
2017 the 2nd IEEE International Conference on Cloud Computing and Big Data Analysis

vStarCloud: An Operating System Architecture for Cloud Computing

Zhang Lufei, Chen Zuoning
Jiangnan Institute of Computing Technology

Wuxi, China
e-mail: zhanglf04@126.com.chenzuoning@vip.163.com

Abstract-In recent years, cloud computing is increasingly

abstracting away the operating system, allowing developers to

focus higher up the stack on applications, not infrastructure.

In this position paper, we analyzed the deficiencies of the

traditional operating systems in the cloud environment and the

features of existing cloud operating systems. We have proposed

an operating system architecture for cloud computing which is

called vStarCloud, and implemented a prototype to show that

our approach is promising. We describe how common

problems for the cloud environment can be effectively solved

by POSIV (Portable Operating System Interface of vStarCloud)

interface. The prototype of vStarCloud provides the ability of

virtual machine management and MapReduce job

management. Then we discussed how to cope with the

challenges of the new cloud operating systems.

Keywords-cloud computing; operating system; microkernel;
container

I. INTRODUCTION

With rapid development of the cloud computing system,
widespread interest in cloud operating system (Cloud OS) is
a relatively recent phenomenon. In fact, a lot of companies
have been managing cloud infrastructure at scale and
providing cloud service for more than ten years and built
many different cloud-management software in that time. The
definition of Cloud OS from PC Magazine Encyclopedia is:
a server-side software platform that provides the complete
infrastructure for setting up cloud computing services. Cloud
OS is the "core" of the cloud-management software, and
does what a traditional OS does: bridges hardware (called
bare metal) and upper application, but at the scope and scale
of cloud computing.

The hardware of cloud is evolving into a multi­
dimensional space that includes many-core processors,
virtualized clusters and software-defined networks. There are
different business models of cloud computing, such as IaaS
(Infrastructure as a Service), PaaS (Platform as a Service)
and SaaS (Software as a Service). So there are different
levels of API (Application Programming Interface) for cloud
services and a variety of network middleware, such as
message queue, distributed lock, distributed database and
distributed storage, shielding the natural distribution of the
large system. A key challenge for architects and designers of
future clouds is to provide the right set of abstractions so that
application builders can fully leverage these �ew
opportunities, while avoiding the ossification that often anses
when such a large diversity of factors is involved.

978-1-5090-4499-3/17/$31.00 ©20 17 IEEE 271

Most of cloud computing systems use vertical integration
approach and customize the underlying OS and network
middleware for efficiency, even simply remove much of the
functionality in a general purpose OS. If the underlying OS
is based monolithic kernel, which is inconvenient for on­
demand dynamic reconfiguration and hot-plugging services,
the cloud-management software could not accommodate
various type of network computing applications, such as the
computation-intensive, data-intensive and network-intensive.
Meanwhile, the form of service delivery is going through an
evolution, with VMs being joined by containers and
unikernels as packing and deployment mechanisms.

So, the next-generation Cloud OS as the unified
framework for versatility of cloud-management software
ecosystem is very significant. It means the network
computing application can shift to more efficiently managing
datacenter resources as a whole, including networking,
storage and compute. The end-user will be able to deliver
powerful applications and data on virtually any device to
boost productivity, while maintaining security and
compliance.

II. RELATED WORKS

Several operating systems are similar to Cloud OS in
characteristic. They are distributed operating system, virtual
machine management software, container management
software and cloud service provider. Some research institutes
and business companies also presented their so-called Cloud
OS.

There are some logical components in vStarCloud
architecture, such as Cloud task (vTask), Cloud storage
(vStore), Cloud kernel and Cloud system call. The logic unit
called vTask uses cloud resources, which can be scheduled
by cloud OS. Applications and their overall operating
environment is packaged into vTask for scheduling, such as
virtual appliance, Java applications and Erlang applications.
The entity called vStore provides vTask with persistent
storage capabilities which usually built on top of the
distributed file system such as HDFS (Hadoop Distributed
File System) or distributed storage, aggregating node storage
capacity, and providing different functional forms for
different vTasks. Cloud kernel provides cloud resource
management (such as access control, monitoring, acquir�g,
releasing), vTask lifecycle management (such as creatmg,
deploying, scheduling, destruction), as well as vStore support.
Cloud system call is the basic interface providing for the end
user by the Cloud kernel, usually interacting with kernel for

acquiring and releasing resources. Similar with standard
interface of traditional OS such as POSIX (Portable
Operating System Interface of UNIX), vStarCloud also
defmes a set of interfaces (system calls / basic functional
library), called POSIV (Portable Operating System Interface
of vStarCloud).

Although vTask has some characteristics like the virtual
machine and container such as concurrency, interoperability,
independence, vTask as a schedulable entity is more like a
group of associated "microservices" in a physical node. In
vStarCloud, services are hierarchical and coupled tightly.
vStarCloud puts most parts of traditional OS functions in a
set of services, which are called meta services. vStarCloud is
an extensible system built on a microkernel-based
architecture, cleanly separating logical model from the
physical level of objects and APIs. The distributed meta
service management needs flexible service plug-in
mechanism. Meta service management provides semantic
service description mechanism, allowing the upper
application to customize the service strategy.

According to the design principle of separating strategies
from mechanisms, vStarCloud Kernel mainly composed of
two modules, vStarCloud Kernel Worker and vStarCloud
Kernel Manager. Manager is responsible for high-level
strategy formulation in a global view. Workers are deployed
on each physical node as specific actors. The primary
functional modules of Manager are Resource Manager,
Storage Manager, Task Manager, Security Manager,
Distribution Manager.

A. Distributed Operating System

The feature of distributed operating systems is
distribution transparent abstractions, both at the system level
and the application level. At the systems level, distributed
virtual memory and process migration hide distribution
from the higher levels of the operating system software. At
the application level, remote procedure calls and inter­
process messaging hide distribution from applications.

The traditional distributed operating systems include
Amoeba [1], Sprite [2] and Clouds [3], but never caught on
commercially. One reason was that in the 1990's, processor
performance was scaling rapidly while networking
performance was lagging.

The distributed scalable microkernel architecture
parallelize OS data structure based microkernel technique,
such as Tornado [4] and K42 [5]. Fos [6] distributes a
service to run in parallel on several servers. Making full use
of the space parallelism of the multicore processor, fos
provides the common operating system functions through
the distributed services. However, these micro kernel
operating systems only have simple services coupled tightly
with microkernel, without enough flexibility.

B. Virtual Machine Management Software

The approach taken by IaaS puts OS construction in the
context of cloud computing within a virtual machine. The
basic premise of the movement to virtualization is to create
an enormous increase in overall resource utilization along

272

with corresponding reductions in both time-to-value and in
the repetitive work required to deliver services.

The most significant breakthrough of the virtual machine
management software like OpenStack and CloudStack is to
enable resource utilization as small as a single core out of a
physical computer, available on demand. But in many types
of cloud service, users don't need virtualize an entire
machine when they want to further subdivide compute
resources. And the virtual machine cannot package the
application as a singularly addressable, registry-stored, fast­
booted service to simplify the deployment.

C. Container Management Software

Light-weight container design will lead to high resource
utilization, much improved DevOps agility. Containers and
give the user almost bare metal performance. With
containers, cloud service provider can use efficient
packaging formats to enable unprecedented workload
portability across a hybrid cloud.

With container management software like Docker [7],
Borg [8] and Omega [9], users can develop their
microservice using components from the depository like the
Docker Hub, and easily deploy into the cloud. And
Kubernetes [10] has created a layer of abstraction to improve
the composability of application systems, which allows the
developer and administrator to work collectively on
improving the behavior and performance of the desired
service, rather than any of its individual component
containers or infrastructure resources.

D. Cloud Service Provider

Typical IaaS system, such as Amazon EC2, provides
computing resources through Virtual Machine and the Linux
kernel image. Typical PaaS system, such as Google App
Engine and Microsoft Azure, provides API for the
development of application, and aims to particular
programming language which supports automatic scaling
and fault tolerance. Cloud service providers develop and host
web applications in commercial managed data centers, and
always just serve for their business models. So generic Cloud
OS should try to provide the above functions independent of
application modes and programming languages.

III. VST ARCLOUD ARCHITECTURE

There are some logical components in vStarCloud
architecture, such as Cloud task (vTask), Cloud storage
(vStore), Cloud kernel and Cloud system call. The logic unit
called vTask uses cloud resources, which can be scheduled
by cloud OS. Applications and their overall operating
environment is packaged into vTask for scheduling, such as
virtual appliance, Java applications and Erlang applications.
The entity called vStore provides vTask with persistent
storage capabilities which usually built on top of the
distributed file system such as HDFS (Hadoop Distributed
File System) or distributed storage, aggregating node storage
capacity, and providing different functional forms for
different vTasks. Cloud kernel provides cloud resource
management (such as access control, monitoring, acquiring,
releasing), vTask lifecycle management (such as creating,

deploying, scheduling, destruction), as well as vStore support.
Cloud system call is the basic interface providing for the end
user by the Cloud kernel, usually interacting with kernel for
acquiring and releasing resources. Similar with standard
interface of traditional OS such as POSIX (Portable
Operating System Interface of UNIX), vStarCloud also
defines a set of interfaces (system calls / basic functional
library), called POSIV (Portable Operating System Interface
of vStarCloud).

Although vTask has some characteristics such as
concurrency, interoperability, independence like the virtual
machine and container, vTask as a schedulable entity is more
like a group of associated "microservices" in a physical node.
In vStarCloud, services are hierarchical and coupled tightly.
vStarCloud puts most parts of traditional OS functions in a
set of services, which are called meta services. vStarCloud is
an extensible system built on a microkernel-based
architecture, cleanly separating logical model from the
physical level of objects and APIs. The distributed meta
service management needs flexible service plug-in
mechanism. Meta service management provides semantic
service description mechanism, allowing the upper
application to customize the service strategy.

According to the design principle of separating strategies
from mechanisms, vStarCloud Kernel mainly composed of
two modules, vStarCloud Kernel Worker and vStarCloud
Kernel Manager. Manager is responsible for high-level
strategy formulation in a global view. Workers are deployed
on each physical node as specific actors. The primary
functional modules of Manager are Resource Manager,
Storage Manager, Task Manager, Security Manager,
Distribution Manager.

I

I

I

I

vStarCloud Base

Service
vStarCloud User Application

vStarCloud Base Library

vStarCloud System Call Interface

vStarCloud Kernel

Resource

I
vStarCloud

I
Security

Manager Kernel Manager
Manager

Cloud Task

I I
Storage

I I
Distribution

Manager Manager Manager

vStarCloud vStarCloud vStarCloud

Kernel Kernel Kernel

Worker Worker Worker

Resource

I I
Resource

I I
Resource

Worker Worker Worker

I

I

I

I
Cloud Task

I Worker I
Cloud Task

I Worker I
Cloud Task

I Worker

..........

I
Storage

I I
Storage

I I
Storage

I Worker Worker Worker

I
Security

I I
Security

I I
Security

I Worker Worker Worker

Cloud Node I I Cloud Node I I Cloud Node

Cloud Physical Nodes

Figure 1. The vStarCloud architecture.

I

273

With the constant development of the vStarCloud Kernel,
vStarCloud could provide users more rich Cloud OS services.
Currently the function of vStarCloud Kernel is only creating
vTask, scheduling vTask, vTask communication. vStarCloud
base library can provide services such as data replication
consistency and availability for vTask. When developers
implement a new function, appropriate entities will be
defmed as a basic vTask and vStore. vStarCloud Kernel
Manager chooses the scheduling strategy automatically.

IV. PROTYPE

The fIrst implementation of vStarCloud architecture is
developed in the cloud computing operating system project
[II]

. In the prototype, the vTask management system is the
main part, message between which is realized through Thrift
and ZeroMQ together.

Figure 2. The message implementation between vTasks.

A. Implementation

vStarCloud prototype uses master-slave architecture. The
master vTask implements distribution control logic, interacts
with vStore, supports dynamic creation, scheduling and
termination of slave vTasks. The status monitoring and
message passing between vTasks can tolerate some faults.
Users can implement dynamic control of vTask, process
vTasks according to their status.

vTask

1 � 3

I
3 1 '" 3 3

� g � 3 �
�

�' � �' :: Q'

1
�' �

1 g' �' �' �' g' �' �. �.

:! :t :t :t :!: :t � :t

I vTask
kmessage �

vTask I .. status .

Figure 3. vTask framework.

vStarCloud support multi-language POSIV interface,
such as in python and Erlang.

TABLE I. vT ASK TNTERF ACE

Interface Description

vTask creation vtid�app. vtask _ new (Name. vStorePath, cmd)

vTask scheduling app. vtask _sched(vtid)

vTask termination app. vtask_ kill(vtid)

register synchronized app. vtaskJegister JPc(rpc _identity,rpc _han
message dler)

Interface Description
deliver synchronized app. vtaskJPc(vtid,rpc_identity, timeout, *args

message)

register asynchronous app. vtaskJegister _ msg(msg_identity,msg_ ha

message ndler)

del iver asynchronous app. vtask _ msg(vtid, msg_identity, Msg, timeout

message)

monitor start status app. vtask _on _start(vtid,startcallback)

monitor exit status app. vtask _on _ exit(vtid, exitcallback)

monitor die status app. vtask _on _ die (vtid,diecallback)

B. Use Case: Virtual Machine Management

In the virtual machine (VM) management system, each
vTask corresponds to a virtual machine agent. There is a
master vTask to manage and monitor the entire cloud
environment. To create a virtual machine, for example, user
sends the parameters of virtual machine to the master vTask.
The master vTask will parse the command, store the
information of virtual machine into the database, select a
vStarWorker, and then send a synchronized message of VM
creation. Once the slave vTask is created on the specified
vStarWorker, it will download a virtual machine template
according to the information stored, then perform the VM
creation action, and finally sent the response of success to
the master vTask. In the end, the master vTask feed back to
the user of VM information. Like the VM creation, all
actions such as status monitoring, load balancing, fault
tolerance and migration in the VM's entire life cycle can
utilize POSIV interface.

Figure 4. Implementation of VM management software.

C. Use Case: MapReduce Job Management

Implementation of MapReduce framework consists of the
following components: Master vTask, Map Worker and
Reduce Worker. Map Worker and Reduce Worker are
composed of a set of slave vTasks. The master vTask deploy
and manage the entire MapReduce environment, and also
coordinate with vStore to complete the MapReduce process.
Users need to upload files to the vStore, then inform the
master vTask some parameters such as file path, file size,
split size, number of map tasks and reduce tasks. After that,
map vTask is created, based on the incoming <key, value>
pairs, searching the appropriate files in vStore. After
processed by map vTasks, the intermediate <key, value> data
will be sent to reduce vTasks. Meanwhile, map vTasks send

274

messages of completion to the master vTask, informing that
resources could be released. After reduce vTask receiving
the incoming <key, value> pairs from map vTasks, according
to user-defined reduce function, the data will be processed
and sent to the master vTask. The master vTask combines all
the results as soon as received integral reduce messages.

Figure 5. Implementation of map reduce framework.

D. Evaluation

A test-bed was built for evaluation of self-made VM
management software and MapReduce framework. It
consisted of 4 servers (HP DL380 G7 with 8 cores, 32GB
memory and 1 TB disk) which were connected with Gigabit
Ethernet switch.

First of all, vStarCloud was compared with OpenStack
(Release Mitaka) for VM management capability. Different
amount of VMs (from 200 to 1,000) were created on the test­
bed in batch, and the total time for creating all VMs was
gathered. Each VM consumes 1 VCPU, 64MB memory and
2GB disk. Over 99% of VMs were successfully created. So
the key comparison was efficiency of VM management
software

Figure 6. Comparison of VM management software.

Secondly, vStarCloud was compared with Hadoop
(Release 2.4.0) for data processing capability. WordCount
benchmark was implemented by MapReduce framework.
Different amount of data (from 1GB to 5GB) was processed
on the test-bed, and the total time was gathered. The results
of W ordCount on 2 frameworks are the same. So the key
comparison was performance of MapReduce jobs.

2500

u; 2000
"'C
c::

� 1500
.!!.
c::
2 1000 +-------��+_--_r--�--
�
::l

o 500 -+-""'�-f----t-----!----/--

o -+--L __ � ____ L-__ -L __ � __

1 2 3 4 5
Processed Data (GB)

--self-made
MapReduce

--Hadoop

Figure 7. Comparison of map reduce framework.

E. Summary

In the evaluation, the virtual machine management
system based on vStarCloud architecture can realize most of
functions of VM management, such as creating, starting,
suspending, resuming, terminating and achieves better
efficiency of VM creation compared to OpenStack. And the
self-made MapReduce framework using mechanisms of
vTask achieves better performance compared to Hadoop in
the same experimental conditions.

Although vStarCloud prototype lacks of efficient
scheduling policies and needs the performance tuning, it
demonstrates the usability of vStarCloud which supports
rapid vTask deployment, helps developers to achieve smart
scheduling, failover and load balancing of vTask and vStore,
disregarding distributed underlying OS details, but making
focus on their business logic.

V. CONCLUSION

VM Induced Technology helps cloud computing system
evolve more quickly especially for today's container
technology. Most of containers run as applications on top of
the Linux-hypervisor stack. But they are not designed with
the current server hardware in mind. Today's servers are
distributed system in miniature, with low latency data center
network and hyper-converged storage. Lots of complex
abstractions are needed and, more importantly, are often
exposed to the programmer. If infrastructure is defined in
software the programmers will need to deal with
programming infrastructure. So the underlying OS itself
technology should enhance modularization, and make system
reduction and expansion easier.

Cloud OS is the best way to increase performance and
reduce complexity in the next generation of cloud system
software. In this paper, we presented an operating system

275

architecture for cloud computing which is called vStarCloud,
which can facilitate the cloud computing system, to meet the
mentioned challenges. Two ideas are highlighted: (1)
Vertical integration combined with the hierarchical
architecture. (2) Separation of distributed control strategies
and mechanisms. By implementation and use cases of
vStarCloud architecture, it can be seen that the same
mechanism in vStarCloud supports both the typical IaaS and
PaaS applications.

ACKNOWLEDGMENT

This research is supported by National Key Research &
Development Program under grant of 2016YFBl000500.

REFERENCES

[I] A. S. Tanenbaum, S. 1. Mullender, and R. van Renesse. Using sparse
capabilities in a distributed operating system. In Proceedings of the
International Conference on Distributed Computing Systems, pages
558-563, May 1986.

[2] 1. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and B.
B. Welch. The Sprite network operating system. IEEE Computer,
21(2):23-36, Feb. 1988.

[3] P. Dasgupta, R. Chen, S. Menon, M. Pearson, R. Ananthanarayanan,
U. Ramachandran, M. Ahamad, R. 1. LeBlanc, W. Applebe, J. M.
Bernabeu-Auban, P. Hutto, M. Khalidi, and C. J. Wileknloh. The
design and implementation of the Clouds distributed operating system.
USEN[X Computing Systems Journal, 3(1): 11-46, 1990.

[4] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado:
Maximizing locality and concurrency in a shared memory
multiprocessor operating system. In Proceedings of the Symposium
on Operating Systems Design and [mplementation, pages 87-100,
Feb. [999.

[5] 1. Appavoo, M. Auslander, M. Burtico, D. M. da Silva, O. Krieger, M.
F. Mergen, M. Ostrowski, B. Rosenburg, R. W. Wisniewski, and 1.
Xenidis. K42: an open-source linux-compatible scalable operating
system kernel. IBM Systems Journal, 44(2):427-440, 2005.

[6] D. Wentzla and A. Agarwal. Factored operating systems (fos): The
case for a scalable operating system for multicores. STGOPS Oper.
Syst. Rev., 43(2):76-85, 2009.

[7] Harter T, Salmon B, Liu R et al. Slacker: Fast Distribution with Lazy
Docker Containers. [n Proc. USENTX Conference on File and Stor­
age Technologies, February 22-25, 2016.

[8] Verma A, Pedrosa L, Korupolu M et al. Large-scale cluster
management at Google with Borg. [n Proc. European Conference on
Computer Systems, Apr, 2015, p. 18.

[9] Schwarzkopf M, Konwinski A, Abd-EI-Malek M et al. Omega:
flexible, scalable schedulers for large compute clusters. Tn Proc. ACM
European Conference on Computer Systems, Apr, 2013, pp. 351-364.

[10] Burns B, Grant B, Oppenheimer D et al. Borg, Omega, and
Kubernetes, ACM Queue, 2016, vol.l4, pp.70-93

[Il] Zuoning C, Hongwu Y, Lufei Z et al. vStarCloud: A New Network
Computing Operating System for Multicore and Clouds. Tn Proc.
International Symposium on Parallel Architecures Algorithms and
Programming, December 9-11, 20 II.

