
A "No Data Center" Solution to Cloud Computing
Tessema Mengistu∗, Abdulrahman Alahmadi∗, Abdullah Albuali, Yousef Alsenani, and Dunren Che

Dept. of Computer Science, Southern Illinois University at Carbondale
Carbondale, Illinois USA

Email: tessema.mengistu, aalahmadi, aalbuali, yalsenani, dche@siu.edu

Abstract—Current Cloud Computing is primarily
based on proprietary data centers, where hundreds
of thousands of dedicated servers are setup to host
the cloud services. In addition to the huge number of
dedicated servers deployed in data centers, there are
billions of underutilized Personal Computers (PCs),
usually used only for a few hours per day, owned
by individuals and organizations worldwide. The vast
untapped compute and storage capacities of the under-
utilized PCs can be consolidated as alternative cloud
fabrics to provision broad cloud services, primarily
infrastructure as a service. This approach, thus referred
to as “no data center” approach, complements the data
center based cloud provision model. In this paper, we
present our opportunistic Cloud Computing system,
called cuCloud, that runs on scavenged resources of
underutilized PCs within an organization/community.
Our system demonstrates that the “no data center”
solution indeed works. Besides proving our concept,
model, and philosophy, our experimental results are
highly encouraging.

Keywords-Cloud Computing; IaaS; Volunteer Com-
puting; No Data Center Solution; Credit Union Model;
Credit Union Cloud.

I. Introduction
The current Cloud Computing services are based on the

“data center” approach, where hundreds of thousands of
dedicated servers are setup to give the services. Setting
up the data center for cloud is expensive and running
the infrastructure needs expertise as well as a lot of
resources such as high power for cooling, redundant power
for assured availability, etc. For example, 45% of the data
center cost goes to the acquisition of servers, 25% goes
to specialized infrastructure for fault tolerance, redundant
power, cooling systems, and backup batteries, while elec-
trical cost consumed by the machines accounts for 15%
of the amortized total cost [1]. In addition to the vast
number of servers used in data centers, there are billions
of Personal Computers (PCs) owned by individuals and
organizations worldwide. These PCs are mostly underuti-
lized, usually used only a few hours per day. Researches
show that desktop computers owned by organizations are
idle up to 97% of the time [2]. We had argued [3] that
we shall treat the untapped CPU cycles and disk spaces
of the great many underutilized PCs as precious assets,
like monetary assets, to consolidate and reuse them for the
good of the society and of the individuals just like the way
that a credit union works. This argument had motivated

an alternative Cloud Computing provision model, named
“Credit Union Cloud Model” (or CUCM for short) [3].
Cloud services (mainly IaaS) built based on the CUCM are
generally referred to as Credit Union Clouds (CU clouds
for short). The key characteristic in CUCM is the “no
data center” approach to provisioning Cloud Computing
services for an institution, organization, or community.
With the current public clouds, which are better called
vendor clouds as they are all provided by vendors based on
dedicated data centers, the concern for security/safety and
loss-of-control is the primary obstacle keeping traditional
IT from moving to clouds. It is understood that if the data
of a business is highly confidential, the business owner
is of course overly concerned about placing the data in
the hands of another party. On-premise private cloud is
plausibly a solution to mitigating this concern. However,
the need of big upfront investment to setup the data center
for the private cloud infrastructure can be prohibitively
expensive. Among many other benefits of CU clouds,
affordability (which means almost no additional cost for
acquiring and running an on-premise cloud infrastructure)
is particularly appealing. It can help an organization or
business owner save up to the 45% of the cost of a data
center by eliminating the upfront purchase for the cloud
servers, which would otherwise be necessary. In addition,
the credit union cloud infrastructure does not need ad-
ditional cooling systems, which saves the additional 15%
of data center’s cost on cooling. In general, our credit
union cloud management system provides a feasible on-
premise solution to Cloud Computing for institutions and
organizations that highly care about cost and security.
This paper is organized as follows. Section II reviews
CUCM, our “no data center” cloud model; Section III
provides an implementation overview of CUCM as demon-
strated in cuCloud, and some empirical results and analy-
sis; Section IV addresses related works; and finally, Section
V concludes the paper and outlines the future work.

II. Credit Union Cloud Model
The Credit Union Cloud Model is such a cloud provi-

sion model that aims at tapping into the overabundant
idle/underutilized computers for cloud service provision-
ing, while the standard practice is based on dedicated
data centers. CU clouds run on existing infrastructures
with excessive capacities, which are not specifically setup
for supporting Cloud Computing. These PCs are not

2017 IEEE 10th International Conference on Cloud Computing

2159-6190/17 $31.00 © 2017 IEEE

DOI 10.1109/CLOUD.2017.99

714

dedicated resources for the cloud infrastructure, instead
they are still used by their intended users as usual, e.g.,
running a word processor or web browsing (referred to
as local/native applications). CU cloud allows the PCs
within an organization to join the “cloud credit union”
and contribute their underutilized resources (CPU cycles
or disk spaces) to the union’s cloud resource pool to back
up its cloud fabric [3]. Accordingly, these contributing PCs
are called member/volunteer nodes.

Fig. 1: Architecture of CUCM/cuCloud

CUCM assumes a client/server architecture with mem-
ber nodes as clients and dedicated management ma-
chine(s) as server(s). The server has different components
as depicted in Fig.1. These components are briefly ex-
plained as follows. The Interface is the first port of com-
munication between CU Cloud and its users/clients, whose
access will be authenticated and authorized by the Authen-
tication and Authorization module. The Resource Manager
(RM) has the global picture of the resources that the cloud
infrastructure has as a whole. The Resource Allocator
(RA) component selects a list of suitable member nodes
for the deployment of Virtual Machines (VMs) according
to the resource requirements of the cloud customer, the
Service Level Agreement (SLA), and the availability as
well as reliability profiles of the member nodes. The Sched-
uler module accepts user requests and allocates or denies
the requested resources in consultation with the Virtual
Machine Manager (VMM) and the Resource Allocator.
The VMM component handles the deployment of VMs on
member nodes. The Security Module handles the security
of the Virtual Machines. The Monitoring and Management
module gives fine-grained resource information about the
resources of the CU Cloud system.
There is a critical piece of software, called the Member-
ship Controller(MC), that resides on each member node
that contributes resources to the CU Cloud system. MC
monitors the resource usage at a member node and decides

the node’s membership status: active status indicates there
are enough resources to meet the need of a minimum
VM, while inactive status indicates unavailability of such
resources. The Membership Controller collects and sends
information to the server about the types and quantities
of the available resources (CPU, RAM, Hard Disk) for
contribution to the resource pool of CU Cloud periodically.
Membership Controller has the following components. The
Sensor component monitors the resource usage of pro-
cesses on a member node and gives that information to
the Reporter component. The Reporter component decides
the status of membership of the node in the cloud infras-
tructure based on the sensed information. If the resource
(RAM, CPU, Hard Disk) availability is above/below some
threshold value, it will send a message to the Resource
Manager on the server indicating that it is either an active
or inactive member. The Virtual Environment Monitor
component manages the VMs that are deployed on the
member node.

III. Implementation and Experimentation

A. Implementation
As a cloud management system and platform for de-

livering IaaS Services, CU Cloud is expected to fulfill all
the characteristics of Cloud Computing such as elasticity,
metering service, multitenancy, etc. As the first step of
our project, we have implemented a preliminary version
of CUCM (called cuCloud) using Apache CloudStack.
Apache CloudStack is an open source IaaS platform that
manages and orchestrates various resources including stor-
age, network, and computers to build a public or pri-
vate IaaS compute cloud [4]. CloudStack has management
server(s) that can manage tens of thousands of physical
servers installed in geographically distributed data centers.
The Management Server of CloudStack communicates
with the compute nodes (physical servers) through the
hypervisors (Xen, KVM, Hyper-V, etc) installed on the
machines. Since CloudStack is an IaaS system that is
developed to manage dedicated data centers with only
dedicated hosts, we need to modify the management server
of CloudStack in such a way that it can handle the non-
dedicated member nodes that physically back up the cu-
Cloud system. We developed a special component (called
AdHoc component) and integrated it into the CloudStack
management server to form cuCloud management server.
On the other side, we used SIGAR (System Information
Gatherer and Reporter)[5] for the Sensor component of
Member Controllers that reside on member nodes. The
number of CPU cores, the RAM capacity, idle CPU
percentage, free memory percentage, and available free
hard disk space are sensed/gathered and passed to the
Reporter module of MC. Each instance of Membership
Controller running on a member node continuously senses
the resource usage of the processes on the member host.
If the resource utilization at the member node is below a

715

certain threshold, the MC instance sends an “active” mes-
sage to the AdHoc component on cuCloud management
server, and an “inactive” message otherwise. The AdHoc
component will update the resource base of Cloudstack
based on the message it accepts from the MCs. The
other components of CloudStack remain unchanged in
this preliminary version of cuCloud. Due to the full self-
autonomy of member nodes, we cannot use type I hypervi-
sors like Xen or Hyper-V. Instead, we need a virtualization
solution that runs along with other applications on the
member nodes. Therefore, we chose to use KVM (Kernel-
based Virtual Machine), which introduces virtualization
by augmenting the traditional kernel and user modes of
Linux with a new process mode called guest that has its
own kernel and user modes and answers for code execution
from guest operating systems [6]. This characteristic of
KVM allows us to run VMs along with local applications
on member nodes at the same time.

B. Experimentation

To test the feasibility of CUCM, we conducted two sets
of experiments using one server and four client machines.
We used the modified CloudStack version 4.9.0 as dis-
cussed in the implementation subsection. The Manage-
ment Server of CloudStack is installed on a machine with 8
GB of RAM, Intel 8 Core i7 2.4 GHz CPU, and a hard disk
of 250GB. Each computing nodes has 8 GB of RAM, intel
4 cores i3 3.1 GHz CPU, and 250GB hard disk capacity.
All the machines run Ubunu 14.04, are connected to a
16Gbps switch, and supports intel hardware virtualization
(VT-x). For the first set of experiments, we setup a ded-
icated CloudStack infrastructure using one Management
Server and four compute nodes. The performance and
usage of CPU and RAM are measured using well-known
benchmarks, LINPACK [7] and STREAM [8] respectively.
The second set of experiments was done on a modified
CloudStack, renamed as cuCloud as it implements our
CUCM model. cuCloud also assumes one Management
Server node and four member nodes, with which the
benchmarks were run to gather the same set of measure-
ments for comparison. A member node will join cuCloud
infrastructure if its CPU idle percentage is greater than or
equal to 70%. We used five scenarios to compare the per-
formance of CloudStack assuming dedicated machines (or
data center) vis–a-vis our cuCloud relying on contributing
member compute nodes. The experiments with cuCloud
were conducted while the local users were still using the
machines. The 5 scenarios are as follows:

Scenario 1: On dedicated CloudStack infrastructure,
one small VM instance (1 vCPU, 512MB RAM, 20GB
HD) is deployed on one of the computing nodes.
Scenario 2: On dedicated CloudStack infrastructure
one medium (2 vCPU, 1GB RAM, 20GB HD) and two
small VM instances are deployed on one of the compute
nodes, and on one of the instances the performance

measurement tasks are carried out while the other two
instances are set busy with 40% and 60%(CPU usage).
Scenario 3: Same as Scenario 1 except it is on cuCloud
non-dedicated infrastructure.
Scenario 4: Same as Scenario 2 but on cuCloud. Here,
we purposefully make the member node that hosts the
benchmark tasks busy to cause live migration of the
VM with the performance measurement tasks.
Scenario 5: Same as Scenario 4, but we purposefully
induced two live migrations of the VM that hosts the
performance tasks.

Targeted at CPU-intensive computations involving large
linear equations, the LINPACK benchmark was set up
with matrix dimensions of 5000x5000. We gather the
average of 10 executions of the LINPACK benchmark.
The following diagrams (Fig.2 and Fig.3) depict the ex-
perimental results. As shown in Fig.2, there is almost
no difference between running a task on a CloudStack
dedicated compute node and on a cuCloud shared member
node, as long as there is enough resource to execute the
task. However, as shown in Fig.3, when there are one
or more migrations, the tasks running on cuCloud might
take longer time. This is obviously a consequence of the
induced migration of the VMs. From our experimental
result, the performance gap between one migration and
two migration does not seem to be obvious (12.64 vs 12.71
seconds), which however may not be generalized.

Fig. 2: LINPACK: Dedicated vs. cuCloud (no migration)

Fig. 3: LINPACK: Dedicated vs. cuCloud (with migration)

716

STREAM is designed mainly to measure the memory
bandwidth using four operations, Add, Copy, Scale and
Triad, and was set up with an array size of 2,000,000.
Fig.4 depicts the average bandwidth usage of 10 trials of
running STREAM with the 5 scenarios. As Fig.4 shows,
the bandwidth usage of the four operations in the first 3
scenarios is almost the same; and VMmigration noticeably
causes increase in bandwidth usage.

Fig. 4: STREAM Bandwidth Rate

Our preliminary implementation of CUCM and exper-
iments with both cuCloud and CloudStack demonstrate
that not only the concept of CUCM (i.e., no data center
cloud solution) works but also it presents a promising al-
ternative approach to Cloud Computing with many facets
of advantages.

IV. Related Works
There are very few works that have been done in the

research direction that we embark on: the development
of Cloud Computing model based on spare resources of
PCs as its resource base. One noticeable work is the
so-called ad hoc cloud reported in [9] wherein various
research issues related to cloud provisioning using general-
purpose computers were explored. The proposed cloud
infrastructure architecture consists of several components:
one creates/destroys cloud elements; one monitors the
effects of created cloud elements; one handles the QoS
issues; and one executes allocated tasks. The authors gave
no actual implementation of their ad hoc cloud system.
Another work in the area of non-dedicated data center
based Cloud Computing is [10] that tried to investigate
the feasibility, reliability and performance of ad hoc Cloud
Computing infrastructures. The ad hoc cloud system,
which is a client/ server system, is based on the well-known
VC system BOINC with a virtualization support called V-
BOINC. The server component has three subcomponents:
Cloud Interface, VM Service, and Job Service. The client
is the one that accepts the jobs and executes them re-
liably. The research concluded that ad hoc cloud is not
only feasible, but also a viable alternative to the current
data center based Cloud Computing systems. The authors
mentioned nothing about the elasticity, multitenancy, etc.
characteristics of the system.

V. Conclusion and Future Work
Credit Union Cloud Model, which aims at tapping into

the underutilized computing resources available within an
organization/community rather than dedicated servers,
provides a promising alternative Cloud Computing solu-
tion for organizations and communities. Our work demon-
strates that the “no data center” solution indeed works.
Besides proving the concept, model, and philosophy of
CUCM, our experimental study turned out to be highly
encouraging – the “no data center” solution can gain
highly competitive performance compared to its counter-
part that depends on dedicated cloud servers.
The most significant aspect of our work so far is that by
cuCloud we have setup a platform and have a door widely
open for many exciting new research issues for the future.
The resource pool over which VMs run in cuCloud is not
dedicated but shared with native users/tasks. We need
to devise a mechanism to provide cloud services reliably
and efficiently, while keeping the services from interfering
with the native users/tasks at member nodes. Another
requirement of CUCM is to have a robust, dynamic and
efficient resource management and provisioning mecha-
nism. The resource management and provisioning module
should consider the dynamic and unreliable nature of the
member hosts that contribute resources to the resource
pool of cuCloud. We also need to investigate novel and
efficient scheduling algorithms that consider the availabil-
ity, location, and reliability of the member nodes used by
the system to deploy VMs. In addition, cuCloud requires
strong security measures in order to insure the security of
member nodes from malicious cloud client processes and
client VMs from malicious native users at member nodes.

References
[1] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The

cost of a cloud: Research problems in data center networks,”
SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73,
Dec. 2008.

[2] P. Domingues, P. Marques, and L. Silva, “Resource usage of
windows computer laboratories,” in Parallel Processing, 2005.
ICPP 2005 Workshops. International Conference Workshops
on. IEEE, 2005, pp. 469–476.

[3] D. Che and W. C. Hou, “A novel "credit union" model of cloud
computing,” in International Conference on Digital Information
and Communication Technology and Its Applications. Springer,
2011, pp. 714–727.

[4] Apache cloudstack. [Online]. Available: http://cloudstack.
apache.org

[5] System information gatherer and reporter. [Online]. Available:
https://support.hyperic.com/display/SIGAR/Home

[6] J. Che, Q. He, Q. Gao, and D. Huang, “Performance measuring
and comparing of virtual machine monitors,” in Embedded and
Ubiquitous Computing, 2008. EUC’08. IEEE/IFIP Interna-
tional Conference on, vol. 2. IEEE, 2008, pp. 381–386.

[7] J. J. Dongarra, P. Luszczek, and A. Petitet, “The linpack
benchmark: past, present and future,” Concurrency and Com-
putation: practice and experience, vol. 15, no. 9, pp. 803–820,
2003.

[8] J. D. McCalpin, “Stream: Sustainable memory bandwidth in
high performance computers,” University of Virginia, Char-
lottesville, Virginia, Tech. Rep., 1991-2007.

[9] G. Kirby, A. Dearle, A. Macdonald, and A. Fernandes,
“An approach to ad hoc cloud computing,” arXiv preprint
arXiv:1002.4738, 2010.

[10] G. McGilvary, “Ad hoc cloud computing,” PhD dissertation,
The University of Edinburgh, 2014.

717

