
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 121 (2017) 423–430

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise Information
Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social
Care Information Systems and Technologies.
10.1016/j.procs.2017.11.057

10.1016/j.procs.2017.11.057

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise
Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on
Health and Social Care Information Systems and Technologies.

1877-0509

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise Information Systems /
ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems
and Technologies.

CENTERIS - International Conference on ENTERprise Information Systems / ProjMAN -
International Conference on Project MANagement / HCist - International Conference on Health

and Social Care Information Systems and Technologies, CENTERIS / ProjMAN / HCist 2017, 8-10
November 2017, Barcelona, Spain

Analysis of the Documentation of ERP Software Projects
Lerina Aversano*, Daniela Guardabascio, Maria Tortorella

Department of Engineering, University of Sannio
Via Traiano, 82100, Benevento

Abstract

Software documentation is a basic component of the software development process and it is very important in all the phases of a
software system life cycle. It is plays a very important role from the point of view of both the software engineer and user. Software
documentation usually includes textual documentation required by the Software engineering standards, API documentation, Wiki
pages and source code comments. Surveys and studies indicate that the documentation is not always available and, if available,
only partially addresses the developers' needs, as it is often wrong, incomplete, out-of-date and ambiguous. In the context of ERP
– Enterprise Resource Planning, the relevance of the software documentation is even more important due to the complexity of such
a kind of software systems and the strategic role they have within operative organizations. This paper focuses on the quality
assessment of the documentation of ERP open source systems with the aim of understanding if they include high quality
documentation for adequately support anyone want to adopt them and/or executing maintenance activities. Specifically, a quality
model is defined and its application to three Open source software system is performed.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise
Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on

Health and Social Care Information Systems and Technologies.

Keywords: Software documentation, ERP Open source software, Documentation maintenance, Documentation Quality, Software metrics.

* Corresponding author. Tel.: +39 0824 305551; fax: +39 0824 325246.

E-mail address: aversano@unisannio.it

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise Information Systems /
ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems
and Technologies.

CENTERIS - International Conference on ENTERprise Information Systems / ProjMAN -
International Conference on Project MANagement / HCist - International Conference on Health

and Social Care Information Systems and Technologies, CENTERIS / ProjMAN / HCist 2017, 8-10
November 2017, Barcelona, Spain

Analysis of the Documentation of ERP Software Projects
Lerina Aversano*, Daniela Guardabascio, Maria Tortorella

Department of Engineering, University of Sannio
Via Traiano, 82100, Benevento

Abstract

Software documentation is a basic component of the software development process and it is very important in all the phases of a
software system life cycle. It is plays a very important role from the point of view of both the software engineer and user. Software
documentation usually includes textual documentation required by the Software engineering standards, API documentation, Wiki
pages and source code comments. Surveys and studies indicate that the documentation is not always available and, if available,
only partially addresses the developers' needs, as it is often wrong, incomplete, out-of-date and ambiguous. In the context of ERP
– Enterprise Resource Planning, the relevance of the software documentation is even more important due to the complexity of such
a kind of software systems and the strategic role they have within operative organizations. This paper focuses on the quality
assessment of the documentation of ERP open source systems with the aim of understanding if they include high quality
documentation for adequately support anyone want to adopt them and/or executing maintenance activities. Specifically, a quality
model is defined and its application to three Open source software system is performed.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise
Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on

Health and Social Care Information Systems and Technologies.

Keywords: Software documentation, ERP Open source software, Documentation maintenance, Documentation Quality, Software metrics.

* Corresponding author. Tel.: +39 0824 305551; fax: +39 0824 325246.

E-mail address: aversano@unisannio.it

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.11.057&domain=pdf

424 Lerina Aversano et al. / Procedia Computer Science 121 (2017) 423–430
2 Author name / Procedia Computer Science 00 (2017) 000–000

1. Introduction

Software documentation plays a very important role in all the phases of a software system life cycle. It is not only
relevant from the software engineering point of view, in all the software development process from the requirement
definition to the maintenance activities [3, 7, 20], but also from the user point of view. Actually the user needs to
know, with reference how to install and use to a software system, to import and manage data, to elaborate information
and so on.

The software is usually documented by the textual documentation required by the software engineering standards
IEEE Std 830-1998, IEEE Std 1028-2008, IEEE Std 1063-2001, ISO/IEC 9126:2001, ISO/IEC 25010:2005, ISO/IEC
26514:2008 [11, 12, 13, 14, 15, 16], and so on. This documentation mostly consists of documents aiming to explain
the functionalities the software performs, its architecture, how it is structured and implemented, and can be used. It
generally includes the following documents: software requirements specifications, software design documents, code,
quality and testing documents. Additional documents can exist, formalized as API documentation, Wiki pages. For
describing different aspects of the software system. Such a kind of documents can be easily accessed by both
developers and users, and can be considered documentation as well. API documentation specifies how software
components can be used and interact with each other. Wiki pages allow for web-based visualization and knowledge
management. It offers semantic-enhanced search facilities such as filtering, faceting, and graph-like exploration of
knowledge. The hyper textual features make this type of documentation easy to find and consult. In addition, source
code comments can represent a useful source of information helping to understand the software product [4], and it can
be used as documentation as well, once extracted and adequately formatted.

The proposed study uses the term "software documentation" for referring the different types of documents indicated
above [2]

For being really useful, software system documentation should include reliable, complete and unambiguous
information regarding the software system. In addition, it should have a structure that makes the different
documentation section easily recognizable.

The relevance of the documentation is also confirmed in surveys and papers including the results of interviews
with software engineers and developers working in organizations. Unfortunately, the results also indicate that the
documentation is not always available and it only partially addresses the developers and users' needs, as it is often
wrong, incomplete, out-of-date and ambiguous. In addition, while in the case of closed source software, the
documentation exists as it is foreseen by the internal quality procedures and is clear and complete [19], it can happen
that it is not available for open source systems, where these documents may not exist, or not represent any official
documentation.

In the context of ERP – Enterprise Resource Planning, the relevance of the software documentation is even more
important due to the complexity of such a kind of software systems and the strategic role they have within operative
organizations.

This paper focuses on the evaluation of the quality of the various types of documents that may be useful for
understanding a software artefact. It mainly considers the user point of view and analyses both structural and content
aspects that a good software system document should include for being effectively used. The content aspects are
defined by considering the ERP system context and all the information the documentation of such a kind of system
should include for successfully using it. Moreover, the paper applies the defined framework to the documentation of
some ERP Open Source Software system, with the aim of understanding if it can be a valuable support to anyone who
wants to adopt such a kind of system.

This paper is organized as follows: Section 2 discusses the principal research work. Section 3 describes the
proposed framework for evaluating the quality of the documentation of ERP Open Source Software system. Section
4 presents the application of the measurement framework to ERP software system, and subsequent section includes
some final considerations.

2. Related work

The literature reports several studies discussing the use that software practitioners make of different kinds of
documentations. In different papers, the focus is on the usefulness of the documentation of a software product.

 Lerina Aversano et al. / Procedia Computer Science 121 (2017) 423–430 425
 Author name / Procedia Computer Science 00 (2017) 000–000 3

In particular, some of these studies are surveys. Forward and Lethbridge made a survey involving different
developers, and presented several documentation attributes, such as document writing style, grammar, level of
upgrade, type, format, visibility, etc. [9]. They observed that the documentation content is an important support for
communication and should always be useful and serve a purpose. It can even be relevant if it is not updated or
inconsistent. The same authors highlighted the general attitudes of software engineering documentation [17]. Some
results indicated that various types of abstract documentation are a valid guidance for the maintenance work and that
inline comments of the source code are often a good support to assist detailed maintenance work. The study also
discussed negative results, such as the fact that multiple types of documents are often out of date or that the
documentation is poorly written.

de Souza et al. established in their surveys the importance of each documentation artefacts for fully understanding
the software product and executing maintenance activities [4]. The results of this study have also shown that the
documentation is often incomplete or out-of-date, and the developers have to use the source code and related
comments for fully understanding the software product.

Another aspect coming from the contribution of Kipyegen and Korir regards the little usage of the documentation,
and, therefore, the decrease of its efficiency during the software development task [10].

Several other research works focused on the documentation quality.
Arthur and Stevens identified four Document Quality Indicators (DQI) that are attributed to an appropriate

documentation [1]: Accuracy, Completeness, Usability and Expandability. As quality is an intangible characteristic,
without direct measure, the authors of the cited paper associated each quality characteristic to some factors, and each
factor to some quantifiers, whose combination gave rise to quality indicators (DQI) that are quantifiable.

In [18, 22], the following additional documentation quality attributes are proposed: Accuracy, Clarity, Consistency,
Readability, Structuring, and Understandability. Indeed, from a conducted survey, it emerges that the typical problems
related to the documentation quality deals with unreliable, incomplete or non-existent documentation, not documented
changes in the software system and lack of integrity and coherence [22]. In [17], a tool is presented for analysing the
quality of software systems, documentation included.

Problems related to the documentation quality have also been encountered by Uddin and Robillard with reference
to the API documentation quality [21], and by Diaz-Pace et al. with reference to the Wiki pages [6].

This paper considers all the aspects arising from the previous studies and proposes a quality model for evaluating
various types of documentation associated specifically to ERP Open Source Software system.

e.g. Wiki, word
Files, pdf, ecc

Software System
Documentation

DocumentIs composed of

Content Quality

Repleaceability

Usability

Recoverability

Migration

Installability

Adaptability

Configuration

Interoperability

Document
quality

Structure Quality

Title, Authors
and Format

UsabilityExternal References

Comments
appropriateness

Structureness

Graphical support

Updating or
Alignment

Dimension

has a

Customization

Readability

Completeness

Importability

Fig. 1. Documentation evaluation framework

426 Lerina Aversano et al. / Procedia Computer Science 121 (2017) 423–430
4 Author name / Procedia Computer Science 00 (2017) 000–000

3. A framework for evaluating the quality of ERP software projects

This section describes the proposed approach for assessing and evaluating the quality of ERP software
documentation. The approach is metric-based and considers different quality indicators. Figure 1 shows the
organization of the proposed framework. It highlights that the documentation is composed of documents that can be
of the different kinds, API, Wiki, text and code comments. In addition, the quality of each document is considered
and analysed from two different points of view: Structure Quality and Content Quality.

With reference to the Structure Quality the following indicators have been defined for establishing to what extent
the documentation is understandable and well structured:
 Title, Authors, and Format, have been consider as general information regarding the document.
 Structureness: regarding the textual documentation and aiming at evaluating the quality of the actual structure in

terms of number of chapters, sections, sub-sections nesting, document length, and density of tables and figures. A
good structure and organization of the document helps to consult it.

 Dimension: to analyse the length of the document sentences: sentences that are too long express text that is too
difficult to be understood, and sentences too short may not exhaustively express a concept. Cutts asserted that
over the whole document, average sentence length should be 15-20 word [5].

 External references: to understand if references to documents external to the documentation or to source code
exist to better support the comprehension of software engineers and users.

 Graphical Support: to verify the availability of visual aids (figures and tables) facilitating the understandability
of the text. The citations of the visual aids within the text and existence of clear captions are verified. It may
occur that figures or tables not included in the document are indexed, in this case the score is greater than 1.

 Updating or alignment: to verify whether the documentation is updated with reference to the project release it
refers to.

 Readability: to examine if the sentences express clear and understandable concepts. It is evaluated trough the
Flesch readability test (Flesch Reading Ease), designed for indicating how difficult is to be understood an English
reading. The index score ranges from 0 to 100 and a value equal to 50 is considered adequate as it is associated
with the 10th to 12th grade school level; while higher scores refers to material that is easier to read and lower
marks indicate documents that are more difficult to read [8].

 Completeness: to evaluate the completeness level of the documentation with reference to the source code; in
particular, these quality indicator checks whether the documentation describes all of the source code items
(packages, classes, methods).

 Usability: concerning API and Wiki and assessing the organization from a usability point of view. Aspects that
will be investigated are the fragmentation of the concepts within web pages, and the size of the Java Doc and
Wiki.

 Comments appropriateness: to estimate the density of comments in the code. A high density of comments helps
the developer in the comprehension of source code.
Most of the metrics above can be evaluated with reference to the API, Wiki, code comments and text

documentation, while others such as the Graphical Support are evaluated just with reference to Documentation;
Usability is evaluated with reference to Wiki and JavaDoc; finally, the Appropriateness of the comments is evaluated
with reference to the code comments.

The evaluation of these metrics requires the application of NLP, Information Extraction and Information Retrieval
techniques in order to make an objective analysis and not a subjective one. Most of the formula that have been applied
for their evaluation is included in [2].

The section of the content quality model considers the set of quality indicators identified to evaluate to what extent
the documentation reflects the current state of the software system. This section of framework has been defined by
considering the main characteristics of ERP systems, as it will be applied to such a kind of systems. The indicators
are:
 Adaptability: to evaluate if in the documentation adequately indicates the supported operating system and

database management systems.
 Installability: to verify whether the documentation adequately describes the installation process.

 Lerina Aversano et al. / Procedia Computer Science 121 (2017) 423–430 427
 Author name / Procedia Computer Science 00 (2017) 000–000 5

 Replaceability: to evaluate is a description exists in the documentation with reference to the possibility of
replacing the ERP system with a different one.

 Migration: to verify whether the documentation adequately describes the migration process referring the
generated reports.

 Recoverability: to evaluate if the functionality for the transactions management are adequately described in the
documentation.

 Interoperability: to evaluate how the documentation discusses the web-services support.
 Importability: to evaluate if the documentation adequately describes the formats for importing data.
 Configuration: to analyze if all the ERP system configuration functionality, such as Wizard, charts of accounts,

supported languages, tax category management, Multicurrency coverage, setup, are well described.
 Customisation: to verify if the customization functionality regarding the full system, user interface, workflows

and reports is adequately described.
The first three columns of Tables 1 contain the list of the attributes, questions and related metrics that the quality

model considers. Each question aims at evaluation if a set of aspects are described in the documentation for verifying
if the related attribute is possessed by the software system. In particular, it can be answered with the following values:
Def, indicating that the information required by the question is clearly and completely defined; NDef, pointing out that
the analyzed documentation does not consider the specific aspect; Part, indicating that the aspect indicated in the
question is only partial addressed; NCl, indicating that the documentation does not clearly describe the required
information.

Table 1. Content quality attribute evaluation for Openbravo, Compiere, Adempiere

Content
Quality

attribute
Question Abbr OpenBravo Compiere Adempiere

Adaptability
Are the supported operating systems indicated in the documentation? SupOS Def Def Def
Are the supported DBMS systems indicated in the documentation? SupDB Def Def Def

Installability
Is available the installation manual? InstMan Def Def Def
Is there the manual multi-language installing? LanMan Def NDef NDef

Replaceability

Is the functionality for data backup adequately described? CrBkp Def Def Def
Is there functionality for restoring the backup data adequately described? ReBkp Def Def Def
Is the functionality for backup services adequately described? BkpServ Def NCl NDef
Are the migration processes between versions adequately described? MigDoc Def Part Def
Are the automatic migration tools adequately described? AutoMig Part Part Part
Is the database migration adequately described? DBDoc Def Part Def

Migration Are the formats for the reporting adequately described? StdExp Part Def Def
Recoverability The tools for the transactions management are adequately described? TnsMgm NCl Def NDef
Interoperability Is the web-services support adequately described in the documentation? WSS Def Def Part
Importability Are the formats for importing data adequately described? StdImp Def Def Def

Configuration

Are the wizard for configuring the system adequately described? ConfWiz Def Def Def
Are the charts of accounts adequately described? ChtAcc Def Def Def
Are the supported language adequately indicated in the documentation? LanPck Part Part Part
Is the tax category management adequately described? TaxConf Def Def Def
Is the Multicurrency coverage index adequately indicated? CurrInd Part NCl Def
Is the starting setup adequately described in the documentation? SetDoc Def Def Def
Is the language configuration adequately described in the documentation? LanDoc Def Def NDef
Is the tax category configuration adequately described? TaxDoc Def Def NDef
Is the configuration of the charts of accounts adequately described? AccDoc Part Def Def

Customisation

Is the functionality for installing an extension of the user interface
adequately described? ExtInst Def Def NDef

Is the functionality for creating a new module of the user interface
adequately described? NewMod Def Def Def

Is the functionality for customizing the user interface adequately
described? UICust Def Def Def

Is the functionality for creating a new workflow adequately described? WFCust Def Def Def
Is the functionality for creating a new reports adequately described? RepCust Def Def Def
Is the customization process adequately described in the documentation? CustDoc Def Part Part

428 Lerina Aversano et al. / Procedia Computer Science 121 (2017) 423–430
6 Author name / Procedia Computer Science 00 (2017) 000–000

4. Case Study

This section presents the results obtained from applying the described quality model to three ERP FlOSS systems:
Openbravo (http://www.openbravo.com/), Compiere (http://www.compiere.com/) and ADempiere
(www.adempiere.org/). The first analysis that was performed regarded the documentation composition. Table 2 lists
all the documents composing the documentation of the systems and assigns to each of them an identification code.
These codes are then used in Table 3 for introducing the values achieved from the evaluation of the quality structure

Table 2. Documentation composition of Openbravo, Compiere, Adempiere

Openbravo Compiere ADempiere
Document Title Document Code Document Title Document Code Document Title Document Code

General Information D1 Release Notes and
Documentation

D7 Preface D12

System
Administration Guide

D2 Admin Guide D8 User Guide D13

Quick Guide D3 Users Guide D9 Business
Functionality Guide

D14

User Guide D4 Technical Guide D10 System
Administrator's
Guide

D15

Developers Guide D5 Database installation
guides

D11 Developer's Guide D16

Localization guide D6

Table 3. Evaluation of the documentation structure of Openbravo, Compiere, ADempiere

 Openbravo Compiere ADempiere

 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16
Title and Authors
% Doc with title 80% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
% Doc with authors 0% 0% 0% 0% 0% 0% 17% 83% 100% 100% 0% 0% 0% 0% 0% 0%
Structureness
SubSections of
Level 1

5 5 0 9 6 0 6 6 25 13 4 8 2 3 8 6

AVG Num of
SubSections of
Level 2

1 3.6 0 0 0 0 0 0 0 0 0 1.13 4 2.67 2.75 4.5

Doc 5 23 1 9 6 1 6 6 25 13 4 17 8 8 25 27
% Doc with
paragraphs

60% 48% 100% 100% 100% 100% 33% 83% 96% 100% 100% 100% 100% 100% 100% 100%

Dimension
Doc Dimension 125 1711 51 1161 224 330 13481 1548 11259 1256 18114 1160 3554 1753 3555 4194
External References
% Doc with
external links

60% 100% 0% 100% 100% 100% 33% 33% 72% 15% 100% 100% 88% 100% 100% 100%

% Doc referring
source code

0% 0% 0% 0% 100% 0% 0% 0% 0% 46% 0% 0% 38% 63% 3% 24%

Graphical Support
% Doc with figures 0% 39% 100% 100% 17% 100% 100% 50% 92% 38% 75% 18% 75% 75% 48% 44%
AVG Figures per
Doc

0 1.65 8 1.56 0.17 1 7.67 2.5 6.88 3.15 28.3 0.35 10 7.63 2.08 2.48

Figures 0 38 8 14 1 1 46 15 172 41 113 6 80 61 52 67
% of document
with tables

0% 4% 0% 0% 0% 0% 17% 0% 24% 8% 0% 0% 13% 38% 8% 11%

AVG Tables per
Doc

0 0.17 0 0 0 0 0.67 0 0.64 0.15 0 0 0.75 1.38 0.2 0.11

Tables 0 4 0 0 0 0 4 0 16 2 0 0 6 11 5 3
% Doc with
diagrams

0% 0% 0% 78% 17% 0% 0% 0% 12% 0% 0% 6% 0% 0% 6% 11%

Updating
% updated Doc 60% 100% 100% 100% 100% 50% 100% 0% 0% 0% 6% 0% 0% 0% 11%
Readability

 Lerina Aversano et al. / Procedia Computer Science 121 (2017) 423–430 429
 Author name / Procedia Computer Science 00 (2017) 000–000 7

AVG Flesch index
for Level 1

12.8 45.8 52.25 45.23 43.05 28.05 56.69 41.71 59.75 44.5 48.1 52.04 57.9 50.71 48 46.9

AVG sentences
length in Level 1

10.5 8.98 15 15.28 11.33 14.77 8.68 8.08 8.49 11.9 7.74 10.62 8.15 8.85 9.24 8.22

metrics. In particular, there is a column of Table 3 for each document identified through an identification code.
Observing the data collected in Table 2, it emerges that all the documents of the three systems include a title, while

just Compiere reveals the authors of the documents. Even the dimension of the documents is significantly higher in
Compiere, while Openbravo has the most reduced documentation. Similarly, the structureness in terms of number of
subsections and paragraphs is more elevated in Compiere and ADempiere. Looking at the data referring the Graphical
Support, it is possible to note that the values regarding Compiere and ADempiere are again higher than the one
referring to Openbravo, with the exception of some documents in this last system. The average values of the Flesch
index and sentences length highlight that Readability is similar in all the documents of all the systems. In fact, all the
systems documentations include some documents that are more readable and other ones that are less. The data above
indicate that the poorest documentation is the one of Openbravo, even if indicator Updating points out that it is the
only one that has updated documentation. In addition, the results included in Table 4 indicate that the quality of the
API is higher in Openbravo, with the higher values of updating, completeness and density, while the fragmentation in
terms of classes and packages description is quite high. Table 4 also shows that the best quality of the inline comments
can be found ADempiere, while source code comments have not been found in Compiere.

Table 4. Evaluation of the quality of API and inline comments in Openbravo, Compiere, ADempiere

 Openbravo Compiere ADempiere
API Used Formulas

API Updating Yes NO (3.1) NO (3.5.2a)
API Completeness (# packages + # classes in API)/(#

packages + # implemented classes)
1.022161742 0.5897

JavaDocDensity # classes / JavaDoc MB 20.49235993 14.30051813 13.43962585
Info Framentation # classes / #WebPages 0.915434206 0.242238069 0.235983576

Source Code comments
Comments
compleness

(# classes + # commnented methods) /
(# classes + # implemneted methods)

0.245716812 Absent 0.74707081

AVG sentences
lenght

 11.8994 Absent 6.214280982

Flesch index 52,726 Absent 50.34706473
Commnets density Lines of Comments / LinesOfCode 0,073 Absent 0.212496169

The last three columns of Table 1 summarize the evaluation of the quality content and compare the content quality
attributes of the selected projects. The results indicate that the documentation of the three systems covers the large
part of the defined quality content attributes. Indeed, most of the attributes assume the Def value, indicating that the
related topic is adequately described in the documentation. Nevertheless, Table 1 also highlights some points to be
improved for each system. As an example, the manual for the multi-language nstalling and the backup services are
not completely described in Compiere and Adempiere, while they are adequately defined in Openbravo. Moreover,
the migration process between versions and the database migration are not completely described in Compiere, while
the presence of supporting tools for this process is just partially described in the documentation of all the systems. The
Recoverability is only addressed in Compiere, and it is not clear in Openbravo. The documentation of ADempiere
partially describes the web-service support. Other comments and indications can be obtained from Table 1. All this
observation can be addressed for improving the lacking aspects in the documentation systems.

5. Conclusions

This paper proposes a quality model for the evaluation of ERP Open Source Software systems Documentation and
an operational framework to support the model.

The proposed quality model considers both the quality of the documentation structure and the one of the content
of the considered documents.

Different attributes have been considered in relation to both these aspects, such as the Readability of the document,
the Completeness, and the Updating level. Moreover, the description of the main required indicators doe ERP system

430 Lerina Aversano et al. / Procedia Computer Science 121 (2017) 423–4308 Author name / Procedia Computer Science 00 (2017) 000–000

has been investigated. The applicability of the model was analysed through the study of the documentation of three
open Source ERP systems, and allowed the identification of specific point to address for improving the overall system
documentation.

Future work will consider a refinement of the quality model with the introduction of additional needed metrics
considering grammatical correctness of documentation, ambiguity of the text, duplication of arguments, and the
analysis of more case studies. Indeed, a larger base of software systems should be measured to increase the practical
relevance of the achieved results.

References

1. Arthur, J.D., Stevens, K. T., 1989, Assessing the adequacy of documentation through document quality indicators. Conference on
SoftwareMaintenance, IEEE comp. soc. press, pp. 40-49.

2. Aversano L., Guardabascio D., Tortorella M., 2017, Evaluating the Quality of the Documentation of Open Source Software. Conference on
Evaluation of Novel Approaches to Software Engineering.

3. Chomas, V. S., Saini, J. R., 2015, Software Template for Evaluating and Scoring Software Project Documentations. Int. Journal of Computer
Applications, 116(1).

4. Cozzetti de Souza, S., Anquetil, N., de Oliveira, K.M., 2005. A Study of the Documentation Essential to Software Maintenance. 23rd Annual
Int. Conference on Design of communication: documenting & designing for pervasive (SIGDOC '05), ACM press, pp.68-75.

5. Cutts, M., 2013. Oxford guide to plain English. OUP Oxford.
6. Diaz-Pace, J.A., Nicoletti, M., Schettino, S., Grisando, R., 2014. A recommender system for technical software documentation in Wikis.

Biennial Congress of Argentina (ARGENCON), IEEE comp. soc. press, pp. 393-398.
7. Garousi, G., Garousi, V., Moussavi, M., Ruhe G., Smith, B., 2013. Evaluating usage and quality of technical software documentation: an

empirical study. 17th Int. Conference on Evaluation and Assessment in Software Engineering (EASE). ACM, pp. 24-35.
8. Flesch, R., 2016. How to Write Plain English. University of Canterbury.
9. Forward, A., Lethbridge, T. C., 2002. The relevance of software documentation, tools and technologies: a survey. Symposium on Document

engineering, ACM press, pp. 26-33.
10. Kipyegen, N. J., Korir, W. P. K., 2013. Importance of Software Documentation. IJCSI Int. Journal of Computer Science, 10(5), pp.1694-0784
11. IEEE Std 830-1998. 1998. IEEE Recommended Practice for Software Requirements Specifications.
12. IEEE Std 1028-2008. 2008. IEEE Standard for Software Reviews and Audits.
13. IEEE Std 1063-2001. 2001. IEEE Standard for Software User Documentation.
14. ISO/IEC 9126:2001. 2001. Software engineering – Product quality.
15. ISO/IEC 25010:2005. 2005. Software engineering – Software product Quality Requirements and Evaluation (SquaRE).
16. ISO/IEC 26514:2008. 2008. Systems and software engineering - Requirements for designers and developers of user documentation.
17. Lethbridge, T. C., Singer, J., Forward, A., 2003. How software engineers use documentation: The state of the practice. IEEE Software, 20(6),

pp. 35-39.
18. Plösch, R., Dautovic, A., Saft, M., 2014, The Value of Software Documentation Quality. 14th Int. Conference on Quality Software. IEEE

comp. soc. press, pp. 333-342.
19. Satzinger, J. W., Jackson, R. B., Burd, S. D., 2000. System Analysis and Design in a Changing World, Thomson Learning.
20. Sommerville I, 2005. Software Documentation. Software Engineering, Volume 2: The Supporting Process, pp. 143-154.
21. Uddin, G., Robillard, M. P., 2015. How API documentation fails. IEEE Software, 32(4), pp. 68-75.
22. Wingkvist, A., Ericsson, M., Lucke, R., Lowe, W., 2010. A metrics-based approach to technical documentation quality. 7th Int. Conference

on the Quality of Information and Communications Technology (QUATIC). IEEE comp. soc. press.

