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Abstract

The rapid development in machine learning and in the emergence of new data sources makes it possible
to examine and predict traffic conditions in smart cities more accurately than ever. This can help to
optimize the design and management of transport services in a future automated city. In this paper, we
provide a detailed presentation of the traffic prediction methods for such intelligent cities, also giving an
overview of the existing data sources and prediction models.
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1. Introduction

Nowadays, smart city services are becoming more widespread than ever as cities are growing and becoming
increasingly crowded as a result of urbanization and world population growth|[1]. The term “smart city”
in [2] refers to the use of information and communication technologies to sense, analyze and integrate
key information from core systems in operating cities. At the same time, smart city services can make
intelligent responses to different kinds of needs in terms of daily livelihood, environmental protection,
and public safety, as well as the city’s facilities and industrial and commercial activities. As smart city
— related technologies develop rapidly (for example, the spread of IoT devices), more things become
measurable. As a result, we have more and more usable data about the ecosystem of our cities.

Among the various notable goals of smart cities, construction of smart transportation systems and
smart urban management systems are two of the key aims, which could significantly influence the lives of
residents in future cities. Advanced Traffic Management Systems (ATMSs) and Intelligent Transportation
Systems (ITSs) integrate information, communication, and other technologies and apply them in the field
of transportation to build an integrated system of people, roads, and vehicles. These systems constitute
a large, fully-functioning, real-time, accurate, and efficient transportation management framework [3].

In ATMSs and ITSs, it is a fundamental challenge to predict the next possible states of traffic with
high precision, because this information helps to prevent unfortunate events like traffic jams or other
anomalies on roads. The literature often refers to traffic as a flow, because it has similar properties to
fluids. Thus when we speak about traffic flow prediction, we wish to predict the next state (it can be the

volume, speed, density, or behavior) of the traffic flow based on historic and real-time data.
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The rapid progress of urbanization has modernized many people’s lives, but also brought remarkable
challenges like traffic congestion [4] that can lead to increased energy /fuel consumption [5] and enormous
emission of pollutants [6]. These phenomena have a great impact on the health and quality of life of city-
dwellers. According to [7], laboratory studies indicate that transport-related air pollution may increase
the risk of developing allergies and can exacerbate symptoms, particularly in susceptible subgroups;
cohereas [8] showed that traffic jams increase the risk of heart attack.

Intelligent management systems (such as ATMS and I'TS) can help overcome or significantly reduce
the impact of such negative effects on city-dwellers. Forecasts can also support traffic control centers
in managing the road network and allocating resources systematically, such as opening/closing lanes,
dynamic parking pricing [9], or adaptive traffic lights [10] with a high level of automation [11].

When driving, knowledge of traffic forecasts for different routes is advantageous [12], and devices will
be able to calculate more efficient routes and reduce travel time. Insight into vehicular flows within the
smart city could make searching for parking spaces [13] much easier and faster. Moreover, it could be
a useful source of information for emerging V2X-based traffic control systems [14], which could play an
important role in the route planning of self-driving cars.

Another motivation for utilizing flow prediction is its marketing value. Marketers are highly interested
in customer behavior, because understanding customer preferences helps them identify potential clients
[15]. If it becomes possible to link information about the movement of particles in flows with useful
marketing information, like gender or age, it could be very valuable for them. For example, if we have
this kind of information, we could dynamically change the content of digital roadside billboards [16], or
shop owners could open new stores in more frequented locations [17].

Similar to traffic flow prediction, pedestrian flow prediction is also an important challenge in smart
cities. As the number of different types of mass events increases year by year, crowd incidents are becoming
more and more common- for example stampedes or when participants in mass events crush one another in
an overcrowded area [18]. To prevent such disasters, authorities need more reliable surveillance systems,
in order to provide better monitoring of crowd movement in a real-time manner [18|. If the organizers
and authorities can obtain valid information about crowd dynamics based on pedestrian flow prediction,
they would be able to perform quick and targeted interventions. We want to highlight, that although
the overwhelming majority of existing systems and scientific papers are focused on vehicle traffic flow
prediction, the emergence of new data sources for smart cities could provide a renaissance of pedestrian
flow prediction [19], which can significantly influence the health and life quality of city-dwellers as well.

The final goal would be to develop an integrated management system that would merge predictions
for vehicular and other urban traffic flows such as pedestrian or bike. This new generation of smart city
management systems could reveal high-level correlations between vehicular, pedestrian and bike flows
within metropolises.

There are several survey papers which deal with traffic modeling and prediction. In [20], authors

present a critical analysis of the mathematical methods for modeling vehicular traffic and crowd phe-
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nomena. These models describe the dynamics of traffic or pedestrian flows, typically based on physical
flow models. These mathematical models are extremely useful for investigation based on simulation-
for example, to examine the characteristics of an intersection. In our paper, we investigate other types
of models, based on real-time traffic data from road infrastucture, where forecasts are made by using
real-time information. Similar to our paper, some of the surveys [21, 22, 23, 24| present traffic prediction
method; however, we have tried to focus on today’s frequently used and more novel models. Beside that,
we also provide a detailed introduction and categorization of practical data sources and data models.
There are also survey papers which explain how data fusion can be used in intelligent transportation
systems [25, 26].

The paper is organized as follows. In Section 2, we introduce and categorize the currently available
data sources, with a special attention to publicly available, free data sets. In Section 3, the most frequently
used models are collected, being classified by the special requirements of the flow prediction methods.
In Section 4, we present the prominent flow prediction techniques thoroughly, by categorizing them as
parametric and non-parametric models. Section 5 concludes the paper and points out the future directions

of flow prediction research, together with our suggestion for a novel type of traffic flow prediction.

2. Data Sources

In the first generation of ATMS and ITS systems, the sources of data utilized were different types of
presence sensors in fixed positions, which were able to detect the presence of nearby vehicles. Initially,
inductive loop detectors were the most popular, but nowadays a wide variety of sensors have become
available [26].

In Table 1, the widely used fixed position sensor technologies are collected (an updated version of
[26]). Inductive loop sensors are built into roads and detect the presence of a conductive metal object
by measuring the change in the magnetic field. Magnetic sensors detect the presence of a ferrous metal
object through the magnetic anomaly they cause in the Earth’s magnetic field. Video image processors
analyze the video image of roadway surveillance cameras and provide traffic flow data across several lanes.
Microwave radar sensors transmit electromagnetic signals and receive echoes from objects of interest.
Infrared sensors in active mode illuminate detection zones with low-power infrared energy transmitted
by laser diodes and then use the reflected energy to detect vehicles. In passive mode, these sensors detect
energy emitted by vehicles or energy emitted by the atmosphere and reflected by vehicles. Laser radar
sensors are active sensors that transmit scanning infrared beams in the near infrared spectrum over one
or more lanes. Audio sensors are passive sensors and use different audio signal processing techniques to
calculate traffic density or volume.

Recently, the advent of GPS-equipped smartphones and vehicles has given rise to a new type of data
source that could supplement presence-type sensors to gather more detailed information or get data

about roads, which have not been covered with presence sensors yet. The real-time and historic traffic
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Sensor Vehicle Multiple Capital

technology classification | detection zone | Cost ($K)
Inductive loop 3-8
Magnetic sensor 0.4-2
Video image processor v v 9-19
Microwave radar v v 9-13
Laser radar sensor v v 6-7.5
Active infrared v v 6-7.5
Passive infrared 0.7-1.2
Audio sensor v 3.7-8

Table 1: List of different traffic sensor technologies and their capabilities [26, 27].

trajectories from GPS sources have enabled us to make better and improved predictions of traffic flow for
ATMSs and ITSs. These trajectories can be collected also from the vehicles and from the pedestrians’
mobile phones by utilizing mobile crowd-sensing techniques [28], providing us with valuable data about
vehicle and pedestrian traffic trajectories.

In this section, we examine the two data sources, fixed position and moving sensors, and compare

them by using the following criteria:

e Formal description of the data source
e Advantages and disadvantages
e Typically measured data types

e List of publicly available data sets.

2.1. Data from Fixed Position Sensors

Traditional fixed position sensors are based on presence type detectors/sensors, which are deployed at
a fixed position in space (indicated as p). Because of this property, these sensors always measure at a
specific point of the road. (They might measure one or more lanes, depending on the capabilities of
the sensor used) If we investigate a single direction of a road segment (for example, using an inductive
loop detector), data from a traditional fixed position sensor can be described as an ordered sequence of

measurements msy in a given p position:

mp = {mp,t t=1,2,...T (1)

where my, ; is the value of the measurement at time ¢ and position p.

The type of measurement depends on the sensor capabilities. Some of them have only basic func-
tionality, as they are only able to measure the traffic count (i.e., traffic volume), while others can also
measure the speed or density of the flow. More advanced sensors are also capable of detecting the class

of the vehicle, which provides a better insight into the characteristics of the traffic flow.
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The biggest advantage of traditional fixed position sensors compared to moving sensors is that they
are reliable data sources, capturing all vehicles passing by. On the other hand, a GPS sensor can only
track one vehicle at a time. Therefore, aggregate statistics such as the number of vehicles or density of
the flow can only be approximated to a certain precision depending on the number of available moving
sensors in the area. The drawback of using data from traditional fixed position sensors is that we are
not able to observe the exact paths of vehicles. Thus, it is hard to find relations between different road
segments; we are only able to come up with rough estimates (e.g., spatial correlation analysis) based on
the available sensor data. Unfortunately, the costs of the deployment and the maintenance of a big sensor
network can be excessively high.

Valuable fixed position data can be harvested from Automated Fare Collection (AFC) systems. The
main purpose of AFC systems is to make toll collection and management more convenient, but the
gathered smart ticketing card data can be important input for the study of urban mobility patterns [29].
These systems are able to record the boarding location (entry point) and arriving location (exit point),
so although the data is gathered in fixed positions, it is capable of revealing spatial correlations and
providing additional information, since all transactions are paired with the card-holder’s identity. More
than ten papers [30, 31, 32] have been examined that deal with smart ticketing card data, but none of
them used publicly available data sets.

The majority of data sets are not publicly accessible (due to legal limitations); however, there are
some publicly available data sets which can be used for scientific purposes. The vast majority of scientific
works [33, 34, 35] use the Caltrans Performance Measurement System (PEMS) data set [36]. This data
set is provided by the California Department of Transportation. They collect the data in real-time from
over 39,000 individual detectors like inductive loop sensors, magnetic sensors, or microwave radar sensors.
These span the freeway system across all major metropolitan areas of the State of California. PEMS
data are stored in the Archived Data User Service (ADUS), which provides over ten years of data for
historic analysis. It integrates a wide variety of information from Caltrans and other local agency systems
including traffic detectors, census traffic counts, incidents, vehicle classification, etc.

Another valuable data set is the Traffic Information Service (TRIS) Highway Englands [37]. This
data set has provided the average journey time, speed, and traffic flow information for 15-minute periods
since April 2015 on all motorways and A roads (known as the Strategic Road Network) managed by
Highways England. It is worth remembering that the journey time and the speed is estimated based on

the fusion of fixed sensors.

2.2. Data from Moving Sensors

Data from moving sensors are gathered from GPS sensors installed in smartphones or in vehicles (such
as taxis or bicycles) utilizing mobile crowd-sensing techniques, providing us with valuable data about
the vehicle and pedestrian traffic trajectories. Many crowd-sensing applications address tasks related to

urban transportation systems, which include the tracking of public vehicles (buses, trams, subways and
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rentable bikes) or mapping bumps on the road in order to inform authorities quickly where to intervene
[28].

Another promising source of moving sensor data is the Call Detail Record (CDR), stored by mobile
network operators. A CDR record contains metadata (including position information) that describe a
specific telecommunication transaction, but does not store the content of the transaction. CDR data
covers large geographic areas, providing large sample sizes, and its positioning accuracy is appropriate
for the analysis of commuter traffic. Therefore, CDR data can be utilized to determine the travel paths
of mobile phone users [38]. These information can be exploited to investigate the mobility patterns
of residents in smart cities, which are of great interest both from an economic and from a political
perspective.

Contrary to fixed position sensors, these sensors are always in movement if the owner moves. In a
formal way, data from GPS sensors can be interpreted as an ordered sequence of measurements where

every GPS coordinate sample is associated with time data:

p={p—=p2—...op—...} t=12,...T (2)

where every p; contains latitude and longitude coordinates and a ¢ timestamp. In another sense, the data
is a sequence of timestamped points, each of which contains the latitude and longitude. Because of this
property, authors also refer to data from moving sensors as spatio-temporal data, where the spatio part
is the GPS coordinate and the temporal part is the timestamp.

Data from moving sensors give us a new dimension of information. We can observe or identify exact
paths and different motion patterns of vehicles and pedestrians, find connections between different road
segments, etc. Furthermore, it makes possible to discover the real paths of pedestrians and bicyclists,
since they can move more freely in space. Besides, it has significantly lower infrastructure costs than the
fixed position solution, because the sensors are already installed in vehicles or in smartphones, so and we
need only care about the data gathering and processing, not deployment or maintenance. Thus, roads
which are not covered by fixed position sensors become observable as well.

Contrary to fixed sensors, aggregated data characteristics in the case of moving sensors can only be
derived from multiple sensors moving along the same path. A huge drawback of spatio-temporal data
is that if we do not get information from all the actors in traffic, we cannot be sure that our data is
representative and describes all the possible trajectories. This can be assured only if a high proportion of
vehicles or pedestrians provides data from their sensors. When using data from moving sensors, one should
also deal with the uncertainty associated with GPS sensors [39]. This uncertainty makes it necessary to
perform the map-matching task [40] to correct the deviation between the GPS points of vehicles and the
road network after data preprocessing. In 2018, new smartphone GPS chips will be released [41]; and by
utilizing L5 and L1 GPS signals together, they will be able to provide up to 1m of accuracy.

Similar to fixed position sensors, the majority of data sets used in the literature are not accessible (for
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instance, Google or Apple have been using spatio-temporal data in their services for a long time). There
are some publicly available data sets, but less than for fixed position sensors. The T-Drive trajectory
data set [42] contains one week of trajectories from 10,357 taxis. The total number of points in this
data set is about 15 million, and the total distance of the trajectories reaches 9 million kilometers. In
the Taxi Service Trajectory - Prediction Challenge (ECML PKDD 2015 Data Set) [43] they provide an
accurate data set describing a complete year (from July 2013 to June 2014) of trajectories performed by
the 442 taxis running in the city of Porto, in Portugal. Public CDR datasets can be found. For example,
the D4D-Senegal Challenge dataset [44] contains CDR, data about 9 million of Orange’s customers in
Senegal between January 1, 2013 and December 31, 2013. Another data set, which provides CDR data
is a multi-source data set (combining telecommunication, weather, news, social networks, and electricity

data) of urban life in the city of Milan and the Province of Trentino [45].

2.3. Environmental and Seasonal Information

The flows are typically influenced by the behavior and the cardinality of the entities of the flow; however,
flows can also be significantly influenced by factors such as weather, seasonality (holidays, day of the
week, seasons, school schedules), events, road construction, air quality or lighting conditions.

When there is heavy rainfall, pedestrians try to move under covered paths like underpasses and
avoid open spaces, possibly leading to overcrowded areas. Car drivers always drive slower when there
are slippery roads and poor visual conditions, leading to an increased risk of accidents, which in turn
increases the probability and volume of traffic jams and congestions [46].

Seasonality also plays a major role. Traffic flows change periodically depending on the day of the
week. Additionally, national holidays can cause a heavy loads on the road network and result in severe
congestion. Seasons of the year also have a measurable effect on flows. For example roads and pedestrian
paths nearby universities experience a significantly higher load in the period of termtime than during the
examination period or summer break.

Utilizing these external data sources, like weather forecasts and seasonal impact, can lead to better and
refined forecasts [47]. By ignoring them, huge inaccuracies could emerge, endangering the applicability
of traffic flow prediction.

We believe that the previously introduced data sources should be used together in intelligent trans-
portation systems that combine their advantages by applying data fusion techniques [25]. On important
and high-capacity segments of smart city road networks, reliable traffic data is crucial for accurate traf-
fic predictions and management, because these arterials significantly influence the whole road network.
Currently, data from fixed position sensors can provide a fair traffic description on those arterials (if
deployed in a massive number, which means high infrastructure cost). Nevertheless, data from moving
sensors and external environmental monitoring stations should be used to provide complementary infor-
mation, in order to fully understand the behavior of the different actors of the transportation system and

to reliably measure the level of correlation between the differents parts of the road network. Moreover,
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GPS trajectories provide suitable information for lesser important parts of the road network, where the
deployment and maintenance of an expensive sensor network can imply unnecessary cost.

In the future, the spread of autonomous vehicles could bring about significant changes, because these
vehicles can provide much more detailed information about itself and its driver. This new information
would to be used to improve the services of future intelligent transportation systems. However, it also

raises serious and unresolved privacy questions.

3. Data Models

When we create a new traffic flow prediction data model, we have to identify the relevant aspects and
features of the traffic flow and determine the right granularity of our data model. Besides that, we need
to make various design decisions when creating our model— for example, whether we can utilize only
one or more data sources or use basic or fused data. Still, there are some basic properties of traffic flow
which have to be considered during the data model’s design such as its spatio-temporal property, which
means that it has both spatial and temporal qualities.

In the case of the spatial property, it should be defined what level of spatial details we are interested
in. Sometimes we want to examine the flow of an exact point in space [33, 35|, which can be interpreted
as a microscopic view of the flow; and sometimes we want to know correlations between larger areas
[48, 49, 39, 50], a macroscopic way to study the flows.

We also have to deal with the timeliness of our model. In the literature, different time intervals are
used, which mainly depend on the desired prediction horizon of the selected prediction model. Generally,
narrow intervals - for example 10 seconds - are meaningless for traffic prediction [48]. We have found
that the most common time intervals are in minute scale (5-10 minutes) [33, 39, 49], but there are also
many papers claiming that longer time intervals would be more effective, like quarter or half an hour
[35, 34, 49, 48]. The minute scale can be useful when our primary goal is to avoid traffic jams or to
compute journey times between shorter distances. On the other hand, longer time intervals can identify
long-term tendencies. Thus they are useful for city planning or global traffic control. Another parameter,
which has to be considered carefully together with the time interval, is the resolution of the used data
source. For example, with low sampling frequencies we are not capable of making accurate predictions
for time intervals of fifteen or thirty minutes.

The rest of this section presents and gives a detailed analysis of the widely adopted data models
in the literature. We have categorized the data models found in the literature as scalar-, vector- and
matrix-based data models. Scalar-based data models use simple scalar values to describe the actual state

of traffic flow, while vector and matrix models use vectors and matrices, respectively.
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3.1. Scalar-Based Models

The simplest data model for traffic flow prediction utilizes data from fixed position sensors without
any preprocessing. As stated in Equation 1, every m,; measurement contains a scalar value and the
timestamp of the measurement at position p. Data from moving sensors can also be used in this model,
but the measured data of GPS traces need to be preprocessed, extracting the values for only the examined
p positions. The goal of the traffic prediction is to determine the mp 41 value based on 1, where p
denotes the position. Ordered sequences of scalar values can be modeled by time series, which is a
well-known data model.

Time series can be characterized by the following features. Trend is a gradual increase or decrease
of the series’ values over time, which can be global, local, or both. It can also be linear or non-linear.
A seasonal cycle is a repetitive, predictable pattern in the series’ values, while a non-seasonal cycle is a
repetitive, possibly unpredictable pattern. Shifts in the time series’ values that cannot be explained by
the model are referred to as residuals.

In many cases, the Autoregressive Integrated Moving Average (ARIMA) [51, 52| (or an extended
variant like SARIMA [53], KARIMA [54], etc.) is used for prediction of time series. Apart from these,
some other prediction models like the Kalman filter [55], Bayesian networks [56], or Neural networks [57]
are also utilized in the related works.

The biggest drawback of using a scalar based model is that it hides the spatial correlations, and it
describes only the temporal ones. Sometimes we are only interested in the flow at a specific point of
the road. For this, the scalar-based model is the right approach. Still, in most cases we also want to
understand the flow’s behavior over the whole trajectory, which is not possible with this model.

Scalar-based models also have scaling problems, because the calculation of predictions for every sensor

in a large sensor network is a computationally intensive task.

3.2. Vector-Based Models

Instead of using one scalar value to characterize the flow at a point in space and time, vector-based
models define a vector that describes the actual state of the flow (also known as the state vector). As
input data sources for vector-based models, one can use fixed position (if one can assume that there are
enough installed sensors on roads) or moving position sensors, or a mixture of them. As for the spatial
factor, we can distinguish univariate and multivariate versions. An univariate vector model observes one
sensor, while the multivariate versions observe more sensors.

In related works, authors most frequently use vector-based models with the K-Nearest Neighbors
(KNN) prediction model (or some variant of it), because it is analogous to a data model, which is used

by KNN.
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(a) Univariate vector-based model (b) Multivariate vector-based model

Figure 1: Example of different vector-based models

3.2.1. Univariate Vector Models

A univariate vector model can be observed in Figure la for a given sensor of the transportation network,

where the state vector of the current flow at time ¢ can be defined as:

Fe={fi—t, fmiz1, .-, fr} (3)

where [ (lag) is the number of time intervals handled by the model. f;_; denotes the measured value
at time ¢ — [. The goal is to predict the next fi1 value.

In most cases, authors use disjoint time intervals [58], but some works utilize overlapping intervals. To
mention an example for overlapping time intervals, we let [ = 2 and suppose we are using 5-minute time
intervals. Then f; denotes the actual interval, f;_; denotes the previous 5-min interval and f;_o denotes
the previous 10-min interval. Unfortunately, similar to scalar-based models, the univariate vector model

is not able to describe the spatial correlation, either.

3.2.2. Multivariate Vector Models

In a multivariate vector model (Figure 1b), we observe more sensors of a transportation network. Thus,

the state vector of the current flow at time ¢ can be defined as:

Ft:{fl,tflv"'afl,hfltfl~~°7fj,t} (4)

or

Fo={fi—ts-os Fitmts fra—is1 s fit} (5)

where [ (lag) is the number of time intervals handled by the model, and j is the number of sensors
present in the state vector. The goal of traffic prediction here is to determine the value of f; +11, where

x is an arbitrary sensor and ¢ + 1 is the next time interval. As you can see, the ordering of the values of

10
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multivariate vector based models can vary. Some authors order the values by time [34] like in Equation
4, and some use space ordering [39] like in Equation 5.

The multivariate vector model uses disjoint time intervals. It can also identify spatial correlations on
road segments as the elementary units of space [49, 39, 50]. To reveal the spatial correlations, a possible
method is to examine the target road segment along with its upstream and downstream road segments.
A more general approach is to define a radius r, within which the sensors are examined together. For a
complex road network, the graph structure has to be considered, so r needs to be replaced by the hop

distance.

3.3. Matrix-Based Models

In the case of a matrix-based model, matrices are defined that describe the actual state of the flow. Fixed
position (if we can assume that there is enough installed sensors on roads), moving position sensors or
a mixture of them can be utilized as data sources. Unlike scalar- or vector-based models, matrix-based
models always identify both spatial and temporal correlations. These models can be categorized as a
macroscopic model, meaning that instead of examining one point in space in a detailed way, they are
suitable for identifying correlations between bigger areas.

Beside the KNN prediction model [59] (or its extended variants), the most popular prediction models
used for matrix-based models in the related works are the Convolutional Neural Network (CNN) [60],
the custom made neural networks [50], and the Bayesian networks [61]. Based on the properties of the
matrix-based models, they can be classified into two major groups: the time-space matrix models and

the region matrix models.

3.3.1. Time-space Matrix Models

The time-space matrix model is an improved version of the multivariate vector based models. The matrix
serves as a time-space image (from here comes the motivation to utilize convolutional neural network),
where the x-axis of the matrix represents the time dimension and the y-axis the space dimension (typically
a road segment). The cells contain measured values of the flow at a specific time in a point of space [48].

In a formal way, a time-space matrix can be defined as in Equation 6:

mi1 Mmiz2 mi,L
ma1 M22 ma L

M = (6)
mpi1 Mmp2 -+ MPpL

where L is the length of time intervals, P is the number of measurement sensors, and m; ; is the
measurement of the ith position at time j. Since the density of measurement sensors is mostly constant

throughout a particular road segment, the number of measurement sensors is proportional to the length

11
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of the road segment.
One strategy can be to choose the set of measurement positions within a pre-defined r radius (similar

to the multivariate vector model) by considering the road network as a graph.

time

my2 o ML
M2 -+ Mo &
o
X
mp2 - Mpp
M

Figure 2: Illustration of the time-space matrix model

3.3.2. Region Matrix Models

Region matrix models are a relatively new approach for modeling the time-space correlation in the case
of flow prediction. Regions are arbitrarily shaped areas of the city, and the goal is to find the relevant
relations between these areas from a flow prediction perspective. It is important to highlight that only
moving sensors can be utilized as data sources. Data from fixed position sensors do not contain spatial
correlation information. Contrary to GPS trajectories, data from fixed position sensors are not able to
reveal relations between regions.

Region matrix models provide the highest level of macroscopic view. In the case of these models,
determining the right size or the shape of the regions remains an open problem. Fortunately, there are
some known methods to tackle this challenge. Grid-based segmentation (see Figure 3a) simply divides
the map using a grid. It can be useful, for instance, to predict drivers’ destinations by mapping their
historic trips [62], predict in/out flows between grid cells [50], or to suggest the most profitable grid cells
for taxi drivers [63]. The drawback of grid-based segmentation is that it does not take into account the
logical cohesion between city areas, such as the road network or districts that form functional entities

within the city.

L7

/ |
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- ;><\ }
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(a) Grid-based map segmenta- (b) Hierarchical map segmenta- (c) Morphology-based map seg-
tion tion mentation

Figure 3: Map segmentation methods [64]
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In hierarchical segmentation (see Figure 3b), authors use the road hierarchy to generate the regions
[65]. Specifically, the road networks are first divided into areas by high level roads, then the partition
process is performed recursively for each area. A drawback of this method is that only the road network
is handled and segmented into regions (not covering the areas between the roads, which can also contain
paths for pedestrians or bicycles). To solve this problem, one can use morphology-based map segmentation
(see Figure 3c), where the hierarchical segmentation has been extended with morphological operators such
as intersection, union, inclusion, or complement. Thus an urban road network can be efficiently segmented
into regions [64].

The majority of papers only focus on examining the in/out flows between regions [50]. The formal
mathematical definition [50] is introduced for grid-based segmentation. Let P be a collection of trajectories
at the t*" time interval. For a grid (i, j) that lies at the i** row and the j'* column, the inflow and outflow

of the crowds at the time interval ¢ are defined respectively as:

w0 = 3 k> g ¢ ) Age € ()} @

TreP
2" = N |k > gk € (6,5) A grrr & (6,0)} (8)
TreP
where T : g1 — g2 — ... = g|7| is a trajectory in P, and gy, is the geospatial coordinate; g € (i, j)
means the point gy lies within grid (4, j), and vice versa; while |- | denotes the cardinality of a set. At the
t*" time interval, inflow and outflow in all I x J regions can be denoted as a tensor X; € R**!*7 where

(X1)o.ij =z (X)14 = 2", Note that it can be extended to arbitrarily shaped convex regions.

4. Prediction Models

In the literature, there are numerous prediction models utilized for traffic flow prediction; but before we
go into detail on those, predictability should be defined, since it is a fundamental traffic flow property
that influences the selection of the prediction model.

According to [66], traffic flow predictability denotes the possibility for prediction to satisfy some pre-
cision requirement over a desired prediction time horizon. In other words, what is the maximum amount
of time can be predicted by a model with bounded error? The true value of a prediction is composed
of a predictable component and an error [67], which includes both prediction error and unpredictability
of uncertainty. The predictable value is derived from the deterministic part and the predictable part of
uncertainty (depicted on Figure 4).

Predictability of traffic flow depends on whether the model is able to predict the uncertain portion
of traffic flow with the required precision. Uncertainty is influenced by many factors, like weather, days

of week, events, road construction, lighting conditions, etc. Incorporating external environmental factors
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Figure 4: Predictable and unpredictable components of a variable [67]

and fused data [25] into the model is crucial to decrease the error of prediction and increase the predictable
part of uncertainty. The predictability of traffic flows is directly related to the prediction time horizon.
Intuitively, prediction accuracy decreases as the prediction horizon increases [68].

A traffic flow can either be stationary or non-stationary [69], and this property has to be considered
when the suitable model is chosen. For example, a simple Autoregressive (AR) model, which depends
on the time series under investigation being stationary, is inadequate if the time series does not have this
property. Therefore, it is impossible to obtain meaningful predictions with inappropriate models.

Authors of [67] have found that the spatial-temporal relationship between the points of the road
network can improve traffic predictability, as the evolution of traffic conditions can be expressed as a
form of interaction among traffic flows on upstream and downstream road links [70]. They have used the
cross-correlation function (CFF) to measure this relationship.

Traffic is predictable in the sense that it does not vary significantly during weekdays and during most
mounths of the year [71]. In [72], similar results were obtained as well, since they established a relatively
high daily predictability of traffic conditions (despite the absence of any apriori knowledge of drivers’
origins and destinations) and quite different travel patterns between weekdays and weekends.

Taking into account the previous considerations, the predictability of traffic flows, and consequently
the precision of the predictions, can be significantly improved.

In the following subsections, we present prominent empirical traffic prediction approaches often used in
the literature. We highlight the advantages and disadvantages of the models, which can be categorized into
three main categories: naive, parametric, and non-parametric models. A thorough analytical comparison
of the existing models is not easy, because the performance of the given prediction model depends heavily
on the exact scenario, the available data sources, and the parameters of the environment. Therefore,
some of the models would outperform the others in a given scenario; but in a different scenario, their
performance would deteriorate. Hence, the appropriate model should be chosen by examining beforehand

the given scenario and undestanding the effect of the various parameters.
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4.1. Naive Models

Naive models are the simplest approach for traffic flow prediction. These methods use only basic statistical
assumptions like statistical average, and they are not able to utilize any external properties of the traffic
to reduce the uncertainty of the prediction. Naive models are widely used in real-world applications
because of their simplicity and relatively accurate results with small prediction horizons. Compared to
naive models, both parametric and non-parametric models can achieve higher accuracy.

The Instantaneous Travel Times (ITT) approach uses the actual measured value as the prediction of
the next measurement. This method is very fast, because no calculation is needed. Yet, the precision of
the prediction is bad in most cases [73], especially for long prediction horizons.

Historical Average (HA) makes predictions based only on the arithmetic average of the past values
[74]. Tt is more accurate than ITT, and it can outperform some more complex prediction models on
longer horizons, but it can not handle sharp changes in traffic flow.

We have found that, in real world navigation services [75], one of the most popular approaches is the
combination of ITT and HA [69], where the real-time traffic data is combined with historic averages for

each road segment.

4.2. Parametric Models

Parametric models are based on a finite 6 set of known parameters about the modeled population (in our
case the traffic flow). For instance, if a process is modeled with the Poisson distribution, the value of a
single () parameter should be determined. Given the parameters, future predictions (z) are independent
of the observed data, D:

P(z|0,D) = P(x|0) (9)

Therefore, 6 captures everything there is to know about the data, which indicates that only parameters of
the model have to be determined using the input data. Knowledge of these parameters (depending on the
parametric model used) can be utilized in these models, which could aid in the understanding different
behaviors of traffic flow. An important advantage of parametric models is that they use significantly less
training data than non-parametric models, because the complexity of the parametric model is bounded.
Nevertheless, this could be also a disadvantage, because even if the amount of data is unbounded, these
models are not able to utilize additional information which can be present in a large data set.

In the following subsections, we will present three major parametric models that are used for traffic

flow prediction: traffic simulation models, time series models, and Kalman filters.

4.2.1. Traffic Simulation Models

Traffic simulation models are mathematical models which help plan and design transportation systems.
Instead of using historic and real-time traffic data, these models simulate the traffic; since in the design

phase of a road network, there is no historic data available. It is important to highlight that future
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traffic levels can be estimated with traffic simulation models to validate the suitability of the design of a
transportation system; however, these models are not capable of predicting the next state of traffic based
on historic and real-time data.

The basic elements of traffic simulation models were established by Beckmann, McGuire, and Winsten
[76]. In these models, traffic is simulated by an Origin-Destination matrix (OD), which describes vehicle
movement in a certain area. The OD matrix feaatures a cell representing the number of trips from origin
(row) to destination (column). Traffic simulation models can be categorized according to their scope as
microscopic, macroscopic, or mesoscopic.

In the microscopic view, every individual actor on the roads and their interactions are modeled in
a multi-agent system [77] where every agent keeps a record of its trip including basic information or
behavior (such as lane changing behavior or gap acceptance behavior, when conflicts could arise with
other vehicles). A typical microscopic simulation approach is the Cellular Automata (CA), where roads
are divided into cells which can be empty or occupied by a vehicle, and the time is discretized to steps of
0t. CA has the ability to reproduce a wide range of different traffic phenomena, and due to the simplicity
of the model, it is numerically very efficient. This model has been combined with OD predictions to
come up with network-wide traffic predictions [78].

In the macroscopic view, only global variables of a road network are considered — such as the density,
speed or traffic count — where these variables are determined for each road segment of the road network
[79]. To allocate traffic on the simulated road network, there are two methods; static and dynamic
assignment.

One of the differences between the static and dynamic approaches is that the dynamic assignment
models normally require time-dependent OD matrices to model traffic flows over time, while static
assignment models only need at least one static OD matrix of overall trip demand of actors on the
road network [80]. The changes in traffic count and density in time can be modeled with macroscopic
models, complemented with formulas stemming mainly from hydrodynamics according to [81].

Mesoscopic models are combinations of macroscopic and microscopic models [82]. First, traffic is
allocated to different road segments using macroscopic models, after which individual cars are moved
through the network based on the calculated microscopic traffic variables. The big advantage of the
mesoscopic approach is that a wider variety of phenomena can be modeled, such as the operation of

installed traffic signals, freeway merges, weaving sections, or high-occupancy vehicle lanes.

4.2.2. Time Series Models

The next parametric models are time series models utilizing historic and real-time traffic data to predict
the next traffic state, while using scalar-based data models (i.e. time series) to model the traffic flow as
we mentioned in Section 3.1.

The basic time series models assume that the value of the series at time ¢ depends linearly only

on its previous values with added random noise [51]. Autoregressive (AR) and Moving Average (MA)
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components are used to model the time series, forming an Autoregressive Moving Average (ARMA)
model. AR forecasts the variable of interest using a linear combination of past values of the variable,
while M A uses past forecast errors in a regression-like model. Because most time series have non-
stationary behavior in practice, the ARMA model can be generalized to handle non-stationarity by
applying differentiation (computing the differences between consecutive observations). This extension of
the ARMA model is called Autoregressive Integrated Moving Average (ARIMA). Drawbacks of using
time series models are that they can not deal with non-linear processes, and it is hard to integrate
environmental data sources in to them.

The first studies concentrated on the usability of ARIMA models on the scalar-based data model for
traffic flow prediction, applying the well-known Box-Jenkins method for model identification [83]. The
Box-Jenkins model identification method selects the appropriate model (whether to use and autoregres-
sive and/or a moving average component) based on checking stationarity, identifying seasonality, and
estimating the order and parameters of ARIMA models.

[51] also focused on the application of using time series models to study the arterial travel time
prediction problem for urban roadways. Their study indicated the potential and effectiveness of using
ARIMA models for predicting travel times. In [52], authors used subset ARIMA, which is represented by
only a few non-zero coefficients instead of the original coefficient vectors determined by the Box-Jenkins
method. For example, if we use an AR(4) model, we use the last 4 past values of the time series to
predict the next value; whereas AR(1 4) model uses only the last and fourth last values of time series for
prediction. They observed that the subset ARIMA model gave more stable and accurate results than
other time-series models, especially a full ARIMA model.

To deal with the seasonal property of traffic flow, a new ARIMA-based approach has been proposed.
The Seasonal Autoregressive Integrated Moving Average (SARIMA) model is one of the popular uni-
variate time series models in the field of short-term traffic flow forecasting [56]. The parameters of the
SARIMA model are commonly estimated using classical (maximum likelihood estimate and/or least
square estimate) methods. [53]| presented the theoretical basis for modeling univariate traffic condition
data streams as Seasonal Autoregressive Integrated Moving Average processes. Also in [84], SARIMA
basic exponential smoothing models were developed and tested on data sets.

In [54], the Kohonen Autoregressive Integrated Moving Average (KARIMA) method, a hybrid method
for short-term traffic forecasting, was introduced. This technique uses as an initial classifier a Kohonen
self-organizing map, in which the road network is mapped over in a hexagonal pattern. Each traffic class,
which comes as the result of an unsupervised learning using historic traffic data, has an individually
tuned ARIMA model.

To exploit the spatio-temporal relations between road segments, [74] and [85] proposed the Space-Time
Autoregressive Integrated Moving Average (STARIMA), a multivariate extension of standard univariate
ARIMA, which expresses each observation at time ¢ and location p as a weighted linear combination

of previous observations lagged both in space and time. Also in [74], a Vector Autoregressive Moving

17



510

520

535

Average (VARMA) model was proposed for traffic flow prediction that describes a set of time series by
using N x NN autoregressive and moving average parameter matrices to represent all auto-correlations
and cross-correlations within and among the N time series under study.

Another multivariate model is the Autoregressive Integrated Moving Average with Explanatory Vari-
able (ARIMAX), which includes independent predictor variables such as another time series. This model
is also referred to as the vector ARIMA or dynamic regression model. The ARIMAX model is similar to
a multivariate regression model, but allows one to take advantage of auto-correlations that may be present
in residuals of the regression to improve the accuracy of the forecast. According to [86], application of
ARIMAX provided improved forecast performance over univariate forecast models.

In other papers, a hybrid model is adopted by researchers to model and forecast the scalar-based data
model. [87] proposed an ARIMA model with Generalized Autoregressive Conditional Heteroscedasticity
(ARIMA-GARCH) for traffic flow prediction. However, [87] concluded that for ordinary traffic flow
prediction, the standard ARIMA model is more accurate than the hybrid model.

4.2.3. Kalman Filters

The Kalman Filter is an efficient recursive filter that estimates the internal state of a linear dynamic
system from a series of noisy measurements. This is a linear model, and authors mainly use it with
scalar-based data models, but it may be applied to model short-term stationary or non-stationary traffic
flow prediction.

[88] uses a Kalman Filter to fuse data from fixed position sensors and moving sensors for the estimation
of traffic density. Subsequently, the estimated data is utilized for predicting the density of future time
intervals using a time series regression model. The models were estimated and validated using both real
and simulated data. Both estimation and prediction models performed well, despite the challenges arising
from heterogeneous traffic flow conditions.

[65] utilized a Kalman Filter to implement a SARIMA + Generalized Autoregressive Conditional
Heteroscedasticity (GARCH) structure. However, a conventional Kalman filter can not update its process
variances in real time. Therefore, this paper investigated and tested an adaptive Kalman Filter approach
using real world traffic flow data. Similar to the previous one, an online adaptive model was proposed,
taking into account historic off-line data [89]. The algorithm was extended to a more general and flexible
state—space model, and the predictions were computed recursively with a Kalman Filter.

In [90], authors proposed a short-term highway traffic prediction method based on a structural state
space model. The true state of traffic was decomposed to regular traffic pattern, structural deviation,
and random fluctuation components. The proposed model is incorporated into a Kalman Filter-based

algorithmic framework, together with an adaptive scheme for determining the variances of random errors.
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4.3. Non-Parametric Models

Non-parametric models assume that the data distribution can not be defined in terms of a finite set of
parameters, but they can often be defined by assuming an infinite dimensional #. Thus, usually more
data is required than for parametric models. Non-parametric models are more flexible than parametric
models, because the amount of information that 6 can capture about the data can grow as the amount
of data grows. The advantage of these models is that they are able to handle non-linear, dynamic
processes, and they can exploit spatial-temporal relationships as well. Some of them are also capable
of integrating environmental data sources, which can increase the accuracy of predictions in extreme
cases. The drawback of non-parametric models is the model training or prediction itself, can be a
computationally intense task is comparison to parametric models, since huge amounts of data have to be

processed.

4.3.1. Bayesian Networks

A Bayesian Network is a directed graphic model for representing conditional dependences between a set
of random variables [91]. As a non-parametric model, it is able to handle non-linear and non-stationary
processes. It can be extended to work with spatio-temporal data, and it has the ability to cope with
incomplete data. However, the authors of [91] mentioned that this approach might not be optimal for
incidents and accidents, because collecting large amounts of data during incidents and accidents is usually
difficult. Thus, other techniques might be helpful, such as abnormality detection methods, etc.

Most of the Bayesian Network-based work uses time-space matrix-based data models and Gaussian
Mixture Models (GMMSs) with Competitive Expectation Maximization (CEM) to calculate joint distri-
butions. GMM is a probabilistic model that assumes all the data points are generated from a mixture
of a finite number of Gaussian distributions with unknown parameters, while CEM is a well-founded
iterative statistical algorithm which calculates the unknown parameters of Gaussian distributions using
maximum likelihood estimation.

[61] investigated a spatio-temporal Bayesian Network predictor. This approach incorporated all the
spatial and temporal information available in a transportation network to carry out traffic flow forecasting.
In a transportation network, there are usually many road segments related to or providing information
about the traffic flow of the road segment under investigation. However, using all the related segments
as input variables (nodes) would involve much irrelevance and redundancy, as well as being prohibitive
computationally. To solve this problem, authors of [61] adopted the Pearson Correlation Coefficient to
rank the input variables (traffic flows) for prediction, and the best-first strategy was employed to select
only a subset as nodes of a Bayesian network.

[56] used a scalar-based data model (i.e. time series), and instead of using classical inference, the
Bayesian Method is employed to estimate the parameters of a SARIMA model. The Markov Chain

Monte Carlo Method was used to calculate the posterior probability distributions of the Bayesian model,
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where "posterior" means after taking into account the relevant evidence related to the particular case
under examination.

In [92], authors proposed an adaptive Bayesian Network, which accomplishes online classification
of the traffic flow into categories such as free flow or traffic congestion. Since the degree of spatio-
temporal dependence between the road segments depends on the determined traffic category, the network
topology of the Bayesian Network can be optimized using mutual information learning, which measures
the mutual dependence between the two nodes in the Bayesian Network. In [93]|, another Bayesian
Network-based model was proposed, where authors used the Multiregression Dynamic Model (MDM)
to improve forecasts. MDM is designed to preserve certain conditional independt structures over time

across a multivariate time series.

4.3.2. K-Nearest Neighbors Models

K-Nearest Neighbors (KNN) is a simple regression algorithm that uses the actual and the closest k (based
on a distance measure) previously measured traffic flow states to predict the next states of the traffic
flow using vector- or matrix-based data models. It should be highlighted that the closest k flow states
can come from different road segments.

Similar to Bayesian Networks, it can deal with non-linear and non-stationary properties of traffic
flows, and it can handle noisy data and be computationally effective if the training data are vast. A
serious drawback of this model is that the optimal value of parameter k (number of nearest neighbors)
needs to be determined. In case of distance-based learning, it is not clear which distance function gives
the best result. Computation cost can be high if the algorithm has to compute distances between actual
and all previous traffic states for every prediction, and it is difficult to integrate environmental variables.
For determining the value of k, authors of [39, 94] proposed different procedures. For the distance
computation problem, one can use indexing (e.g., K-D Tree) or better neighbor search strategies [95] to
reduce computation costs.

Most of the articles [58, 94] use univariate vector models as a data model. However, some of the
articles [34, 39] use multivariate vector models or time-space matrix models [59] in order to describe spatio-
temporal relationships. [59] proposed an improved KNN model to enhance forecasting accuracy based on
spatio-temporal correlations, where the nearest neighbors are selected according to the Gaussian Weighted
Euclidean Distance. [39] presented different MapReduce-based approaches on a Hadoop platform, in
which they exploit the spatial and temporal correlations between nearby road segments to improve the

performance.

4.3.3. Neural Networks

Nowadays, Neural Networks (NN) are the most widely used prediction models for traffic flow prediction,
because they are able to model non-linear, stationary /non-stationary behavior and are highly extensible.

This means that the spatio-temporal property can be also considered, and the environmental data sources
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can be integrated easily. All these properties decrease the unpredictable portion of uncertainty, which
could significantly decrease the prediction error in extreme cases as well.

For a long time, NNs have been used for times series prediction where data is modeled by scalar
models. Authors began to examine traffic flow as a time series using the standard Feed Forward Neural
Networks (FFNNs) with a backpropagation algorithm [57].

Backpropagation is an algorithm for supervised learning of artificial neural networks using gradient
descent. Given an artificial neural network and an error function, the method calculates the gradient
of the error function with respect to the neural network’s weights. These NNs can perform better than

simple parametric models. However, they cannot exploit the spatio-temporal property of traffic flows.
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Instantaneous Travel .
. Naive scalar
Times
Historical Average Naive scalar
ARIMA Parametric scalar e
SARIMA Parametric scalar Ve
STARIMA Parametric scalar v Ve
KARIMA Parametric scalar Ve
ARIMAX Parametric scalar v v Ve
VARMA Parametric vector v
Kalman Filter Parametric scalar v
Bayesian Networks Non-Parametric scalar, V?CtOI‘, v v v
matrix
K-Nearest Neighbors Non-Parametric vector v v v v
Feed Forward .
Neural Network Non-Parametric scalar v v v v
Time Delayed .
Neural Network Non-Parametric scalar v v
Recurrent .
Neural Network Non-Parametric scalar v v
Long-short Term Recurrent Non-Parametric scalar v v
Neural Network
Gated Recurrent Unit .
Neural Network Non-Parametric scalar v v
Convolutional Non.P i scalar, vector, % % %
Neural Network on-tarametrie matrix
Combination of . scalar, vector,
CNN and FFNN Non-Parametric atrix v v v v
Combination of . scalar, vector,
CNN and LSTM Non-Parametric matrix v v v v

Table 2: A comparative list of traffic prediction models. *A differentiation step is necessary to handle non-stationary data.
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While traditional NNs build on the assumption that their input data are independent of each other,
Time Delayed Neural Networks (TDNNs) and Recurrent Neural Networks (RNNs) are capable of finding
temporal relationships, because they allow information to persist [96]. TDNNs augment the input scalar
model with delayed copies, while RNNs retain an internal state (memory) by using a directed cycle in
neurons. Unfortunately RNNs have problem with long-term dependencies [97]. Therefore, other authors
use Long-Short Term Recurrent Neural Networks (LSTMs) [98], which are an extension of RNNs and
are capable of learning long- or short-term dependencies. [33] uses Gated Recurrent Units (GRUs) for
traffic flow prediction, which have the same capabilities as LSTMs, but they have a simpler architecture,
because they have fewer parameters, since they lack an output gate. According to the authors of [33],
LSTM and GRU have better performance than ARIMA, and GRUs perform a little better and usually
converge faster than LSTMs.

To consider spatial correlations, authors have started to use Convolutional Neural Networks (CNNs),
which have the ability to find the spatial correlations over a map, made possible by the usage of convolution
layers. To exploit this ability, different approaches [50, 60, 48] use time-space matrix or grid-based region
matrix data models.

The most popular solution is a combination of CNN and LSTM. In [98], the spatial dependencies of
network-wide traffic could be captured by CNNs, and the temporal dynamics could be learned by LST Ms.
Besides those, there some other custom models [50, 99, 100] that also utilize global environmental data
sources, such as weather or traffic condition reports. They can capture spatial and temporal properties
of traffic flow, and they are able to handle non-linear behavior as well. Thus, it seems that these models

are the most appropriate approaches at this moment.

5. Conclusions and Outlook

In our survey, we have studied different traffic flow prediction models in depth, motivated by their possible
contribution to ATMS and ITS systems to forecast potential traffic conditions, thereby solving traffic
management problems in smart cities.

In Section 2, we examined currently available data sources used for traffic flow prediction. In our
opinion, the enumerated data sources should be used together, because every data source has its own
advantage. That way, one can achieve the best result by fusing them in an appropriate model.

Among fixed position sensors, the sensors able to scan more lanes at the same time (e.g., video image
processors or laser radar sensors) could be more cost effective than other fixed position solutions. These
can be used to implement crowd surveillance tasks in cities as well, so they could be the eyes of future
smart cities due to their versatility and flexibility.

With moving sensors, we can identify exact paths, speeds, and moving patterns of vehicles and
pedestrians, which can reveal direct connections between adjacent road segments. Moving sensors have

minimal infrastructure cost compared to fixed position sensors, and they are important data sources in

22



665

675

685

690

areas that are not covered by fixed position sensors.

In addition, traffic flow is influenced by many factors like weather, the day of the week, random events,
road construction, lighting conditions, etc. Consequently, integration of external environmental factors
is also crucial to decrease the error of prediction.

After examining data sources we analyzed many different data models often used in the literature.
We found that the right data model strongly depends on the focus of the study. Sometimes we want to
examine the flow of an exact point in space, which can be interpreted as a microscopic view of the flow. In
other cases, we want to determine correlations between bigger areas, which is a macroscopic way to study
the flows. In general, it seems that the most promising data models take advantage of the spatio-temporal
property of traffic flows, such as time-space matrix models or region-based models. Nevertheless, there is
a need for a data model that also works when the particles of the flow do not move in the same direction
as vehicles. This kind of model could be very useful for the investigation of real-time pedestrian flows.

Before prominent empirical traffic prediction approaches were introduced, the predictability of traffic
flows was examined as it is a fundamental knowledge for selecting the appropriate prediction model.
Traffic flows are non-linear, mostly non-stationary processes influenced by many factors such as weather,
the day of the week, unexpected events, roads construction, and lighting conditions. It also has significant
spatio-temporal properties. Enumerated articles usually made comparisons to other methods to predict
traffic flows; however, the outcome of these comparisons depended highly on the data sources used, the
settings of the model’s parameters, the traffic scenario, etc. We also wished to highlight the advantages
and disadvantages of the models.

We have found that the most prominent prediction models are the non-parametric ones, because
they are able to handle non-linear, stationary or non-stationary, dynamic processes, and they can exploit
the spatio-temporal relationship of traffic flows as well. Some of them are also capable of incorporating
environmental data sources, which can increase the accuracy of the predictions in most cases. From the
investigated non-parametric models, different neural networks are currently the most popular (such as
CNN, LSTM, or their combination) because of the properties introduced in subsection 4.3.3.

To our knowledge, there is no widespread system available that is able to handle other types of traffic,
such as pedestrian or bike. In our opinion, there is a need to develop an integrated management system
able to handle vehicular, pedestrian, and bike traffic flows simultaneously. This new generation of smart
city management systems could reveal correlations between vehicular, pedestrian, and bike flows of future

cities, which could potentially aid in city planning and resource management tasks.
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