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Abstract One-dimensional Kohonen’s algorithm is a

process of mining knowledge which finds the characteris-

tics of social media websites as a mode from the sequence

database. Social media web log records generated con-

stantly, and user access patterns will change accordingly.

This study focused on taking advantage of the dynamic

characteristics of the Kohonen algorithm, delivering a fast

and efficient incremental mining algorithm and testing the

new developed model.

Keywords Kohonen’s algorithm � Social media � Data

mining � Neural computing

1 Introduction

In this work, a variant to self-organizing maps based on

Kohonen’s algorithm is proposed in order to analyze a real

B2C websites. The Kohonen algorithm is a neural network

proposed by Kohonen, which maps a distribution of vectors

of any dimension into a lower-dimensional space, generally

one or two, while maintaining a high degree of topological

ordering, or neighborhood preservation. It is widely

adopted to visualize high-dimensional data sets and to mine

online data [1–4].

Social networks such as eBay.com, Amazon.com and

Taobao.com (the largest online shopping platform in

China) provide forums for consumer ratings, evaluations

and advice on users. Consumers using Taobao.com spent

USD 180 billion in 2014, and 94 % of their purchases

were shared with others [5]. Although social commerce

has become an important topic for many researchers,

previous studies of social commerce have generally been

developed from the literature of e-commerce. Social

commerce is online business that combines e-commerce

with social media (e.g., twitter) and social networking to

accomplish business goals, functions and behaviors. Qu

defined social commerce as online business activities

initiated via social media which entails business trans-

actions through either social media (e.g., Taobao.com) or

other e-commerce sites. Social commerce enables the

use of various social technologies to improve the shop-

ping experience for customers. Smart phones are now

the most commonly used tools in social commerce

transactions.

Social commerce adoption is regarded by the computer

and information industries as the ‘future generation’ of

digital business because of their convenience in social

interaction and Internet login [6]. Since smart phones and

tablet computers are widely adopted in social interaction

and electronic commerce, wearable devices, as the

extended or future generation of digital devices, should

provide better experiences of social interaction. Therefore,

understanding the factors impacting the access of social

websites can lead to better academic integrity and market

applications.

One of the main drawbacks associated with the classical

Kohonen’s algorithm results from the prerequisite the

adequate size of the output layer in advance [7, 8]. In this

work, we extended the existing Kohonen’s model, which

allows shortening the time of training with regard to other

approaches that also try to solve the problem of the optimal

size of SOM, e.g., the growing hierarchical self-organizing

maps algorithm [9].
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2 Construction of a one-dimensional Kohonen’s
algorithm

Classic Kohonen’s algorithm consists of a set of neurons usu-

ally arranged in a one- or two-dimensional grid [1]. Although

higher-dimensional grids are also possible, they are hardly ever

used because of their problematic visualization [8, 10, 11].

Every neuron has a fixed position in the grid and is represented

by an n-dimensional weight vector, as w ¼ w1;w2; . . .;wn½ �.
Where n is the dimensionality of the input space. A user

pattern x is randomly chosen from the data set on each

training step. Then, the neuron whose weight vector is the

most similar to the user pattern is searched, being this

neuron the so-called best matching unit (BMU) [12]. The

weight vectors of the BMU and its neighborhood are

updated as follows.

Where t stands for the iteration number, a(t) is the

learning rate, and h(t) is the neighborhood kernel, whose

center is located at the BMU. The neighborhood kernel

determines which neurons around the BMU are updated,

and how this update functions each neuron [9].

wtþ1 ¼ wt þ a tð Þh tð Þ x� wtð Þ ð1Þ

If the input level (first level) contains m neurons, which

indicates the dimensions of the input vectors are m, the out-

put level (second level) has n neurons [13]. Therefore,

the weight coefficient number of input level and output level

is m 9 n. The input vector is X ¼ ½X1ðtÞ;X2ðtÞ; . . .;XmðtÞ�T ,

where Xi(t) is the component of dimension i of sample

at time t; The output vector is Y ¼ ½Y1ðtÞ; Y2ðtÞ; . . .; YnðtÞ�T ,

and WijðtÞði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ is the

weight coefficient from input knot i to output knot j at

time t.

Kohonen’s neural algorithm follows competitive learn-

ing strategy [14]. For each input sample vector, the coef-

ficient of weight of the winner and its relevant neurons in

competitive are modified and the rest ones remain the

same. The algorithm of the competition is:

Step 1 Neural network initialized

When t = 0, Wij(0) is supposed to be a small

random number to set up a initialized

neighborhood around knot j and its radius is Nj(0);

Step 2 A vector is input as a new sample:

The new vector is X ¼ ½X1ðtÞ;X2ðtÞ; . . .;XmðtÞ�T ,

where Xi(t) is the component of dimension i of

sample at time t. The Euclidian distance of the

input sample and each neuron of output levels is

dj, which is:

dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xm

i¼1
ðxi �WijðtÞÞ2 ðj ¼ 1; 2; . . .; nÞ

q

ð2Þ

Step 3 The optimal matching output neuron

The output neuron is the one with minimum

distance to input X, which is c. Wc means the

coefficient vector of chosen neuron and shown as:

X �Wck k ¼ min dj
� �

ð3Þ

Step 4 Modify the coefficient of weight

Modifying the coefficient of weight of knot c and

its neighborhood, the modified coefficient of

weight should be:

Wijðt þ 1Þ ¼ WijðtÞ þ gðtÞ½Xi �WijðtÞ� ð4Þ

where g(t) is the gain item and decreases with the

time to 0, and 0\ g(t)\ 1 would be g(t) = 1/t.

Step 5 To Step 2 until the sample ends or the gain item

turns to be 0.

3 Training of Kohonen’s algorithm

Triangle subjection function is adopted as the algorithm of

optimization matching of output neuron for Kohonen’s

neural network option [15–17]. As the Kohonen neural

algorithm, extended Kohonen’s algorithm is a two-level

feed-forward neural network with input and output levels.

The input level has m neurons, and the number of neurons

equals to the number of dimensions of input vectors. The

output level is a one-dimensional linear matrix competitive

output neuron, ranging from 0 to 1 (Fig. 1).

where x1, x2, … xm are the m-dimensional input of

Kohonen’s neural network, marked as X ¼ ½x1; x2; . . .; xm�T ;

w11, w12, … wmn are the weight with m 9 n coefficient of

input and output neurons, marked as Wj ¼ ½w1j;w2j; . . .;

wmj�T , while j = 1, 2, …, n and 1, 2, …, n are the output

neurons; l1, l1, … ln are the fuzzy output values.

4 Implementation and performance results

Based on improved Kohonen’s neural networks algorithm,

social media users accessing model was implemented [18],

which includes two stages: learning stage and application

stage (shown in Fig. 2).

The one-dimensional Kohonen algorithm integrates the

models with the learning rate and updating strategies of the

general Kohonen algorithm. Since one-dimensional Koho-

nen’s algorithm is a optimal procedure, the integration of

one-dimensional Kohonen’s models in one way solves sev-

eral problems of the social media website visits (Fig. 3).
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Figure 4 shows that during the evolution of Kohonen’s

network the initialization of the models as random neurons

was originally used only to demonstrate the capability of

the one-dimensional Kohonen algorithm to become

ordered or organized, starting from an arbitrary initial state

[19–21]. While one expects to achieve the final ordering or

stable as fast as possible, so the selection of a good initial

state of neuron may speed up the convergence of the

Kohonen algorithms by orders of magnitude (Figs. 5, 6).

The distribution of learning rates and the size of

neighborhoods are controlled by changing the value of

weight exponents with time, besides the fuzzy Kohonen

clustering network. Instead of decaying the learning rates

and the size of neighborhood neurons to lower level or

zero, it decreases the value of the weight neighborhood

from a certain positive constant larger than one. Since the

value of the weight neighborhood is one or two nodes, only

the winner is updated with the membership value one as in

the Kohonen algorithm. The improved one-dimensional

Kohonen’s algorithm guarantees cluster weights to con-

verge by minimizing an objective function as in the orig-

inal Kohonen model. One-dimensional Kohonen’s

algorithm is parallel and is independent of the feeding

sequence (Fig. 7).

5 Conclusion

This paper has provided insights into the different access-

ing patterns of social media websites by improved Koho-

nen’s one-dimensional neural networks. The study

confirms that better algorithms on social commerce users’

mining could enhance their acceptance patterns on social

media different from previously literature. Current research

adds new knowledge regarding time and neuron matrix in

existing Kohonen’s models. The research helps practi-

tioners and researchers better understand the different

accessing characteristics between social media providers

Fig. 1 Improved Kohonen’s neural network
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Fig. 2 Process of improved Kohonen’s neural algorithms
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and users. Experiments with real and synthetic data sets are

considered. A comparative study of the proposed networks

with fuzzy c-means methods of the literature of symbolic

data analysis for interval data was performed. The com-

parison was based on an external index, the overall error

rate of classification and the number of iterations needed.

For the synthetic data sets, these measures were estimated

by the Monte Carlo simulation method. Continued

research, development and evaluation are required to pro-

vide further understanding about other potential factors that

may have an impact on the acceptance of social media

services in colleges and to provide useful guidelines for

marketers and product designers. The results pointed out

that networks introduced in this paper outperformed the

methods for these synthetic and real interval data sets

regarding these clustering quality measures used.

Fig. 3 Interruption rate of Kohonen’s network

Fig. 4 Evolution rate of Kohonen’s network

Fig. 5 Evolution results by time

Fig. 6 Matrix of input neurons

Fig. 7 Results of improved algorithms
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