ)), . . . ,Φ(fn(x, ξ)) (10)

where Φ(.) denotes the statistical operator which can be the mean M [.] or
expected function E[.] with respect to ξ. Clearly, this allows to transform
the uncertain MOP into a crisp problem that can be resolved using standard
deterministic multi-objective optimizers. A major limit of approximation-
based approaches is that the propagation and effects of uncertainty on the
objectives are neglected.

The third category includes different approaches [20, 21] that combine
uncertainty of objectives and quality indicators (i.e., real-valued functions
which allow assessment of Pareto approximations). This combination is done
by estimating indicator evaluations for the uncertain objective vectors as:

I(f1(x, ξ), X
∗), I(f2(x, ξ), X

∗), . . . , I(fn(x, ξ), X∗) (11)

where X∗ = {x∗1, . . . , x∗r} is a variable reference set and I(.) stands for the
vector of indicator values that can be minimized or maximized depending on
the quality goal. Thus, an indicator-based model is often applied to reflect
the uncertainty of objectives.

Another category of approaches refers to the robustness aspect to handle
uncertainty propagation [22, 23]. This aspect is connected to the idea that
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in presence of uncertain inputs, the outputs should be relatively insensitive
(small uncertainty outputs). The robustness in objective functions can be
modeled as:

(f1(x, ξ), R1), (f2(x, ξ), R2), . . . , (fn(x, ξ), Rn) (12)

where Ri is the robustness criterion that should be maximized. It is defined
in terms of the variation of fi(x) regarding the uncertainty associated with
x. However, the main drawback of robustness-based and indicator-based ap-
proaches is that they rely on the assumption of a priori knowledge about
decisive information such as the reference set of solutions or the robustness
confidence level. Evidently, if such information is inappropriate or incorrect,
the outputs of theses approaches can be misleading. In addition, these ap-
proaches only investigate the sensitivity and effects of uncertainty (i.e. by
applying an indicator-based evaluation or robustness analysis), but they do
not provide a specific representation of uncertain objectives. Otherwise, the
uncertainty propagation from inputs to outputs is not considered.

Yet, this can lead to very poor decisions with often misleading simula-
tion results. It is therefore necessary to account for the relationship between
uncertain inputs and generated solutions, because if the input data or pa-
rameters are highly uncertain, how can the optimizer simply state that the
outputs are robust ? It may be feasible only for simplicity or other practical
reasons as long as the optimization performance will not be affected.

Further, very few studies assume to display uncertainty of objectives
through intervals and thereby to perform the multi-objective optimization
based on this uniform distribution. These studies fall under the category of
interval-based approaches [9, 10], where the cost of evaluating f(x, ξ), namely
Y is represented by intervals as:

F (x, ξ) = Y = ([y1, y1], . . . , [yn, yn]) (13)

where yi and yi are respectively lower and upper bounds of the correspond-
ing interval-valued function i. In this case, the generated solutions will be
disrupted by the interval shape of objectives and so clearly the classic Pareto
concepts cannot be used for comparing them. Indeed, extensions of the clas-
sic Pareto optimality have been discussed and addressed in recent literature
[9, 24, 25, 26]. For instance, authors in [24, 25] involve the uncertainty in the
objectives as fuzzy degrees. Then, an interval-based scheme is introduced
to define the Pareto optimality of fuzzy solutions. In [9, 10], intervals of
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belief functions are used to represent the uncertain Pareto optimal solutions.
However, all of these works consider intervals on the uncertain objectives
and then apply a Pareto analysis between interval-valued outcomes. Conse-
quently, the solutions are represented by finite bounding-boxes (rectangular
form) in the objective space as shown in Figure 3, where each rectangular
represents one solution.

f1 

f2 

Figure 3: Examples of interval-based solutions

One of the most interesting questions is how to analyse the Pareto opti-
mality when uncertainty is modeled by non-crisp intervals ? Unfortunately,
it is not easy to compare among two or more non-crisp intervals (e.g. that can
be possibility distributions, fuzzy numbers, etc). Our interest in this study
focuses mainly on dealing with uncertain multi-objective optimization, when
uncertainty in objectives is modeled by fuzziness. In particular, we aim to
handle the specific case of MOPs with fuzzy-valued objective functions and
to design a generic optimization approach for this purpose. To the best of
our knowledge, there is no similar study of the propagation of fuzziness in
multi-objective optimization process.

3. Proposed Approach

This section first defines the problem of our interest, especially the choice
of fuzzy setting and its impact through the optimization process. Next, it

11



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

describes our two main contributions for handling such a problem which are:
(1) A new fuzzy Pareto dominance; (2) A generic fuzzy extension of well-
studied MOEAs.

3.1. Fuzzy MOP formulation

We address here multi-objective optimization problems with fuzzy data in
which fuzziness can be associated with the linguistic vagueness, polysemy or
ambiguity of information due to limited knowledge [5]. In particular, we focus
our attention on normalized fuzzy sets, so-called fuzzy numbers, which are
frequently used to represent the approximate reasoning of linguistic values
in many real-world applications [27, 28]. Yet, the building block of fuzzy
numbers is a gradual membership function (MF) varying in the range of
[0, 1] and that can takes different shapes like triangular, trapezoidal, etc.

The choice of an appropriate MF depends entirely on the nature of im-
perfect data, the problem size and plays a substantial role in the overall
optimization process. Accordingly, this specific issue has been widely stud-
ied in the literature [29, 30]. In fact, many researchers [31, 28] have discussed
the performance of various fuzzy shapes by taking into account features such
as simplicity, convenience, speed, and efficiency. Almost all of them convoyed
that the triangular MF is found to be more intuitive, simple to implement and
fast for computation compared to any other shape. Besides, it proved most
popular and suitable shape for a human interpretation due to the simplicity,
smoothness and concise notation of its linear piece-wise MF. For example, in
order to model a product price estimation by fuzzy MFs, it is important to
know how much the price is low, medium or high and so intuitively choosing
the triangular shape with three degrees (i.e. lower price, most possible price
and higher price).

Formally, a Triangular Fuzzy Number (TFN) is represented with a triplet
of values A = [a, â, a], where [a, a] is the interval of possible values called its
support and â denotes its modal or kernel value (the most plausible). Another
interesting advantage is that a TFN can be deduced from transformations
of other different shapes by linguistic modifiers, compositions, projections
and other operations [5]. For instance, a trapezoidal fuzzy number B =
[b1, b2, b3, b4] is transformed to triangular if b2 = b3.

All these advantages encourage us to consider the triangular fuzzy shape
in the context of multi-objective optimization. Therefore, we suppose that
fuzziness in inputs data will be modeled by means of TFNs for any MOP.
Then as explained before, propagating fuzziness through the optimization
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process should not be ignored because this may distort the results. Other-
wise, fuzziness in inputs data will clearly has great influence over the way a
MOP is designed and optimized. Thus we should first consider this fuzziness
when designing the multi-objective problem and then predict their unavoid-
able impacts on the search process. In that sense, we should analyse the
effects of the triangular fuzzy shape on MOPs, especially on the problem
outcomes and their optimality. Hence, the objective functions in such prob-
lems will be disrupted by the triangular fuzzy shape. Let us assume that
a minimization MOP with triangular fuzzy-valued objectives is defined as
follows:

Definition 1. Triangular fuzzy MOP

min F (xτ ) = (f1(x
τ ), f2(x

τ ), . . . , fn(xτ )) s.t. x ∈ X, τ ∈ R (14)

where F (xτ ) is the vector objective functions, which are disrupted by the
triangular form τ from the universal set R of fuzzy numbers. In the objective
space, the vector F can be defined as a fuzzy cost function that represents the
fitness of solutions by assigning a triangular-valued objective vector Y τ :

F : X → Y ⊆ (R× R× R)n,

F (xτ ) = Y τ =


y1 = [y1, ŷ1, y1]
y2 = [y2, ŷ2, y2]

...
yn = [yn, ŷn, yn]

 (15)

It is clear that this formulation is a fuzzy counterpart of the classical
MOP definition given in Section 2.1. In this case, the solutions are modeled
by vectors of triangular fuzzy numbers. Figure 4 shows an example of the
nature of solutions that may be obtained in our case of fuzzy bi-objective
space.

Instead of the rectangular form in the case of crisp-intervals, the front
here is composed by a set of triangles, where each triangle models one fuzzy
solution. For instance, the triangular solution marked in bold in Figure 4
represents a vector of two triangular fuzzy numbers which are respectively:
[y1, ŷ1, y1] as solution values for the objective f1 and [y2, ŷ2, y2] as solution
values for f2. It should be noticed that the plot of these two fuzzy numbers
in bi-objective space may lead to a rectangular form (like bounding boxes in
Figure 3), considering the corner points of [y1, y1] and [y2, y2].

13
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f1

f2

Figure 4: Examples of triangular solutions

For convenience, we propose to divide the linear box-structures into tri-
angles by a splitting line (see red dotted line in Figure 4) between the upper
values or extreme points (y1, y2). This condition allows us to delimit the
most plausible area of solution values in sense of minimization and therefore
leads to a better representation accuracy. In practice, this triangular shape
reflects better the distribution of our data and thereby suits us in terms of
ease of data manipulation and decision making.

Subsequently, once the form of problem solutions is predicted, the issue
now is how to explore the optimality process between them. Yet, the classical
Pareto concepts cannot be used in this case since they are only meant for
deterministic case (i.e. when the solutions are exact values). To this end, a
need for special optimality aspects capable to handle the generated solutions
of triangular fuzzy values is evident.

3.2. Fuzzy Pareto optimality

In the following, we present our new Pareto dominance for handling op-
timality in any MOP with fuzzy data, especially with triangular-valued ob-
jectives. Then as multi-objectivity usually involves problems with only two
objectives, each solution here is a vector of two triangular fuzzy numbers
(TFNs). Hence, our contribution is composed of two main phases which are:
(i) the definition of mono-objective dominance relations between two TFNs;
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(ii) the determination of multi-objective dominance based on the types of
mono-objective dominance found for both objectives.

3.2.1. Mono-objective dominance

It should first be noted that our proposal is inspired by the paradigm of
ranking fuzzy numbers, where a comparison procedure is often required to
check the relationship between them. In this regard, we take into account
that all possible topological relationships between two TFNs may be covered
by only four topological situations [32] as shown in Figure 5. Based on
these situations, we propose three mono-objective dominance relations which
are: Total dominance (≺t), Partial strong-dominance (≺s) and Partial weak-
dominance (≺w).

Figure 5: Possible topological situations for two TFNs

Definition 2. Total dominance
Let y = [y, ŷ, y] ⊆ R and y′ = [y′, ŷ′, y′] ⊆ R be two triangular fuzzy numbers.
y dominates y′ totally or certainly, denoted by y ≺t y′, iff:

y < y′ (16)

As shown in Figure 6, this dominance relation represents the fuzzy disjoint
situation between two triangular fuzzy numbers and it imposes that the upper
bound of y is strictly inferior than the lower bound of y′.
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1 
        

µ 

Figure 6: Total dominance

Definition 3. Partial strong-dominance
Let y = [y, ŷ, y] ⊆ R and y′ = [y′, ŷ′, y′] ⊆ R be two triangular fuzzy numbers.
y strong dominates y′ partially or uncertainly, denoted by y ≺s y′, iff:

(y ≥ y′) ∧ (ŷ ≤ y′) ∧ (y ≤ ŷ′) (17)

1 
        

µ 

Figure 7: Partial strong-dominance

This dominance relation appears when there is a fuzzy weak-overlapping be-
tween both triangles. It imposes that firstly there is at most one intersection
between them and secondly this intersection should not exceed the interval
of their kernel values [ŷ, ŷ′] as shown in Figure 7.

Definition 4. Partial weak-dominance
Let y = [y, ŷ, y] ⊆ R and y′ = [y′, ŷ′, y′] ⊆ R be two triangular fuzzy numbers.
y weak dominates y′ partially or uncertainly, denoted by y ≺w y′, iff we have:
1. Fuzzy overlapping

[y < y′ ∧ y < y′] ∧
[(ŷ ≤ y′ ∧ y > ŷ′) ∨ (ŷ > y′ ∧ y ≤ ŷ′) ∨ (ŷ > y′ ∧ y > ŷ′)]

(18)
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2. Fuzzy Inclusion
(y < y′) ∧ (y ≥ y′) (19)

1 
        

µ  1 

1 
        

µ  2 

Figure 8: Partial weak-dominance

In this dominance relation, the two situations of fuzzy overlapping and in-
clusion may occur. In Figure 8-(1), where both numbers are overlapped, it
is clear that y partially weak dominates y′. Yet, for case (2), where y′ is
included into y, a situation of incomparability is identified. Otherwise, the
partial weak-dominance relation cannot discriminate all possible cases and
leads often to some incomparable situations. In order to discriminate these
cases, we suggest to use the middle value positions (the kernel or most plau-
sible value) as an additional criterion of comparison. This may be formally
defined by:

ŷ − ŷ′ =
{
< 0, y ≺w y′
≥ 0, y and y′ can be incomparable.

Clearly, we remark that an incomparable situation is identified if we have
ŷ− ŷ′ ≥ 0. At this level, the kernel criterion which consists in comparing the
discard between both fuzzy triangles will be applied as follows:

y ≺w y′ ←→ (y′ − y) ≤ (y′ − y)

It is easy to check that in the mono-objective case, we obtain a total pre-order
between two triangular fuzzy numbers, contrarily to the multi-objective case,
where the situation is more complex and it is common to have some cases of
indifference.
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3.2.2. Pareto dominance

Our goal now is to determine an optimal ordering on the set of fuzzy
solutions, where each solution is represented by a vector of triangular fuzzy
numbers. Thus, we propose to use the mono-objective dominance relations,
defined previously, in order to rank separately the triangular fuzzy values of
each objective function. Then depending to the dominance types found for
all objectives, we define the Pareto dominance between the triangular fuzzy
solutions.

Definition 5. Strong Pareto dominance
Let Y and Y ′ be two triangular fuzzy solutions. Y strong Pareto dominates
Y ′, denoted by Y ≺SP Y ′ iff:

∀i ∈ 1, . . . , n : [yi ≺t y′i ∨ yi ≺s y′i] ∨
∃i ∈ 1, . . . , n : [yi ≺t y′i ∨ yi ≺s y′i] ∧ ∀j 6= i : [yj ≺s y′j ∨ yj ≺w y′j]

(20)

f2 

f1 

(a) 

Y’ 

Y 

f2 

f1 

(b) 

Y’ 
Y 

f2 

f1 

Y’ 

Y 

(c) 
f2 

f1 

Y’ 

Y 

(d) 

Figure 9: Pareto dominance relations

The strong Pareto dominance holds if either yi total dominates or partial
strong dominates y′i in all the objectives (Figure 9-(a)), either yi total or
partial strong dominates y′i in one objective and weak dominates it in another
(Figure 9-(b)).
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Definition 6. Weak Pareto dominance
Let −→y and −→y ′ be two triangular fuzzy solutions. −→y weak Pareto dominates
−→y ′, denoted by −→y ≺WP

−→y ′, iff:

∀i ∈ 1, . . . , n : yi ≺w y′i (21)

The weak Pareto dominance holds if yi weak dominates y′i in all the objectives
(see Figure 9-(c)). Yet, a case of indifference (defined below) can occur
if there is a weak dominance with inclusion type in all the objectives (see
Figure 9-(d)).

Definition 7. Case of indifference
Two triangular fuzzy solutions are indifferent or incomparable, denoted by
−→y ‖−→y ′, iff:

∀i ∈ 1, . . . , n : yi ⊆ y′i (22)

3.2.3. Numerical Examples

We first present in Figure 10 three examples to give an idea of the use-
fulness and advantage of our mono-objective dominance by comparing it
with other methods. Notice that, these examples can be considered as ones
of well-defined cases of indiscrimination, that have failed to be resolved by
some fuzzy ranking methods.

(1) (2) (3)

3 5 6 7 90.1 0.6 0.80.2 0.5 0.90.5 31 6 7 10

A
A AB

B

B

Figure 10: Three examples of triangular fuzzy numbers A and B

Example 1. Consider the two triangular fuzzy numbers A = [0.5, 3, 7] and
B = [1, 6, 10] in Figure 10-(1): The ranking order found by most of methods
like Cheng’s distance [33], Chu’s index [34], Wang’s centroid index [35] and
kaufman’s left and right scores [36], is A ≺ B. By using our mono-objective
dominance, it is easy to check that A partial weak dominates B: A ≺w B
according to Equation 18 (Definition 4.1). Therefore, the ranking order in
our case is the same as other tested methods (A ≺ B).
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Example 2. Consider the two triangular fuzzy numbers A = [0.1, 0.6, 0.8]
and B = [0.2, 0.5, 0.9] in Figure 10-(2): By using some ranking methods such
as Yao’s signed distance [37], Chu’s index [34] and Abbas’s sign distance [38],
A and B are indifferent i.e. A ≈ B. This is the shortcoming of previous
methods that rank two different fuzzy numbers equally. However, by applying
our dominance method, we observe at the first step, that A and B are strongly
overlapped. Thereby, the discrimination between these two numbers is not
possible using Equation 18 (Definition 4-1), since the kernel-based criterion
gives 0.6 − 0.5 = 0.1 ≥ 0. At this level, we apply the discard criterion
(0.2− 0.1 ≤ 0.9− 0.8) which leads to conclude that A partial weak dominates
B and consequently A ≺ B.

Example 3. Consider the two triangular fuzzy numbers A = [3, 6, 9] and
B = [5, 6, 7] shown in Figure 10-(3): It is a common and very controversial
problem, where an inclusion relation between the fuzzy numbers is defined.
Yet, almost the majority of ranking methods such as [34, 35, 37, 38] failed to
discriminate two fuzzy numbers having the same symmetrical spread, as for
this example, it is deduced that A ≈ B. Ezzati et al. [39] conclude that B
dominates A (B ≺ A) and consider this ranking order as a reasonable result
since it agrees with human intuition. In fact, we can deduce intuitively that
B has a greater tendency to be lower than A, according to its closeness to the
most plausible value (the middle one). In other words, in order to estimate
an unknown quantity in real-world situation, it is obvious that the interval
estimation [5, 10, 15] is better than [1, 10, 25] (i.e. Saying that the quantity
is around 10, between 5 and 15 units is more precise than saying that it is
around 10, between 1 and 25). However, by applying our dominance method,
we conclude that B partial weak dominates A (B ≺w A), since the discard
criterion gives: 5 − 3 > 7 − 9. Thus, we obtain the same rational result
B ≺ A.

From the above examples, we may conclude that the proposed mono-
objective dominance method can effectively rank two triangular fuzzy num-
bers and produces reasonable and intuitive results. The next example presents
a comparison of our Pareto dominance relations with the interval-based dom-
inance proposed by [9, 10].

Example 4. Figure 11 illustrates 4 possible cases between a pair of solutions
S1 and S2 in a two-dimensional objective space. For each case, we intend to
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determine the type of Pareto dominance relation between both solutions by
applying:

- Limbourg’s interval-based Pareto dominance [9], denoted by <IP .

- Our Fuzzy Pareto dominance: denoted by ≺SP for strong Pareto domi-
nance, ≺WP for weak Pareto dominance and ‖ for case of indifference.

In that sense, every solution in our case is represented by a triangular fuzzy
shape (colore in light and dark gray), that is a vector of two TFNs (re-
spectively for objectives f1 and f2). For example, in Figure 11-(c1), S1 =
([2, 4, 9][1, 3, 6]) and S2 = ([8, 10, 13][5, 9, 12]). On the other hand, by ap-
plying the interval-based approach, every solution will be represented by a
rectangular shape (bounding boxes with dotted lines), that is a vector of in-
tervals as for example in (c1): S1 = ([2, 9][1, 6]) and S2 = ([8, 13][5, 12]).

f1 

f2 

f1 

f2 

f1 

f2 

f1 

f2 

S2 

S1 

S2 

(c1) (c2) 

(c3) (c4) 

2 4 9 8 10 13 

1 5 11 15 2 6 14 12 7 5 

2 9 3 8 10 13 

1 

3 

6 

5 

9 

12 

2 

 9 

7 

12 

2 

7 

11 

S1 

10 

4 

S2 

2 

5 

11 

10 

4 

8 13 

S1 

S1 

11 

S1 

S2 

10 

Figure 11: Pareto dominance examples
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(c1) is the case where S1 is lower than S2 in both f1 and f2. By using
the interval-based Pareto dominance, the lowest solution is preferred and thus
S1 <IP S2. In our triangular fuzzy setting, we can clearly deduce that S1 ≺SP ,
because S1 strong dominates S2 in all the objectives.

In cases (c2) and (c3), S1 is better than S2 in one objective but greater
than it or incomparable in the other. In the case of interval-based approach,
authors state that these cases depend heavily on the decision maker choice.
Otherwise, this latter can interpret them as situations of indifference or use a
preference-based decision. Yet, by using the fuzzy Pareto dominance, we may
conclude that S1 ≺WP S2 in both cases, because S1 strong dominates S2 in f1
and weak dominates it in f2. For instance in (c2), we have S11 = [2, 3, 9] ≤s
S21 = [8, 10, 13] and S12 = [7, 9, 12] ≤w S22 = [2, 10, 11] with respect to their
kernel values comparison, i.e., (9− 10) ≤ 0.

Likewise, (c4) represents always a case of incomparability because one
solution encloses the other. Thus, we have S1‖S2.

From these examples, we remark that our fuzzy Pareto dominance can suc-
cessfully discriminate incomparable solutions in some critical decision cases.
This is mainly due to the flexibility that our approach offers by giving us
the choice between weak and strong dominance relation. This may also be
explained by the use of the kernel values of our triangular fuzzy distributions
as comparison criteria in the cases of indifference. In general, we may con-
clude that our fuzzy Pareto approach offers a better classification and more
accurate knowledge comparing with the interval-based approach.

3.3. Extended MOEAs for fuzzy MOPs

The issue now is to design optimization algorithms for handling any MOP
with fuzzy-valued objectives. The basic idea is to exploit the common steps
from the general MOEA scheme (described in Section 2.1.2) and then adapt
them to the fuzzy context. As mentioned before, the overall MOEA process
is most strongly influenced by three main components: Fitness assignment,
Diversity preservation and Elitism/Archiving. It is therefore necessary to
adapt each of theses components in order to enable such algorithms working
in a fuzzy context.

First, knowing that in a MOP with fuzzy-valued objectives, solutions are
usually affected by fuzziness. In addition, we remember that in our case the
encoding type of objective functions is a triangular fuzzy shape (see Equa-
tion 13 in Section 3.1). Consequently, every solution is composed of a vector
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of triangular fuzzy numbers (TFNs). This kind of fuzziness will be propa-
gated step by step in the MOEA optimization proces. In the initial step,
a population with a set of triangular fuzzy solutions is randomly sampled.
These solutions should then be evaluated and ranked based on fitness assign-
ment strategy such as dominance-based evaluation. However as the classical
dominance concepts can only be applied between exact (or crisp) solutions,
we propose to use our new fuzzy Pareto dominance relations introduced in
the previous section. Similarly, if another fitness strategy is used, we should
adapt it to the fuzzy setting.

Next, once all fuzzy solutions are ranked, the diversity preservation will
be performed in the selection step. Usually, the local density is estimated
by measuring distances between neighbor solutions. Yet, a standard distance
measure is typically applied between exact values. Thus, in our case, we need
clearly a specific measure for computing the distance between fuzzy values.
Thereafter, the archiving tool must also be able to store the selected fuzzy
non-dominated solutions. The remaining steps still unchanged because they
are independent to the type of solutions.

Following these remarks, any MOEA can be extended to our fuzzy context
by integrating these modifications into the search process. In this work,
we illustrate the fuzzy extension on the most popular algorithms: NSGAII
[40], SPEA2 [41] and IBEA [13]. These algorithms have proved to be very
powerful tools for multi-objective optimization. Due to their population-
based nature, they are able to generate multiple optimal solutions in a single
run with respect to the good convergence and diversification of obtained
solutions. Table 1 summarizes the differences between them at the main
steps of unified scheme [42]. In the following, we describes in details the
fuzzy extension of each algortithm.

Table 1: NSGAII, SPEA2 and IBEA components

NSGAII SPEA2 IBEA
Fitness Pareto dominance Pareto dominance Quality indicator
Diversity crowding-distance nearest neighbor -
Selection binary tournament binary tournament binary tournament
Elitism - fixed size archive -
Replacement elitist generational elitist
Stopping nb of generations nb of generations nb of generations
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3.4. E-NSGAII

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) [40] is one
of the most popular PMOEAs for solving MOPs. Its popularity is often as-
sociated to its low computational complexity, explicit technique for diversity
preserving and the no-archive strategy. Contrary to its original version, it
does not use a fitness sharing mechanism for diversity preserving, but rely
on a crowded comparison procedure.

To extend NSGAII, we propose at the first stage to replace the stan-
dard Pareto by our new fuzzy Pareto dominance defined in the previously.
This modification allows to ensure the fitness assignment ranking in a fuzzy
setting. At the second stage, we provide an adaptation of the diversity pre-
serving technique where a crowded-comparison procedure is applied. This
procedure is based on a Crowding distance CD that serves to get a dis-
crimination of solutions having the same rank level. Formally, the CD of a
solution is the sum of its individual objectives’ distances, that in turn are
the differences between the solution and its closest neighbors.

CD(i) =
∑
i=1..n

(fi(i + 1)− fi(i− 1))/(fmaxi − fmini ) s.t. i ∈ F (23)

where fi(i + 1) and fi(i − 1) are the neighbor objective values of i−th ob-
jective, n is the number of objectives ,fmaxi and fmini are respectively the
population maximum and minimum objective values and F is the i−th front
to which solutions are associated. However, this distance cannot remain
unchanged in our fuzzy context since it depends directly on the differences
between objective values. Then as our objective functions are vectors of tri-
angular fuzzy numbers (or TFNs), the distance measure must be adapted to
fuzziness. Thus, we simply propose to approximate these objectives by com-
puting their expected values before applying the Crowding distance. Indeed,
the distance between each pair of objective values will be then substituted by
the differences between the corresponding expectations. Formally, the Ex-
pected value E of a given triangular fuzzy number yi = [yi, ŷi, yi] is calculated
using the following formula [35]:

E(yi) = (yi + 2× ŷi + yi)/4 (24)

Notice that, we do not need a fuzzy extension of the elitism technique because
there is no archive. Finally, the two simple refinements at fitness assignment
and diversity preserving steps are incorporated into the search process of
NSGAII. We describe E-NSGAII in Algorithm 1.
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Algorithm 1: E-NSGAII
Input : Population size N

Maximum number of generations G
Output: Pareto set approximation
begin

1.Initialization. create a random population P of N fuzzy solutions;
repeat

2.F itness Assignment. rank all solutions using fuzzy Pareto dominance;
3.Environmental Selection. select the non-dominated fuzzy solutions
based on their expected crowding values and copy them in an external
population P ′;
if size of P ′ exceeds N then

add the least crowded solutions to P ′;
else if size of P ′ is less than N then

set P ′ with dominated solutions;
else

the environmental selection is completed;
end
4.Elitism. update P ∪ P ′

until 5. Stopping condition. Number of generations > G is satisfied
6.Mating Selection. perform a binary crowded tournament selection to select
parents from P ′;
7.V ariation. apply crossover and mutation operators to the mating pool;
8.Replacement. replace old population by the resulting offspring population.

end

3.5. E-SPEA2

The Strength Pareto Evolutionary Algorithm (SPEA2) is an improved ver-
sion of SPEA algorithm, where a mixed strategy of fitness ranking is adopted
[41]. Otherwise, SPEA2 uses a Pareto-based fitness assignment which incor-
porates both rank and count dominance strategies.

Similarly to the previous algorithm, we first suggest to integrate our fuzzy
Pareto dominance relations in the SPEA2 fitness assignment strategy. Then
as detailed before, SPEA2 uses a nearest neighbor density estimation tech-
nique which allows a more precise guidance of the search process. This
technique consists in calculating for each solution the Euclidean distance to
its kth nearest neighbor and then in adding the reciprocal value to the fit-
ness vector. Formally, the Euclidean distance EU between two solutions (i.e.
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deterministic objective vectors) y1 and y2 is given by:

EU(y1, y2) =

√√√√ n∑
i=1

(y1i − y2i)2 (25)

However, as Euclidean distance should be applied only between two exact
vectors and in our case the solutions are vectors of TFNs, we should replace
this latter by a specific fuzzy distance. Therefore, we choose to use the so-
called Bertoluzza metric [43] in order to compute the distance between two
fuzzy solutions based on α-cut principle. More precisely, given two vectors
of TFNs y = (y1, ..., yn) and y′ = (y′1, ..., y

′
n) such that yi = [yi, ŷi, yi] and

y′i = [yi
′, ŷi

′, yi
′], the Bertoluzza metric is first applied to compute distances

between every pair of fuzzy numbers yi and y− i′. Then, we propose to com-
pute the weighted mean of the overall distances d(yi, y

′
i) in order to estimate

the final distance between both vectors D(y, y′). Formally, it is given by:

d
θ
(yi, y

′
i) =

√∫ 1

0

(mid(y
iα

)−mid(y′
iα

))2 + θ (spr(y
iα

)− spr(y′
iα

))2dα (26)

where yiα denotes the α-cut of yi defined as as an α level set (or bijection)
associating for any α ∈ [0, 1] a bounded interval [yiα , yiα ], mid(y

iα
) = 1

2
(yiα +

yiα) denotes the midpoint of yiα , spr(y
iα

) = 1
2
(yiα − yiα) is the spread (or

radius) of yiα and θ ∈ [0, 1] is a parameter that allows us to weight the effect
of the deviation between spreads. For a sake of simplicity, we will consider
in our case the 0-cut level (α = 0) where yi0 = [yi0 , yi0 ] = [yi, yi] is the
topological support of yi and we choose a parametrization with the value
θ = 1

2
.

By using this fuzzy distance, the distance to each k-nearest fuzzy solution
can be estimated in order to select the well-distributed solutions. Thereafter,
unlike the NSGAII algorithm, SPEA2 uses a regular population and also an
external storage, the so-called archive. Thus, we need to extend this archive
to the triangular fuzzy space in order to enable it keeping the best triangular
solutions during the optimization process. In next steps, namely mating
selection, variation and replacement remain unchanged in our fuzzy context.
The above extensions are integrated into the search process of SPEA2 and
leads to a new version, denoted E-SPEA2 and described in Algorithm 2.
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Algorithm 2: E-SPEA2
Input : Population size N

Triangular archive A
Maximum number of generations G

Output: Pareto set approximation
begin

1.Initialization. create a random population P of N fuzzy solutions and
create an empty triangular archive A of fixed size M ;
repeat

2.F itness Assignment. rank solutions using fuzzy Pareto dominance;
3.Environmental Selection. copy all non-dominated solutions from P to
the triangular archive A;
if size of A exceeds M then

A is pruned by means of a clustering procedure;
else if size of A is less than M then

fill A with best dominated solutions;
else

the environmental selection is completed;
end
4.Elitism. update A;

until 5. Stopping condition. Number of generations > G is satisfied;
6.Mating Selection. perform a binary tournament selection with replacement
on A to fill the mating pool;
7.V ariation. apply crossover and mutation operators to the mating pool;
8.Replacement. replace old population by the resulting offspring population.

end

3.6. E-IBEA

The Indicator Based Evolutionary Algorithm (IBEA) [13] is a third gen-
eration of MOEAs, where selection is based on solution contribution to a
certain quality indicator. Its basic idea is to establish a pairwise comparison
of solutions by using a binary quality indicator as fitness assignment strat-
egy. Different indicators can be used for such a purpose such as the binary
Hypervolume indicator chosen in our case.

More precisely, the algorithm computes the indicator value I of each
pair of individuals and assigns to each individual i a fitness value fi, to be
maximized, measuring the loss in quality if it’s removed from the current
population P .

fi(i) =
∑

j∈P\{i}

−e−I(i,j)/k (27)

27



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

where k is a scaling factor which has to be set in advance. The purpose of
the exponential is to amplify the differences between dominated and non-
dominated individuals.

The extension of IBEA algorithm to our fuzzy setting is more simple than
the previous algorithms, because all the dominance relations are generalized
by means of the quality indicator and also no diversity preservation technique
is required. Indeed, knowing that almost all quality indicators are dedicated
only to crisp approximations and as in our case every individual is represented
by a triplet of values, we propose to compute separately the fitness of the
three values. In other words, we assign to the lower, middle and upper
values of every solution, a unique scalar value representing its quality or
fitness. Next, we suggest to use these fitness values to compare and evaluate
a pair of individuals. In fact, the worst individual (with the lowest fitness)
is iteratively removed and the fitness values of the remaining individuals
are updated. This process, of deleting one by one the worst solutions, is
iterated until the reach of the required population size. Finally, as IBEA is
sometimes sensitive to the parameter k used to scale the values of indicators,
we use adaptive scaling values of k, starting from a value greater than 0 until
reaching the best final k value. The extended version of IBEA is given in
Algorithm 3.
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Algorithm 3: E-IBEA
Input : Population size N

Maximum number of generations G
Fitness scaling parameter k

Output: Pareto set approximation
begin

1.Initialization. create a random population P of N fuzzy solutions;
repeat

2.F itness Assignment. scale indicator values and then use them to assign
fitness:
- compute the indicator value for each vector of lower, middle and upper
bound of the triangular fuzzy objective;
- use adaptive scaling k for each indicator value in interval [0, 1];
- assign scaled values as fitness of fuzzy solution in P .
3.Environmental Selection. select the best fuzzy solutions based on their
fitness values and copy them into an external population P ′:
if size of P ′ is less than N then

- determine the worst (smallest) fitness value of fuzzy individuals;
- remove the individual with worst fitness from the population P ;
- set P ′ with the remaining individuals and update their fitness values;

else
the environmental selection is completed

end
4.Elitism. update P ∪ P ′

until 5. Stopping condition. number of generations > G is satisfied
6.Mating Selection. perform a binary crowded tournament selection to select
parents from P ;
7.V ariation. apply crossover and mutation operators to the mating pool;
8.Replacement. replace old population by the resulting offspring population.

end

4. Application on a multi-objective Vehicle Routing Problem

The basic VRP consists in finding a set of optimal routes (with minimum
total cost) to be covered by a fleet of identical vehicles in order to serve a
number of geographically distributed customers, subject to side constraints
such that: (i) all routes start and end at a central depot; (ii) each customer is
visited exactly once by only one vehicle. Several variants of this basic problem
were extensively studied in the literature, see [44]. However, almost all of
them were originally proposed for modeling deterministic routing problems,
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while only few variants were devoted for problems with uncertain data such
as uncertain customers demand, location or travel cost.

4.1. Problem definition

In this paper, we focus on a well-known variant of VRP, the so-called
Multi-objective VRP with Time Windows and Uncertain Demands (MO-
VRPTW-UD). In this problem, all the data are deterministic excepting the
customer demands which are uncertain, meaning that the actual demand is
only known when the vehicle arrives at the customer location. The main
constraints of MO-VRPTW-UD are the following:

- Time windows constraint imposes that each customer will be served
within its time window which represents the interval of time planned
for receiving the vehicle service. This means that, if the vehicle arrives
too soon, it should wait until the arrival time of its time window to
serve the customer, while if it arrives too late (after the fixed depar-
ture time), wasted cost in term of tardiness time appears.

- Vehicle capacity constraint imposes that the total of customer
demands for any route must not exceed the limited vehicle capacity.
Moreover, each vehicle with a limited capacity must deliver goods to
the customers with the minimum transportation costs in term of trav-
eled distance. Yet, if the capacity constraint of a vehicle is not satisfied,
the delivery fails and causes wasted costs.

In our case, two objectives have to be minimized in this problem which are
the total traveled distance and total tardiness time. Besides, the customer
demands are assumed to be triangular fuzzy numbers. Then, as uncertainty
in the inputs leads often to the uncertainty in the outputs, the objective
functions in our problem will be consequently affected by the fuzziness of
customer demands.

Figure 12 illustrates an example of VRPTW-UD problem, with a central
depot, 3 vehicles (V 1, V 2, V 3) having a maximum capacity Q = 10 and a set
of 8 customers represented by nodes. Each customer i = 1 . . . 8 has an un-
certain demand expressed by a triangular fuzzy number dm = [dm, d̂m, dm]
(For example, the fuzzy demand of customer 1 is dm1 = [2, 7, 11]). Yet, in
this case, we cannot often determine if the capacity constraint is satisfied or
not, since the customer’ demands are fuzzy values. For example, consider
the customer 7 with fuzzy demand dm7 = [8, 10, 13], we cannot check if dm7
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5

V1

dm1= [2, 7, 11]

4
2

8

6

7

3

1

V2

V3

dm2= [3, 7, 9] dm4= [2, 4, 7]

dm6= [3, 5, 8]

dm8= [4, 6, 10]

dm5= [6, 8, 12]

dm3= [1, 6, 8]

dm7= [8, 10, 13]

Figure 12: Example of MO-VRPTW-UD

is lower, equal or higher than Q = 10 in order to estimate the transportation
costs in terms of time spent and traveled distance. At this level, we propose
to verify separately the capacity constraint satisfaction for each value of the
triangular demand. Then, based on the three situations found for the triplet
of demand values, the traveled distance will be calculated three times and
so obtained as triangular fuzzy number D = [D, D̂,D]. In addition, know-
ing that the travel time for a given route depends mainly on its traveled
distance to serve customers and as the distance in our case is a triangular
fuzzy variable, the time variable will be also disrupted by this fuzzy form
and consequently the tardiness time will be also obtained as triangular fuzzy
number T = [T , T̂ , T ].

4.2. Experimental design

The extended E-SPEA2, E-NSGAII and E-IBEA algorithms were applied
on the MO-VRPTW-FD problem and implemented in C++ using the Par-
adisEO framework, especially with the MOEO module under Linux [21]. For
a fair comparison and evaluation, all tested algorithms share the same base
parameters such as the chosen variation operators, the initial population, the
random seed, etc.
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4.2.1. Benchmarks

To the best of our knowledge, there is no common benchmark available
in the literature for stochastic VRPs. Hence, to evaluate our model with
fuzzy customer demands, we create a new benchmark for MO-VRPTW-FD
by adapting the problem instances provided by [45], which is a popular ref-
erence for evaluating most methods designed for VRPTW. Our interest is
focused on the larger benchmark of 100-customers that includes a total of
56 different problems. Each problem is composed of 100 geographically dis-
tributed customers, a unique depot and a fleet of homogenous vehicles having
a same capacity Q=60 and a constant speed fixed to 1 (distance unit/time
unit). The travel times between customers is proportional to the correspond-
ing Euclidean distances between them. According to the customer distribu-
tion and time-windows size, these problems are classified into 6 categories,
namely C1, C2, R1, R2, RC1, RC2, where (C) corresponds to a distribu-
tion of customers in clusters, (R) corresponds to a random distribution of
customers and (RC) corresponds to customers located partly in clusters and
partly randomly. The notations 1 and 2 indicate the size of the time windows
(1 for closely time window and 2 for large time window).

Thereafter, we propose to adapt the 56 Solomon’s problem to our fuzzy
context by applying the methodology described in Figure 13:

Crisp dm

[50% dm, 95% dm] [105% dm, 150% dm]

Figure 13: Fuzzy sampled demand

The basic idea of this methodology is to generate for each deterministic
instance its fuzzy sampled version, in which each crisp demand values is
replaced by its corresponding fuzzy value. The kernel value (d̂m) for each
triangular fuzzy demand dm is firstly kept the same as the crisp demand
value dmi of the current instance. Then, the lower (dm) and upper (dm)
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bounds of this triangular fuzzy demand are uniformly sampled at random
in the intervals [50%dm, 95%dm] and [105%dm, 150%dm], respectively. The
new fuzzy instances are labeled with names preceded by the word ”Fuzz”
like Fuzz-C101, Fuzz-R101, Fuzz-RC101, etc.

4.2.2. Experimental protocol

To assess the performance of our algorithms, we have conducted a set of
experiments that can be divided into 2 tests:

(i) First, we aim to examine the ability of new algorithms to tolerate
fuzziness versus their crisp versions.

(ii) Second, we aim to compare the quality of generated front approxima-
tions of proposed algorithms.

In these experiments, we have used the 56 fuzzy instances sampled uni-
formly at random from the classical Solomon’s instances. Each fuzzy in-
stances is tested on the following six algorithms executed 30 times: C-SPEA2,
C-NSGAII, C-IBEA denote respectively the crisp algorithms considering only
the core (i.e. the most plausible value) of fuzzy demands, E-SPEA2, E-
NSGAII and E-IBEA are the extended algorithms considering the triangular
fuzzy representation of demands (i.e. the triplet of values) and propagating
fuzziness to the objective functions. For each algorithm, a set of 30 runs per
instance was performed with random initial populations of size=100 evolv-
ing across 1000 generations; crossover rate of 0.8 and mutation rate of 0.1;
final scaling parameter k = 0.05. Thereafter, with 6 algorithms tested on
56 instances and repeated 30 runs, we have done 6×56×30=10080 runs.
Hence, we obtained, for every test instance, 30 sets of optimal solutions that
represent Pareto front approximations. Each solution shows the minimum
total traveled distance and total tardiness time for an efficient vehicles route.
However, the solutions obtained for the crisp algorithms are represented by
a set of exact numbers, while for the new extended algorithms the solutions
returned are vectors of triangular fuzzy numbers.

Examples of front approximations found for the problem instance Fuzz-
C101 using each of algorithms E-SPEA2, E-NSGAII and E-IBEA are shown
respectively in Figures 14, 15 and 16. The illustrated fronts represent a
set of triangular fuzzy solutions. For instance, the bold triangle in Fig-
ure 14 represents a solution with minimum total distance (the green side)
equal to [2413, 2515, 2623] and total tardiness time (the red side) equal to
[284312, 295280, 315322].
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In order to evaluate and compare the quality of the generated front ap-
proximations for every test instance, we use:

- Unary hypervolume indicator IH to compare the approximations quality
of each extended algorithm with the classical one. This indicator is to be
maximized.

- Binary hypervolume difference I−H and additive ε-indicator Iε+ to assess
the performance of proposed algorithms. Both indicators are to be mini-
mized.

Yet, as these indicators are performed only on exact approximation sam-
ples, we propose to defuzzify the triangular fuzzy solutions of E-SPEA2,
E-NSGAII and E-IBEA algorithms by computing their expected values (see
Equation 24). As the computation of hypervolume and epsilon indicators
usually require a reference set Z?

n (or a reference point zref for the unary
case), we propose to follow the experimental steps given in [46]: We first
consider Z?

n as the set of non-dominated solutions extracted from the union
of all front approximations. Then, we compute zmax = (zmax

1 , zmax
2 ), where

zmax
1 and zmax

2 denote the upper bounds of both objective functions in the
whole non-dominated fronts. The reference point used for the unary hyper-
volume IH is fixed to zref = (1.05× zmax

1 , 1.05× zmax
2 ).

Subsequently, by applying the quality indicators with respect to the ref-
erence set (or reference point), we transform our solutions to samples with
I-values scalars. In this way, we reach a single I-value for each test run per al-
gorithm. For instance, according to the maximum hypervolume value found
with the unary hypervolume metric, we can evaluate the quality of every
algorithm outputs (i.e. higher IH value indicates a better front approxima-
tion). Thereby, by analyzing the change in the set of IH values provided
for 30 runs per test instance, we can realize whether the extended algorithm
(E-SPEA2, E-NSGAII and E-IBEA) are capable to tolerate the fuzziness
comparing with their crisp versions (C-SPEA2, C-NSGAII and C-IBEA).

Afterwards, the binary I−H and Iε+ indicators are applied to assess the per-
formance of proposed algorithms (w.r.t the reference set). Similarly, since 30
runs per algorithm have been performed, we obtain 30 hypervolume differ-
ences and 30 epsilon measures for each test instance. Once all these I-values
are computed, we need to use a statistical analysis in order to compare them
and so obtain valid statements about their quality. Since the algorithms
share the same parameters for all the runs such as the initial population, the
random seed, the variation operators, etc, the resulted approximations can
be considered as matched samples. To this end, we use the Wilcoxon-signed
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rank test with a P-value=0.5% for a pairwise comparison between them.
Consequently, for every test instance and according to the indicator under
consideration (i.e. I−H or Iε+), this statistical test indicates if the approxi-
mation samples obtained by a given algorithm are significantly better than
the ones of another algorithm, or if there is no significant difference between
both. Notice that, all the experimental tests have been conducted using the
PISA 1 performance assessment tool suite [47].

4.2.3. Computational results

Figures 17, 18 and 19 summarize the unary hypervolume results for the
six implemented algorithms by using box-plots, such that each box presents
30 hypervolume values from the 30 runs of a corresponding algorithm on one
test instance. Then as we have a total of 56 tested fuzzy instances, we present
in these figures only the box-plots for 12 sampled fuzzy instances such as:
Fuzz-C101, Fuzz-C104, Fuzz-C201, etc. The box-plots for other instances are
completely similar and exhibit the same trend.

More precisely, by examining the behaviour of plotted boxes between the
accumulated hypervolume values, we can assert the quality of our extended
algorithms E-SPEA2, E-NSGAII, E-IBEA and compare them with the crisp
algorithms C-SPEA2, C-NSGAII and C-IBEA. Taking a look at the Figure
17, we can intuitively compare the C-SPEA2 and E-SPEA2 algorithms based
on their boxes of hypervolume values. In fact, it is not difficult to realize
that the boxes of crisp C-SPEA2 are very large, in the sense that their
hypervolume values vary from instance to instance (approximately from 0.3
to 1.1). Also, we can remark that the E-SPEA2 boxes are better (higher)
than those of C-SPEA2, because they are less variable (varying slightly from
0.6 to 1.2) and look identical for all the illustrated instances.

In the same way, a comparison between the C-NSGAII and E-NSGAII
algorithms is shown in Figure 18. Indeed, from the illustrated box-plots,
we can easily observe that the boxes of the crisp algorithm are larger than
those of the extended one. Otherwise, the E-SPEA2 has high and less dis-
persed hypervolume values varying from 0.5 to 1.2, whereas the C-NSGAII
has hypervolume values varying from 0.2 to 1.1.

Furthermore, according to the box-plots in Figure 19, we can observe
that there is no significant differences between the ”largeness” or variation

1http://www.tik.ee.ethz.ch/pisa/assessment.html
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of C-IBEA and E-IBEA boxes. Indeed, the hypervolume values of C-IBEA
(varying between 0.4 and 1.1) are not very large and near to the spread
of E-IBEA hypervolume values (varying between 0.5 and 1.1). This could
be explained by the fact that both algorithms already use the hypervolume
indicator as fitness assignment strategy.

These remarks leads us to conclude that for all the sampled fuzzy in-
stances, the new algorithms E-SPEA2, E-NSGAII and E-IBEA are less sen-
sitive to fuzziness and so converge better than their crisp versions C-SPEA2,
C-NSGAII and C-IBEA respectively. This may be explained by the fact
that taking into account all the three vertices of a triangular fuzzy demand
instead of only consider the most plausible demand in the crisp algorithms,
provide more accurate approximations and consequently a better estimate of
the algorithm quality.

Table 2 and 3 present the performance assessment of our proposed al-
gorithms in solving the MO-VRPTW-FD. These algorithms are compared
on 10 random selected fuzzy instances with respect to both binary I−H and
Iε+ indicators and using the Wilcoxon-signed rank test (with a P-value less
or equal to 0.05). For each test instance, either the algorithm located at a
specific row significantly dominates the algorithm located at a specific col-
umn (≺), either it is significantly dominated (�) or there is no significant
difference between both (≡).

Observing the obtained results, both algorithms E-SPEA2 and E-NSGAII
concurrently outperform E-IBEA, with respect to both I−H and Iε+, for all the
tested instances. This may be due to the fact that E-IBEA is more sensitive to
the parameters of indicators, while both E-SPEA2 and E-NSGAII are largely
independent from the tested indicators. Although the difference between the
structure of E-SPEA2 and E-NSGAII algorithms is small (i.e. Both are based
on Pareto-dominance approach to guide their search process), E-SPEA2 has
usually better convergence to the global Pareto front than E-NSGAII. Notice
that, the size and inputs data of sampled instances are not the same; this is
what led to some exceptions and different results.

In fact, as shown in the tables, E-SPEA2 performs better than E-NSGAII
algorithm for almost all the instances, excepting for some instances: Fuzz-
RC204, Fuzz-R110 and Fuzz-RC208, where there is no significant difference
between both algorithms E-SPEA2 and E-NSGAII algorithms. Another ex-
ception is for the Fuzz-C103 and Fuzz-RC106 instances, where the E-NSGAII
obtained better results than E-SPEA2 with respect to the Iε+ indicator.
Therefore, E-SPEA2 is clearly the most useful for fuzzy sampled instances
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since it outperforms the two other algorithms. On the other hand, in terms
of running time, E-NSGAII is the fastest algorithm (i.e. requites approxi-
mately between 3 and 8 seconds) and this seems natural because it doesn’t
involve expensive calculations (as in E-IBEA that yields between 5 and 17
seconds) or archive procedure (as in E-SPEA2 that yields between 3 and 13
seconds).

5. Conclusion

Through this work, we have contributed to the design of a generic ap-
proach for combinatorial multi-objective problems with fuzzy data, especially
expressed by means of triangular fuzzy numbers and propagated to the objec-
tive functions. Our major contributions is two-fold: First, we have proposed
a novel Pareto approach for ranking the fuzzy outcomes generated in our
case. Second, we have introduced a fuzzy extension of three well-known
multi-objective evolutionary algorithms. The usefulness of proposed algo-
rithms was illustrated through the resolution of a practical VRP problem
and their performance assessment was validated by means of some experi-
mental tests. The computational results were straightforward and encourag-
ing for multi-objective problems confronted with fuzziness. Notice that our
implementation are added into the ParadisEO-MOEO platform under Git 2.

As future work, we intend to make a robustness study to analyze in more
detail the obtained solutions. We also intend to extend the well-known multi-
objective performance indicators (i.e., Hypervolume indicator) to our fuzzy
context. Finally, it would be interesting to validate the proposed approach
for different fuzzy multi-objective routing problems, in which the fuzziness is
expressed by other shapes like trapezoidal fuzzy numbers.

2https://gforge.inria.fr/projects/paradiseo/
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Table 2: Algorithms comparison according to the I−H indicator

Instances Algorithms E-SPEA2 E-NSGAII E-IBEA

Fuzz-C201
E-SPEA2 - ≺ ≺
E-NSGAII � - ≺
E-IBEA � � -

Fuzz-R201
E-SPEA2 - ≺ ≺
E-NSGAII � - ≺
E-IBEA � � -

Fuzz-C204
E-SPEA2 - ≺ ≺
E-NSGAII � - ≺
E-IBEA � � -

Fuzz-R204
E-SPEA2 - ≺ ≺
E-NSGAII � - ≺
E-IBEA � � -

Fuzz-RC204
E-SPEA2 - ≡ ≺
E-NSGAII ≡ - ≺
E-IBEA � � -

Fuzz-C103
E-SPEA2 - ≺ ≺
E-NSGAII � - ≺
E-IBEA � � -

Fuzz-R110
E-SPEA2 - ≡ ≺
E-NSGAII ≡ - ≺
E-IBEA � � -

Fuzz-R208
E-SPEA2 - ≺ ≺
E-NSGAII � - ≺
E-IBEA � � -

Fuzz-RC106
E-SPEA2 - ≺ ≺
E-NSGAII � - ≺
E-IBEA � � -

Fuzz-RC208
E-SPEA2 - ≡ ≺
E-NSGAII ≡ - ≺
E-IBEA � � -
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Table 3: Algorithms comparison according to the Iε+ indicator

Instances Algorithms E-SPEA2 E-NSGAII E-IBEA

Fuzz-C201
E-SPEA2 - ≺ ≺
E-NSGAII � - ≺
E-IBEA � � -

Fuzz-R201
E-SPEA2 - ≺ ≺
E-NSGAII � - ≺
E-IBEA � � -

Fuzz-C204
E-SPEA2 - ≺ ≺
E-NSGAII � - ≺
E-IBEA � � -

Fuzz-R204
E-SPEA2 - ≺ ≺
E-NSGAII � - ≺
E-IBEA � � -

Fuzz-RC204
E-SPEA2 - ≡ ≺
E-NSGAII ≡ - ≺
E-IBEA � � -

Fuzz-C103
E-SPEA2 - � ≺
E-NSGAII ≺ - ≺
E-IBEA � � -

Fuzz-R110
E-SPEA2 - ≡ ≺
E-NSGAII ≡ - ≺
E-IBEA � � -

Fuzz-R208
E-SPEA2 - ≺ ≺
E-NSGAII � - ≺
E-IBEA � � -

Fuzz-RC106
E-SPEA2 - � ≺
E-NSGAII ≺ - ≺
E-IBEA � � -

Fuzz-RC208
E-SPEA2 - ≡ ≺
E-NSGAII ≡ - ≺
E-IBEA � � -
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Figure 14: Example of E-SPEA2 solutions for Fuzz-C101

Figure 15: Example of E-NSGAII solutions for Fuzz-C101
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Figure 16: Example of E-IBEA solutions for Fuzz-C101
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Figure 17: Hypervolume results of C-SPEA2 and E-SPEA2
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Figure 18: Hypervolume results of C-NSGAII and E-NSGAII
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Figure 19: Hypervolume results of C-IBEA and E-IBEA
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