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Abstract. Many efforts have focused on studying techniques for selecting most informa-

tive features from data sets. Especially, the related family-based approaches have been pro-

vided for attribute reduction of covering information systems. However, the existing related

family-based methods have to recompute reducts for dynamic covering decision information

systems. In this paper, firstly, we investigate the mechanisms of updating the related fami-

lies and attribute reducts by the utilization of previously learned results in dynamic covering

decision information systems with variations of attributes. Then, we design incremental algo-

rithms for attribute reduction of dynamic covering decision information systems in terms of

attribute arriving and leaving using the related families and employ examples to demonstrate

that how to update attribute reducts with the proposed algorithms. Finally, experimental com-

parisons with the non-incremental algorithms on UCI data sets illustrate that the proposed

incremental algorithms are feasible and efficient to conduct attribute reduction of dynamic

covering decision information systems with immigration and emigration of attributes.

Keywords: Attribute reduction; Dynamic covering information system; Granular computing;

Related family; Rough sets

1 Introduction

Covering rough set theory, pioneered by Zakowski [62] in 1983, has become a useful mathematical

tool for dealing with uncertain and imprecise information in practical situations. As a substantial con-
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stituent of granular computing, covering-based rough set theory has been applied to many fields such as

feature selection and data mining without any prior knowledge. Especially, covering rough set theory

is being attracting more and more attention in the era of artificial intelligence, which provides powerful

supports for the development of data processing technique.

Many researchers [1, 5, 8–11, 15, 17–22, 25, 27, 28, 31, 34, 41, 42, 48–50, 52–56, 58–61, 64–69] have

studied covering-based rough set theory. For example, Hu et al. [8] proposed a matrix representation of

multigranulation approximations in optimistic and pessimistic multigranulation rough sets and matrix-

based dynamic approaches for updating approximations in multigranulation rough sets when a single

granular structure evolves over time. Lang et al. [15] presented incremental approaches to computing

the second and sixth lower and upper approximations of sets in dynamic covering approximation spaces.

Luo et al. [29] investigated the updating properties for dynamic maintenance of approximations when

the criteria values in the set-valued decision system evolve with time and proposed two incremental al-

gorithms for computing rough approximations with the addition and removal of criteria values. Wang

et al. [49] transformed the set approximation computation into products of the type-1 and type-2 char-

acteristic matrices and the characteristic function of the set in covering approximation spaces. Yang et

al. [54] provided a new type of fuzzy covering-based rough set model by introducing the notion of fuzzy

β-minimal description and generalized the model to L-fuzzy covering-based rough set which is defined

over fuzzy lattices. Yang et al. [56] provided related family-based methods for computing attribute reducts

and relative attribute reducts for covering rough sets, which remove superfluous attributes while keeping

the approximation space of covering information system unchanged. Yao et al. [61] classified all approx-

imation operators into element-based approximation operators, granule-based approximation operators,

and subsystem-based approximation operators.

Knowledge reduction of dynamic information systems [2–4,6,7,12–14,16,19,23,24,26,29,30,32,33,

35, 36, 38–40, 43–47, 51, 57, 63, 66] has attracted more attention. For example, Chen et al. [3] employed

an incremental manner to update minimal elements in the discernibility matrices at the arrival of an incre-

mental sample. Huang et al. [12] presented the extended variable precision rough set model based on the

λ-tolerance relation in terms of Bhattacharyya distance and incremental mechanisms by the utilization of

previously learned approximation results and region relation matrices for updating rough approximations

in set-valued information systems. Lang et al. [14] focused on knowledge reduction of dynamic covering

information systems with variations of objects using the type-1 and type-2 characteristic matrices. Li et

al. [19] discussed the principles of updating P-dominating sets and P-dominated sets when some attributes

are added into or deleted from the attribute set P. Luo et. al [30] analyzed the dynamic characteristics

of conditional partition and decision classification on the universe when the insertion or deletion of ob-

jects occurs and presented incremental algorithms for updating probabilistic approximations, which are

proficient to efficiently classify the incremental objects into decision regions by avoiding re-computation

efforts. Qian et al. [35] defined a new attribute reduct for sequential three-way decisions and designed
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attribute reduction algorithms satisfying the monotonicity of the probabilistic positive region, which pro-

vide a new insight into the attribute reduction problem of sequential three-way decisions. Xu et al. [51]

introduced the stream computing learning method on the basis of existing incremental learning studies

and solved the challenges resulted from simultaneous addition and deletion of objects. Yang et al. [57]

provided an insight into the incremental process of attribute reduction with fuzzy rough sets which reveals

how to add new attributes into the current reduct and delete existing attributes from the current reduct and

two incremental algorithms of attribute reduction with fuzzy rough sets for one incoming sample and mul-

tiple incoming samples, respectively. Zhang et al. [63] proposed incremental approaches for computing

the lower and upper approximations with dynamic attribute variation in set-valued information systems.

In real-world decision making, there are many covering decision information systems such as incom-

plete information systems and set-valued information systems, and researchers have proposed many meth-

ods for attribute reduction of covering decision information systems on the basis of discernibility matrices.

Especially, we observe that the third lower and upper approximation operators are regarded as the most

reasonable in covering-based rough sets, and discernibility matrices-based attribute reduction methods can

not work for constructing attribute reducts of covering decision information systems with respect to the

third type approximation operators. Meanwhile, we see that the related families-based methods proposed

by Yang [56] are very effective for knowledge reduction of covering decision information systems, which

bridge the gap where the discernibility matrix is not applicable. In practical situations, covering decision

information systems are varying with time. Especially, there are many dynamic covering decision infor-

mation systems with variations of object sets, attribute sets and attribute values, and knowledge reduction

of dynamic covering decision information systems is a significant challenge of covering-based rough sets.

Furthermore, we find that there are few researches on knowledge reduction of dynamic covering decision

information systems using the related families, and non-incremental approaches are time-consuming for

knowledge reduction of dynamic covering decision information systems with respect to the third lower

and upper approximation operators. Therefore, the incremental learning technique is desired to improve

computational efficiency of attribute reduction of dynamic covering decision information systems by em-

ploying the previous reduct results.

The purpose of this paper is to investigate attribute reduction of dynamic covering decision informa-

tion systems. First, we study attribute reduction of dynamic covering decision information systems with

immigrations of attributes. Concretely, we analyze the mechanisms of updating the related sets of ob-

jects in dynamic covering decision information systems with attribute arriving, and construct the related

families of dynamic covering decision information systems based on those of original covering decision

information systems. Meanwhile, we investigate the relationship between attribute reducts of dynamic

covering decision information systems and those of original covering decision information systems, and

provide incremental algorithms for updating attribute reducts of dynamic covering decision information

systems with attribute arriving. Second, we investigate attribute reduction of dynamic covering decision
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information systems with emigrations of attributes. Concretely, we illustrate the mechanisms of con-

structing the related families of dynamic covering decision information systems based on those of orig-

inal covering decision information systems. After that, we investigate the relationship between attribute

reducts of dynamic covering decision information systems and those of original covering decision infor-

mation systems and propose incremental algorithms for updating attribute reducts of dynamic covering

decision information systems with attribute leaving. Finally, we provide heuristic incremental algorithms

for updating attribute reducts of dynamic covering decision information systems with immigration and

emigration of attributes and employ the experimental results on UCI data sets to indicate that the pro-

posed algorithms outperform the static algorithms while inserting into or removing from attribute sets in

dynamic covering decision information systems.

The rest of this paper is organized as follows: In Section 2, we briefly review the basic concepts of

covering-based rough set theory. In Section 3, we study updated mechanisms for constructing attribute

reducts of dynamic covering decision information systems with variations of attribute sets. In Section 4,

we provide heuristic algorithms for computing reducts of dynamic covering decision information systems.

In Section 5, we employ the experimental results to illustrate that the related families-based incremental

approaches are effective to perform attribute reduction of dynamic covering decision information systems.

Concluding remarks and further research are given in Section 6.

2 Preliminaries

In this section, we briefly review some concepts of covering-based rough sets.

Suppose S = (U, A,V, f ) is an information system, where U = {x1x2, ..., xn} is a finite set of objects, A

is a finite set of attributes, V = {Va|a ∈ A}, where Va is the set of values of attribute a, and card(Va) > 1, f

is a function from U × A into V , and the indiscernibility relation IND(B) ⊆ U × U is defined as follows:

IND(B) = {(x, y) ∈ U × U |∀b ∈ B, b(x) = b(y)}, where b(x) and b(y) denote the values of objects x and y

on b ∈ B ⊆ A, respectively. Especially, we have the equivalence class [x]B = {y ∈ U |(x, y) ∈ IND(B)} for

x ∈ U.

Definition 2.1 [37] Let S = (U, A,V, f ) be an information system, and B ⊆ C. Then the Pawlak upper

and lower approximations of X ⊆ U with respect to IND(B) are defined as follows:

R(X) = {x ∈ U |[x]B ∩ X , ∅},R(X) = {x ∈ U |[x]B ⊆ X}.

According to Definition 2.1, we see that Pawlak rough set model is constructed on an indiscernibility

relation or a family of equivalence classes, and each object is classified into a certain concept in the

Pawlak rough set model. But different concepts of the universe usually overlap, and the condition of the

equivalence relation is so strict that limit its application in practical situations.
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Subsequently, Zakowski [62] employed the covering of the universe to establish a covering based

generalized rough sets as follows.

Definition 2.2 [62] Let U be a finite universe of discourse, and C a family of subsets of U. Then C is

called a covering of U if none of elements of C is empty and
⋃{C | C ∈ C } = U. Furthermore, (U,C ) is

referred to as a covering approximation space.

If U is a finite universe of discourse, and ∆ = {C1,C2, ...,Cm}, where Ci (1 ≤ i ≤ m) is a covering of

U, then (U,∆) is called a covering information system; (U,∆,D) is called a covering decision informa-

tion system, where ∆ and D denote coverings and partition based on conditional attributes and decision

attributes, respectively.

Example 2.3 Let U = {x1, x2, x3, x4, x5, x6, x7, x8} be eight houses, C = {quality} the attribute set, the

domain of quality is {high,middle, low}. We employ the specialists A and B to evaluate these houses and

show their evaluation reports as follows:

highA = {x1, x4, x5, x7},middleA = {x2, x8}, lowA = {x3, x6};
highB = {x1, x2, x4, x7},middleB = {x5}, lowB = {x3, x6, x8},

where highA denotes the houses belonging to high quality by the specialist A, and the meanings of other

symbols are similar. Since their evaluations are of equal importance, we consider all their advice and

derive the covering approximation space (U,Cprice), where Cprice = {highA∨B,middleA∨B, lowA∨B}, and

highA∨B = highA ∪ highB = {x1, x2, x4, x5, x7};
middleA∨B = middleA ∪ middleB = {x2, x5, x8};

lowA∨B = lowA ∪ lowB = {x3, x6, x8}.

Definition 2.4 [69] Let (U,C ) be a covering approximation space, and MdC (x) = {K ∈ C | x ∈
K ∧ (∀S ∈ C ∧ x ∈ S ∧S ⊆ K ⇒ K = S )} for x ∈ U. Then MdC (x) is called the minimal description of x.

By Definition 2.4, we observe that the minimal description of x is a set of the minimal elements

containing x in C . For a covering C of U, K is a union reducible element of C , C − {K} and C have the

same Md(x) for x ∈ U. If K is a union reducible element of C if and only if K < Md(x) for any x ∈ U,

and denote M∪∆ = {Md∪∆(x) | x ∈ U} with respect to a family of coverings ∆.

Definition 2.5 [69] Let (U,C ) be a covering approximation space, and MdC (x) the minimal description

of x ∈ U. Then the third lower and upper approximations of X ⊆ U with respect to C are defined as

follows:

CLC (X) = ∪{K ∈ C | K ⊆ X};
CHC (X) = ∪{K ∈ MdC (x) | x ∈ X}.
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According to Definition 2.5, we see that the third lower and upper approximation operators are typ-

ical representatives of non-dual approximation operators for covering approximation spaces. Further-

more, we have CLC (X) =
⋃{K ∈ C | ∃x ∈ U, s.t. (K ∈ MdC (x)) ∧ (K ⊆ X)} with the minimal

descriptions. Especially, we have CL∪∆(X) = ∪{K ∈ Md∪∆(x) | K ⊆ X} and CH∪∆(X) = ∪{K ∈
Md∪∆(x) | x ∈ X}. For simplicity, we denote POS ∪∆(X) = CL∪∆(X),NEG∪∆(X) = U\CH∪∆(X) and

BND∪∆(X) = CH∪∆(X)\CL∪∆(X).

Definition 2.6 [56] Let (U,∆,D) be a covering decision information system, where U = {x1, x2, ..., xn},
∆ = {C1,C2, ..., Cm}, and D = {D1,D2, ...,Dk}. Then

(1) if there exists K ∈ Md∪∆(y) and D j ∈ D such that x ∈ K ⊆ D j for any x ∈ U, where y ∈ U, then

(U,∆,D) is called a consistent covering decision information system.

(2) if there exists x ∈ U but ∃K ∈ ∪∆ and D j ∈ D such that x ∈ K ⊆ D j, then (U,∆,D) is called an

inconsistent covering decision information system.

By Definition 2.6, we see that all covering information systems are classified into consistent covering

decision information systems and inconsistent covering decision information systems. For simplicity, the

symbols M∪∆ � D and M∪∆ � D denote (U,∆,D) is a consistent covering decision information system

and an inconsistent covering decision information system, respectively.

Definition 2.7 [56] Let (U,∆,D) be a covering decision information system, where U = {x1, x2, ..., xn},
∆ = {C1,C2, ..., Cm}, D = {D1,D2, ...,Dk}, and POS ∪∆(D) =

⋃{POS ∪∆(Di) | Di ∈ D}. Then

(1) if POS ∪∆(D) = POS ∪∆−{Ci}(D) for Ci ∈ ∆, then Ci is called superfluous relative to D; Otherwise,

Ci is called indispensable relative to D;

(2) if every element of P ⊆ ∆ satisfying POS ∪P(D) = POS ∪∆(D) is indispensable relative to D , then

P is called a reduct of ∆ relative to D .

By Definition 2.7, we observe that a reduct P satisfies two conditions as follows: (1) POS ∪P(D) =

POS ∪∆(D); (2) POS ∪∆(D) , POS ∪P−{Ci}(D) for any Ci ∈ ∆. Furthermore, the first condition indicates

the joint sufficiency of the covering set P, and the second condition means that each covering in P is

individually necessary. Therefore, P is the minimum covering set keeping the positive regions of decision

classes.

Definition 2.8 [56] Let (U,∆,D) be a covering decision information system, where U = {x1, x2, ..., xn},
∆ = {C1,C2, ..., Cm}, A∆ = {Ck ∈ ∪∆ | ∃D j ∈ D , s.t. Ck ⊆ D j}, and r(x) = {C ∈ ∆ | ∃Ck ∈ A∆, s.t.

x ∈ Ck ∈ C }, and R(U,∆,D) = {r(x) | x ∈ POS ∪∆(D)} the related family of (U,∆,D). Then

(1) f (U,∆,D) =
∧{∨ r(x) | r(x) ∈ R(U,∆,D)} is the related function, where

∨
r(x) is the disjunction

of all elements in r(x);
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(2) g(U,∆,D) =
∨l

i=1{
∧

∆i | ∆i ⊆ ∆} is the reduced disjunctive form of f (U,∆,D) with the multipli-

cation and absorption laws.

By Definition 2.8, we get the related function f (U,∆,D) =
∧{∨ r(x) | r(x) ∈ R(U,∆,D)} and its

reduced disjunctive form g(U,∆,D) =
∨l

i=1{
∧

∆i | ∆i ⊆ ∆}. Especially, we obtain attribute reducts

R(U,∆,D) = {∆1,∆1, ...,∆l} for the covering decision information system (U,∆,D) with the reduced

disjunctive form g(U,∆,D).

Algorithm 2.9 (Non-Incremental Algorithm of Computing R(U,∆,D) of (U,∆,D))

Step 1: Input (U,∆,D);

Step 2: Construct POS ∪∆(D) =
⋃{POS ∪∆(Di) | Di ∈ D};

Step 3: Compute R(U,∆,D) = {r(x) | x ∈ POS ∪∆(D)};
Step 4: Construct f (U,∆,D) =

∧{∨ r(x) | r(x) ∈ R(U,∆,D)} =
∨l

i=1{
∧

∆i | ∆i ⊆ ∆};
Step 5: Output R(U,∆,D).

We employ two examples to illustrate how to construct attribute reducts of consistent and inconsistent

covering decision information systems as follows.

Example 2.10 (1) Let (U,∆,D) be a consistent covering decision information system, where U = {x1, x2,

..., x8}, ∆ = {C1,C2,C3,C4,C5}, and D = {{x1, x2, x3}, {x4, x5, x6}, {x7, x8}}, where

C1 = {{x1, x2}, {x2, x3, x4}, {x3}, {x4}, {x5, x6}, {x6, x7, x8}};
C2 = {{x1, x3, x4}, {x2, x3}, {x4, x5}, {x5, x6}, {x6}, {x7, x8}};
C3 = {{x1}, {x1, x2, x3}, {x2, x3}, {x3, x4, x5, x6}, {x5, x7, x8}};
C4 = {{x1, x2, x4}, {x2, x3}, {x4, x5, x6}, {x6}, {x7, x8}};
C5 = {{x1, x2, x3}, {x4}, {x5, x6}, {x5, x6, x8}, {x4, x7, x8}}.

By Definition 2.8, firstly, we have r(x1) = {C1,C3,C5}, r(x2) = {C1,C2,C3,C4,C5}, r(x3) = {C1,C2,C3,C4,

C5}, r(x4) = {C1,C2,C4,C5}, r(x5) = {C1,C2,C4,C5}, r(x6) = {C1,C2,C4,C5}, r(x7) = {C2,C4} and

r(x8) = {C2,C4}. Secondly, we get R(U,∆,D) = {{C1,C3,C5}, {C1,C2,C3,C4,C5}, {C1,C2,C4,C5}, {C2,C4}}
and

f (U,∆,D) =
∧
{
∨

r(x) | r(x) ∈ R(U,∆,D)}
= (C1 ∨ C3 ∨ C5) ∧ (C1 ∨ C2 ∨ C3 ∨ C4 ∨ C5) ∧ (C1 ∨ C2 ∨ C4 ∨ C5) ∧ (C2 ∨ C4)

= (C1 ∨ C3 ∨ C5) ∧ (C2 ∨ C4)

= (C1 ∧ C2) ∨ (C1 ∧ C4) ∨ (C2 ∧ C3) ∨ (C3 ∧ C4) ∨ (C2 ∧ C5) ∨ (C4 ∧ C5).

Therefore, we have R(U,∆,D) = {{C1,C2}, {C1,C4}, {C2,C3}, {C3,C4}, {C2,C5}, {C4,C5}}.
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(2) Let (U,∆,D) be an inconsistent covering decision information system, where U = {x1, x2, ..., x8},
∆ = {C1,C2,C3,C4}, and D = {{x1, x2, x3}, {x4, x5, x6}, {x7, x8}}, where

C1 = {{x1, x2, x3, x4}, {x3, x6, x7}, {x4, x5}, {x6}, {x7, x8}};
C2 = {{x1}, {x2, x3, x4}, {x4, x5}, {x4, x5, x6}, {x6, x7, x8}};
C3 = {{x1}, {x1, x3, x4}, {x2, x3, x4, x8}, {x3, x4, x5, x6, x7}};
C4 = {{x1, x4, x5}, {x2, x3, x4, x5}, {x4, x5, x6, x7, x8}}.

By Definition 2.8, firstly, we get r(x1) = {C2,C3}, r(x2) = ∅, r(x3) = ∅, r(x4) = {C1,C2}, r(x5) = {C1,C2}, r(x6)

= {C1,C2}, r(x7) = {C1} and r(x8) = {C1}. After that, we obtain R(U,∆,D) = {{C2,C3}, {C1,C2}, {C1}}
and

f (U,∆,D) =
∧
{
∨

r(x) | r(x) ∈ R(U,∆,D)}
= (C2 ∨ C3) ∧ (C1 ∨ C2) ∧ C1

= (C2 ∨ C3) ∧ C1

= (C1 ∧ C2) ∨ (C1 ∧ C3).

Therefore, we get R(U,∆,D) = {{C1,C2}, {C1,C3}}.

3 Related family-based attribute reduction of dynamic covering decision
information systems

In this section, we study the related family-based attribute reduction of dynamic covering decision

information systems with variations of attribute sets.

Definition 3.1 Let (U,∆,D) and (U,∆+,D) be covering decision information systems, where U = {x1, x2,

..., xn}, ∆ = {C1,C2, ...,Cm}, and ∆+ = {C1,C2, ...,Cm,Cm+1}. Then (U,∆+,D) is called a dynamic cover-

ing decision information system of (U,∆,D).

According to Definition 3.1, if (U,∆,D) is a consistent covering decision information system, then

we see that (U,∆+,D) is consistent when adding Cm+1 into (U,∆,D). Furthermore, if (U,∆,D) is an

inconsistent covering decision information system, we notice that (U,∆+,D) is consistent or inconsistent

when adding Cm+1 into (U,∆,D). In practical situations, there are many dynamic covering information

systems, and we only discuss dynamic covering decision information systems with variations of attribute

sets in this section.

Example 3.2 (Continuation from Example 2.10) (1) Let (U,∆,D) and (U,∆+,D) be covering decision

information systems, where U = {x1, x2, ..., x8}, ∆ = {C1,C2,C3,C4,C5}, ∆+ = {C1,C2,C3,C4,C5,C6},
and D = {{x1, x2, x3}, {x4, x5, x6}, {x7, x8}}, where C6 = {{x1, x4, x5}, {x2}, {x3, x4, x6}, {x3, x5, x7}, {x7, x8}}.
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According to Definitions 2.6 and 3.1, we see that (U,∆+,D) is a dynamic covering decision information

system of (U,∆,D). Especially, we observe that (U,∆,D) and (U,∆+,D) are consistent covering decision

information systems.

(2) Let (U,∆,D) and (U,∆+,D) be covering decision information systems, where U = {x1, x2, ..., x8},
∆ = {C1,C2,C3,C4}, ∆+ = {C1,C2,C3,C4,C5}, and D = {{x1, x2, x3}, {x4, x5, x6}, {x7, x8}}, where C5 =

{{x1, x5, x6}, {x4, x5}, {x2, x3, x4}, {x5, x6, x7, x8}}. By Definitions 2.6 and 3.1, we observe that (U,∆+,D)

is a dynamic covering decision information system of (U,∆,D). Specially, we see that (U,∆,D) and

(U,∆+,D) are inconsistent covering decision information systems.

Suppose (U,∆+,D) and (U,∆,D) are covering decision information systems, where U = {x1, x2, ..., xn},
∆ = {C1,C2, ...,Cm}, and ∆+ = {C1,C2, ...,Cm,Cm+1}, A∆ = {C ∈ ∪∆ | ∃D j ∈ D , s.t. C ⊆ D j},
A∆+ = {C ∈ ∪∆+ | ∃D j ∈ D , s.t. C ⊆ D j}, ACm+1 = {C ∈ Cm+1 | ∃D j ∈ D , s.t. C ⊆ D j},
r(x) = {C ∈ ∆ | ∃C ∈ A∆, s.t. x ∈ C ∈ C }, and r+(x) = {C ∈ ∆+ | ∃C ∈ A∆+ , s.t. x ∈ C ∈ C }.

Theorem 3.3 Let (U,∆,D) and (U,∆+,D) be covering decision information systems, where U = {x1, x2,

..., xn}, ∆ = {C1,C2, ...,Cm}, and ∆+ = {C1,C2, ...,Cm,Cm+1}. Then we have

r+(x) =


r(x) ∪ {Cm+1}, if x ∈ ∪ACm+1 ;

r(x), otherwise.

Proof: By Definition 2.8, we have r(x) = {C ∈ ∆ | ∃C ∈ A∆, s.t. x ∈ C ∈ C }, and r+(x) = {C ∈ ∆+ |
∃C ∈ A∆+ , s.t. x ∈ C ∈ C }. Since ∆+ = {C1,C2, ...,Cm,Cm+1}, it follows that r+(x) = {C ∈ ∆ | ∃C ∈
A∆, s.t. x ∈ C ∈ C } ∪ {Cm+1 | ∃C ∈ Cm+1, s.t. x ∈ C ∈ Cm+1} for x ∈ U. For simplicity, we denote

∪ACm+1 = ∪{C | C ∈ Cm+1,∃Di ∈ D , s.t. C ⊆ Di}. So we get r+(x) = r(x) ∪ {Cm+1} and r+(y) = r(y) for

x ∈ ∪ACm+1 and y < ∪ACm+1 , respectively. Therefore, we obtain

r+(x) =


r(x) ∪ {Cm+1}, if x ∈ ∪ACm+1 ;

r(x), otherwise.
�

Theorem 3.3 illustrates the relationship between r(x) of (U,∆,D) and r+(x) of (U,∆+,D). Concretely,

we construct the related set r+(x) on the basis of the related set r(x), which reduces time complexity

of computing the related family R(U,∆+,D). Especially, we only need to compute ACm+1 for attribute

reduction of dynamic covering decision information system (U,∆+,D), and we get r+(x) = r(x) and

r+(x) = r(x) ∪ {Cm+1} when ∪ACm+1 = ∅ and ∪ACm+1 = U, respectively, for x ∈ U.

Theorem 3.4 Let (U,∆,D) and (U,∆+,D) be covering decision information systems, where U = {x1, x2,

..., xn}, ∆ = {C1,C2, ...,Cm}, ∆+ = {C1,C2, ...,Cm,Cm+1}, N f (U,∆,D) = (
∧

x∈POS ∪∆(D)∧x<∪ACm+1

∨
r(x))

∧

Cm+1 =
∨l

i=1{
∧

∆′i | ∆′i ⊆ ∆}, and NR(U,∆,D) = {∆′j | ∃∆i ∈ R(U,∆,D), s.t. ∆i ⊂ ∆′j, 1 ≤ j ≤ l}. If

POS ∪∆+(D) = POS ∪∆(D), then R(U,∆+,D) = R(U,∆,D) ∪ (NR(U,∆,D)).
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Proof: Taking ∆i ∈ R(U,∆,D), by Definition 2.5, we have POS ∪∆(D) = POS ∪∆i(D) and POS ∪∆i(D) ,

POS ∪∆i−{Ci}(D) for Ci ∈ ∆i. We also get POS ∪∆+(D) = POS ∪∆i(D) and POS ∪∆i(D) , POS ∪∆i−{Ci}(D)

for Ci ∈ ∆i. So ∆i ∈ R(U,∆+,D). Thus, we obtain R(U,∆,D) ⊆ R(U,∆+,D). Furthermore, taking

∆′j ∈ NR(U,∆,D), it implies that POS ∪∆(D) = POS ∪∆′j(D) and POS ∪∆′j(D) , POS ∪∆′j−{Ci}(D) for

Ci ∈ ∆′j. It follows that ∆′j ∈ R(U,∆+,D). So we get R(U,∆,D) ∪ (NR(U,∆,D)) ⊆ R(U,∆+,D).

Furthermore, we have R(U,∆+,D) = R1(U,∆+,D) ∪R2(U,∆+,D), where R1(U,∆+,D) = {∆i | Cm+1 <

∆i,∆i ∈ R(U,∆+,D)} and R2(U,∆+,D) = {∆i | Cm+1 ∈ ∆i,∆i ∈ R(U,∆+,D)}. Obviously, we ob-

tain NR(U,∆,D) ⊆ R2(U,∆+,D). To prove R2(U,∆+,D) ⊆ NR(U,∆,D), we only need to prove

R2(U,∆+,D)\(NR(U,∆,D)) = ∅. Suppose we have ∆′ = {C1′ ,C2′ , ...,Cl′ ,Cm+1} ∈ R2(U,∆+,D)\NR(U,∆,D),

there exists x ∈ R(U,∆+,D) such that Ci′ ∈ r+(x)(1′ ≤ i′ ≤ l′). If Cm+1 ∈ r+(x), then Ci′ is superflu-

ous relative to D . It implies that Cm+1 < r+(x). It follows that ∆′ ∈ NR(U,∆,D), which is contra-

dicted. So R2(U,∆+,D)\(NR(U,∆,D)) = ∅. Thus NR(U,∆,D) = R2(U,∆+,D). Since R1(U,∆+,D) ⊆
R(U,∆,D), so we have R(U,∆+,D) ⊆ R(U,∆,D)∪(NR(U,∆,D)). Therefore, R(U,∆+,D) = R(U,∆,D)

∪(NR(U,∆,D)). �

Theorem 3.4 illustrates the relationship between R(U,∆+,D) of (U,∆+,D) and R(U,∆,D) of (U,∆,

D). Concretely, we construct the attribute reducts R(U,∆+,D) on the basis of R(U,∆,D), which reduces

time complexities of computing attribute reducts of (U,∆+,D). Especially, we only need to construct

NR(U,∆,D) for attribute reduction of (U,∆+,D). Furthermore, each reduct of R(U,∆,D) belongs to

R(U,∆+,D), so there is no need of computation if we want to get only a reduct of (U,∆+,D), and we get

reducts containing Cm+1 for (U,∆+,D) by Theorem 3.4.

Theorem 3.5 Let (U,∆,D) and (U,∆+,D) be covering decision information systems, where U = {x1, x2, ...,

xn}, ∆ = {C1,C2, ...,Cm}, and ∆+ = {C1,C2, ...,Cm,Cm+1}. If POS ∪∆+(D) , POS ∪∆(D), then we have

r+(x) = {Cm+1} for x ∈ POS ∪∆+(D)\POS ∪∆(D).

Theorem 3.5 illustrates some properties of the related family R(U,∆+,D) when POS ∪∆+(D) , POS ∪∆(D).

Concretely, we get the related set r+(x) = {Cm+1} for x ∈ POS ∪∆+(D)\POS ∪∆(D). In other words, Cm+1

belongs to each reduct of R(U,∆+,D) when POS ∪∆+(D) , POS ∪∆(D).

Theorem 3.6 Let (U,∆+,D) and (U,∆,D) be covering decision information systems, where U = {x1, x2,

..., xn}, ∆ = {C1,C2, ...,Cm}, ∆+ = {C1,C2, ...,Cm,Cm+1}, N f (U,∆,D) = Cm+1
∧

(
∧

x∈POS ∪∆(D)∧x<∪ACm+1∨
r(x)) =

∨l
i=1{
∧

∆′i | ∆′i ⊆ ∆}, and NR(U,∆,D) = {∆′j | 1 ≤ j ≤ l}. If POS ∪∆+(D) , POS ∪∆(D), then

R(U,∆+,D) = NR(U,∆,D).

Proof: It is similar to the proof of Theorem 3.4.�

Theorem 3.6 illustrates the relationship between R(U,∆+,D) and R(U,∆,D) when POS ∪∆+(D) ,

POS ∪∆(D). Especially, there is no direct relationship between R(U,∆,D) and R(U,∆+,D), and we

should compute R(U,∆+, D) with the related family R(U,∆+,D).
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We provide an incremental algorithm for computing attribute reducts of dynamic covering decision

information systems as follows.

Algorithm 3.7 (Incremental Algorithm of Computing R(U,∆+,D) of (U,∆+, D))

Step 1: Input (U,∆+,D);

Step 2: Construct POS ∪∆+(D);

Step 3: Compute R(U,∆+,D) = {r+(x) | x ∈ POS ∪∆+(D)}, where

r+(x) =


r(x) ∪ {Cm+1}, x ∈ ∪ACm+1 ;

r(x), otherwise.

Step 4: Construct N f (U,∆,D) = Cm+1
∧

(
∧

x∈POS ∪∆(D)∧x<∪ACm+1

∨
r(x)) =

∨l
i=1{
∧

∆′i | ∆′i ⊆ ∆};
Step 5: Compute NR(U,∆,D) = {∆′j | ∃∆i ∈ R(U,∆,D), s.t. ∆i ⊂ ∆′j, 1 ≤ j ≤ k′};
Step 6: Output R(U,∆+,D).

We employ an example to illustrate how to construct attribute reducts of dynamic covering decision

information systems by Algorithm 3.7 as follows.

Example 3.8 (Continuation from Examples 2.10) (1) By Definition 2.8, firstly, we have r+(x1) = r(x1), r+(x2) =

r(x2) ∪ {C6}, r+(x3) = r(x3), r+(x4) = r(x4), r+(x5) = r(x5), r+(x6) = r(x6), r+(x7) = r(x7) ∪ {C6} and

r+(x8) = r(x8) ∪ {C6}. Consequently, we get R(U,∆+,D) = {{C1,C3,C5}, {C1, C2,C3,C4,C5}, {C1,C2,C3,

C4,C5,C6}, {C1,C2,C4,C5}, {C2,C4,C6}}, and

f (U,∆+,D) =
∧
{
∨

r+(x) | r+(x) ∈ R(U,∆+,D)}
= (C1 ∨ C3 ∨ C5) ∧ (C1 ∨ C2 ∨ C3 ∨ C4 ∨ C5 ∨ C6) ∧ (C1 ∨ C2 ∨ C3 ∨ C4 ∨ C5) ∧ (C1

∨C2 ∨ C4 ∨ C5) ∧ (C2 ∨ C4 ∨ C6)

= (C1 ∨ C3 ∨ C5) ∧ (C1 ∨ C2 ∨ C4 ∨ C5) ∧ (C2 ∨ C4 ∨ C6)

= (C1 ∧ C2) ∨ (C1 ∧ C4) ∨ (C1 ∧ C6) ∨ (C2 ∧ C3) ∨ (C2 ∧ C5) ∨ (C3 ∧ C4) ∨ (C4 ∧ C5)

∨(C5 ∧ C6).

So we have R(U,∆+,D) = {{C1,C2}, {C1,C4}, {C1,C6}, {C2,C3}, {C2,C5}, {C3,C4}, {C4,C5}, {C5,C6}}.
Secondly, by Theorem 3.4, we get

N f (U,∆+,D) = C6 ∧ (C1 ∨ C3 ∨ C5) ∧ (C1 ∨ C2 ∨ C3 ∨ C4 ∨ C5) ∧ (C1 ∨ C2 ∨ C4 ∨ C5)

= C6 ∧ (C1 ∨ C3 ∨ C5) ∧ (C1 ∨ C2 ∨ C4 ∨ C5)

= (C1 ∧ C6) ∨ (C5 ∧ C6) ∨ (C2 ∧ C3 ∧ C6) ∨ (C3 ∧ C4 ∧ C6).

It follows that NR(U,∆,D) = {{C1,C6)}, {C5,C6}}. Therefore, we have R(U,∆+,D) = {{C1,C2}, {C1,

C4}, {C2,C3}, {C2,C5}, {C3,C4}, {C4,C5}, {C1,C6}, {C5,C6}}.
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(2) By Definition 2.8, we have that r+(x1) = {C2,C3}, r+(x2) = ∅, r+(x3) = ∅, r+(x4) = {C1,C2,C5},
r+(x5) = {C1,C2,C5}, r+(x6) = {C1,C2}, r+(x7) = {C1} and r+(x8) = {C1}. Subsequently, we have

f (U,∆+,D) =
∧
{
∨

r+(x) | r+(x) ∈ R(U,∆+,D)}
= (C1 ∨ C2) ∧ (C2 ∨ C3) ∧ (C1 ∨ C2 ∨ C5) ∧ C1

= (C2 ∨ C3) ∧ C1

= (C1 ∧ C2) ∨ (C1 ∧ C3).

So we obtain R(U,∆+,D) = {{C1,C2}, {C1,C3}}.
Secondly, by Theorem 3.6, we have

N f (U,∆,D) = C5 ∧ (
∨

r+(x1)) ∧ (
∨

r+(x6)) ∧ (
∨

r+(x7)) ∧ (
∨

r+(x8))

= C5 ∧ (C2 ∨ C3) ∧ (C1 ∨ C2) ∧ C1

= (C1 ∧ C2 ∧ C5) ∨ (C1 ∧ C3 ∧ C5).

It follows that NR(U,∆,D) = ∅. Therefore, we get R(U,∆+,D) = {{C1,C2}, {C1,C3}}.

Example 3.8 illustrates how to compute attribute reducts of dynamic covering decision information

systems by Algorithms 2.9 and 3.7. We see that the incremental algorithm is more effective than the non-

incremental algorithm for attribute reduction of consistent and inconsistent dynamic covering decision

information systems.

In practical situations, there are a lot of dynamic covering decision information systems caused by

deleting attributes, and we study attribute reduction of covering decision information systems when delet-

ing attributes as follows.

Definition 3.9 Let (U,∆,D) and (U,∆−,D) be covering decision information systems, where U = {x1, x2,

..., xn}, ∆ = {C1,C2, ...,Cm}, and ∆− = {C1,C2, ...,Cm−1}. Then (U,∆−,D) is called a dynamic covering

decision information system of (U,∆,D).

By Definition 3.9, we see that (U,∆−,D) is consistent or inconsistent when deleting Cm from (U,∆,D)

since (U,∆,D) is a consistent covering decision information system. Furthermore, we notice that (U,∆−,D)

is inconsistent when deleting Cm from (U,∆,D) since (U,∆,D) is an inconsistent covering decision infor-

mation system. In the following, we study two types of dynamic covering decision information systems

when deleting attributes as follows: (1)(U,∆−,D) is a consistent covering decision information system;

(2)(U,∆−,D) is an inconsistent covering decision information system.

Example 3.10 (Continuation from Examples 2.10) (1) Let (U,∆,D) and (U,∆−,D) be covering decision

information systems, where U = {x1, x2, ..., x8}, ∆ = {C1,C2,C3,C4,C5}, ∆− = {C1,C2,C3,C4}, and

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

D = {{x1, x2, x3}, {x4, x5, x6}, {x7, x8}}, where

C1 = {{x1, x2}, {x2, x3, x4}, {x3}, {x4}, {x5, x6}, {x6, x7, x8}};
C2 = {{x1, x3, x4}, {x2, x3}, {x4, x5}, {x5, x6}, {x6}, {x7, x8}};
C3 = {{x1}, {x1, x2, x3}, {x2, x3}, {x3, x4, x5, x6}, {x5, x7, x8}};
C4 = {{x1, x2, x4}, {x2, x3}, {x4, x5, x6}, {x6}, {x7, x8}};
C5 = {{x1, x2, x3}, {x4}, {x5, x6}, {x5, x6, x8}, {x4, x7, x8}}.

By Definition 3.9, we see that (U,∆−,D) is a dynamic covering decision information system of (U,∆,D).

Especially, we observe that (U,∆,D) and (U,∆−,D) are consistent covering decision information systems.

(2) Let (U,∆,D) and (U,∆−,D) be covering decision information systems, where U = {x1, x2, ..., x8},
∆ = {C1,C2,C3,C4}, ∆− = {C1,C2,C3}, and D = {{x1, x2, x3}, {x4, x5, x6}, {x7, x8}}. By Definition 3.9, we

see that (U,∆−,D) is a dynamic covering decision information system of (U,∆,D). Specially, we observe

that (U,∆,D) and (U,∆−,D) are inconsistent covering decision information systems.

Suppose (U,∆,D) and (U,∆−,D) are covering decision information systems, where U = {x1, x2, ..., xn},
∆ = {C1,C2, ...,Cm}, and ∆− = {C1,C2, ...,Cm−1}, A∆ = {C ∈ ∪∆ | ∃D j ∈ D , s.t. C ⊆ D j}, r(x) = {C ∈
∆ | ∃C ∈ A∆, s.t. x ∈ C ∈ C }, and r−(x) = {C ∈ ∆− | ∃C ∈ A∆− , s.t. x ∈ C ∈ C }.

Theorem 3.11 Let (U,∆,D) and (U,∆−,D) be covering decision information systems, where U = {x1, x2,

..., xn}, ∆ = {C1,C2, ...,Cm}, and ∆− = {C1,C2, ...,Cm−1}. Then we have

r−(x) =


r(x)\{Cm}, if x ∈ ∪ACm ;

r(x), otherwise.

Proof: By Definitions 2.8, for any x ∈ U, we have r(x) = {C ∈ ∆ | ∃C ∈ A∆, s.t. x ∈ C ∈ C }, and

r−(x) = {C ∈ ∆− | ∃C ∈ A∆− , s.t. x ∈ C ∈ C }. If Cm ∈ r(x), then we have r−(x) = r(x)\{Cm}. After that,

if Cm < r(x), then we have r−(x) = r(x). Therefore, we have r−(x) = r(x)\{Cm}. �
Theorem 3.11 illustrates the relationship between r(x) of (U,∆,D) and r−(x) of (U,∆−,D). Con-

cretely, we construct the related set r−(x) on the basis of the related set r(x), which reduces time com-

plexity of computing the related families for attribute reduction of dynamic covering decision information

systems.

Theorem 3.12 Let (U,∆,D) and (U,∆−,D) be covering decision information systems, where U = {x1, x2,

..., xn}, ∆ = {C1,C2, ...,Cm}, and ∆− = {C1,C2, ...,Cm−1}. If POS ∪∆−(D) = POS ∪∆(D), then we have

R(U,∆−,D) = {∆i | Cm < ∆i ∈ R(U,∆,D)}.

Proof: The proof is straightforward by Definition 2.6.�
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Theorem 3.12 illustrates the relationship between R(U,∆−,D) of (U,∆,D) and R(U,∆,D) of (U,∆−,
D), and we have R(U,∆−,D) = {∆i | Cm < ∆i ∈ R(U,∆,D)} when POS ∪∆−(D) = POS ∪∆(D). Fur-

thermore, each element of R(U,∆,D) which does not contain Cm belongs to R(U,∆−,D), so there is no

need of computation if we want to get only a reduct of (U,∆−,D), which reduces time complexities of

computing attribute reducts of dynamic covering decision information systems.

Theorem 3.13 Let (U,∆,D) and (U,∆−,D) be covering decision information systems, where U = {x1, x2,

..., xn}, ∆ = {C1,C2, ...,Cm}, and ∆− = {C1,C2, ...,Cm−1}. If POS ∪∆−(D) , POS ∪∆(D), then we have

r(x) = {Cm} for x ∈ POS ∪∆(D)\POS ∪∆−(D). Especially, we get Cm ∈ 4i for any 4i ∈ R(U,∆,D).

Proof: The proof is straightforward by Definition 2.8.�

Theorem 3.13 illustrates some properties of the related family R(U,∆,D) when POS ∪∆−(D) , POS ∪∆(D).

Especially, there is no direct relationship between R(U,∆,D) and R(U,∆−,D), and we should compute

R(U,∆−, D) by definition 2.8 after constructing the related family R(U,∆−,D), which reduces time com-

plexities of computing attribute reducts of dynamic covering decision information systems.

Theorem 3.14 Let (U,∆,D) and (U,∆−,D) be covering decision information systems, where U = {x1, x2,

..., xn}, ∆ = {C1,C2, ...,Cm}, and ∆− = {C1,C2, ...,Cm−1}, and f (U,∆−,D) =
∧{∨ r−(x) | r−(x) ∈

R(U,∆−,D)} =
∨l

i=1{
∧

∆i | ∆i ⊆ ∆−}. If POS ∪∆−(D) , POS ∪∆(D), then we have R(U,∆−,D) =

{∆1,∆1, ...,∆l} for (U,∆−,D).

Proof: The proof is straightforward by Definition 2.8.�

We provide an incremental algorithm for computing attribute reducts of dynamic covering decision

information systems as follows.

Algorithm 3.15 (Incremental Algorithm of Computing R(U,∆−,D) of (U,∆−, D))

Step 1: Input (U,∆−,D);

Step 2: Construct POS ∪∆−(D);

Step 3: Compute R(U,∆−,D) = {r−(x) | x ∈ POS ∪∆−(D)}, where

r−(x) =


r(x) \ {Cm}, if x ∈ ∪ACm ;

r(x), otherwise.

Step 4: Compute R(U,∆−,D) by Theorems 3.12 and 3.14;

Step 5: Output R(U,∆−,D).

We employ an example to illustrate how to construct attribute reducts of dynamic covering decision

information systems by Algorithm 3.15 as follows.
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Example 3.16 (Continuation from Example 3.8) (1) By Definition 2.8, firstly, we have r−(x1) = {C1,C3}, r−(x2)

= {C1,C2,C3,C4}, r−(x3) = {C1,C2,C3,C4}, r−(x4) = {C1,C2,C4}, r−(x5) = {C1,C2,C4}, r−(x6) = {C1,

C2,C4}, r−(x7) = {C2,C4} and r−(x8) = {C2,C4}. Secondly, we derive

f (U,∆−,D) =
∧
{
∨

r−(x) | r−(x) ∈ R(U,∆,D)}
= (C1 ∨ C3) ∧ (C2 ∨ C4)

= (C1 ∧ C2) ∨ (C1 ∧ C4) ∨ (C2 ∧ C3) ∨ (C3 ∧ C4),

and R(U,∆−,D) = {{C1,C2}, {C1,C4}, {C2,C3}, {C3,C4}}. Thirdly, by Theorem 3.12, we get R(U,∆−,D) =

{{C1,C2}, {C1,C4}, {C2,C3}, {C3,C4}}.
(2) By Definition 2.8, firstly, we have r−(x1) = {C2,C3}, r−(x2) = ∅, r−(x3) = ∅, r−(x4) = {C1,C2}, r−(x5) =

{C1,C2}, r−(x6) = {C1,C2}, r−(x7) = {C1} and r−(x8) = {C1}. Secondly, we obtain

f (U,∆−,D) =
∧
{
∨

r−(x) | r−(x) ∈ R(U,∆,D)}
= (C2 ∨ C3) ∧ (C1 ∨ C2) ∧ C1

= (C2 ∨ C3) ∧ C1

= (C1 ∧ C2) ∨ (C1 ∧ C3),

and R(U,∆−,D) = {{C1,C2}, {C1,C3}}. Thirdly, by Theorem 3.14, we have R(U,∆−,D) = {{C1,C2},
{C1,C3}}.

Example 3.16 illustrates how to compute attribute reducts of dynamic covering decision information

systems when deleting attributes by Algorithms 2.9 and 3.14. We see that the incremental algorithm is

more effective than the non-incremental algorithm for attribute reduction of consistent and inconsistent

dynamic covering decision information systems.

4 Heuristic algorithms for attribute reduction of dynamic covering deci-
sion information systems

In this section, we present heuristic algorithms for computing attribute reducts of dynamic covering

decision information systems with variations of attribute sets.

Suppose (U,∆,D) is a covering decision information system, where U = {x1, x2, ..., xn}, ∆ = {C1,C2, ...,

Cm}, D = {D1,D2, ...,Dk}, R(U,∆,D) = {r(x) | x ∈ POS ∪∆(D)}, S R(U,∆,D) = {r(x) ∈ R(U,∆,D) | x ∈
POS ∪∆(D) ∧ (∀y ∈ POS ∪∆(D), r(y) * r(x) ∧ r(y) ∈ R(U,∆,D))}, and ‖C ‖ denotes the number of times

for a covering C appeared in S R(U,∆,D).

Algorithm 4.1 (Heuristic Algorithm of Computing a Reduct of (U,∆,D))(NIHA).

Step 1: Input (U,∆,D);
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Step 2: Construct POS ∪∆(D) =
⋃{POS ∪∆(Di) | Di ∈ D};

Step 3: Compute R(U,∆,D) = {r(x) | x ∈ POS ∪∆(D)};
Step 4: Construct a reduct 4∗ = {Ci1 ,Ci2 , ...,Ci j}, where S R1(U,∆,D) = S R(U,∆,D), ‖Ci1‖ =

max{‖Ci‖ | Ci ∈ r(x) ∈ S R1(U,∆,D)}; S R2(U,∆,D) = {r(x) ∈ S R(U,∆,D) | Ci1 < r(x)}, ‖Ci2‖ =

max{‖Ci‖ | Ci ∈ r(x) ∈ S R2(U,∆,D)}; S R3(U,∆,D) = {r(x) ∈ S R(U,∆,D) | Ci1 < r(x) ∨ Ci2 < r(x)},
‖Ci3‖ = max{‖Ci‖ | Ci ∈ r(x) ∈ S R3(U,∆,D)}; ...; S R j(U,∆,D) = {r(x) ∈ S R(U,∆,D) | Ci1 < r(x)∨Ci2 <

r(x) ∨ ... ∨ Ci j−1 < r(x)}, ‖Ci j‖ = max{‖Ci‖ | Ci ∈ r(x) ∈ S R j(U,∆,D)}, and S R(U,∆,D) = {r(x) | Ci1 ∈
r(x) ∨ Ci2 ∈ r(x) ∨ ... ∨ Ci j ∈ r(x)};

Step 5: Output the reduct 4∗.

By Algorithm 4.1, we observe that constructing all attribute reducts of covering decision information

systems by Algorithm 2.9 is NP hard problem, and it is enough to compute a reduct for covering decision

information systems by Algorithm 4.1. Furthermore, if there exist two coverings Ci and C j such that

‖Ci‖ = ‖C j‖ = max{‖Ci‖ | Ci ∈ r(x) ∈ S Rk(U,∆,D)}, then we select ‖Ci‖ = max{‖Ci‖ | Ci ∈ r(x) ∈
S Rk(U,∆,D)} or ‖C j‖ = max{‖Ci‖ | Ci ∈ r(x) ∈ S Rk(U,∆,D)}.

Example 4.2 (Continuation from Example 2.10) (1) In Example 2.10(1), we derive S R(U,∆,D) = {{C1,C3,

C5}, {C2,C4}}. By Algorithm 4.1, firstly, we obtain S R1(U,∆,D) = {{C1,C3,C5}, {C2,C4}} and ‖C1‖ =

max{‖Ci‖ | Ci ∈ r(x) ∈ S R1(U,∆,D)}. Secondly, we get S R2(U,∆,D) = {{C2,C4}}, and ‖C2‖ =

max{‖Ci‖ | Ci ∈ r(x) ∈ S R2(U,∆,D)}. Finally, we have a reduct 4∗ = {C1,C2} of (U,∆,D).

(2) In Example 2.10(2), we derive S R(U,∆,D) = {{C2,C3}, {C1}}. By Algorithm 4.1, firstly, we obtain

S R1(U,∆,D) = {{C2,C3}, {C1}} and ‖C1‖ = max{‖Ci‖ | Ci ∈ r(x) ∈ S R1(U,∆,D)}. Secondly, we get

S R2(U,∆,D) = {{C2,C3}}, and ‖C2‖ = max{‖Ci‖ | Ci ∈ r(x) ∈ S R2(U,∆,D)}. Finally, we have a reduct

4∗ = {C1,C2} of (U,∆,D).

Suppose (U,∆+,D) and (U,∆,D) are covering decision information systems, where U = {x1, x2, ..., xn},
∆ = {C1,C2, ...,Cm}, and ∆+ = {C1,C2, ...,Cm,Cm+1}, D = {D1,D2, ...,Dk}, R(U,∆+,D) = {r+(x) | x ∈
POS ∪∆+(D)}, S R(U,∆+,D) = {r+(x) ∈ R(U,∆+,D) | x ∈ POS ∪∆+(D) ∧ (∀y ∈ POS ∪∆+(D), r+(y) *

r+(x) ∧ r+(y) ∈ R(U,∆+,D))}, and ‖C ‖ denotes the number of times for a covering C appeared in

S R(U,∆+,D).

Algorithm 4.3 (Heuristic Algorithm of Computing a Reduct of (U,∆+,D))(IHAA)

Step 1: Input (U,∆+,D);

Step 2: Construct POS ∪∆+(D);

Step 3: Compute R(U,∆+,D) = {r+(x) | x ∈ POS ∪∆+(D)}, where

r+(x) =


r(x) ∪ {Cm+1}, if x ∈ ∪ACm+1 ;

r(x), otherwise.
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Step 4: Construct a reduct 4∗+ = {Ci1 ,Ci2 , ...,Ci j}, where S R1(U,∆+,D) = S R(U,∆+,D), ‖Ci1‖ =

max{‖Ci‖ | Ci ∈ r+(x) ∈ S R1(U,∆+,D)}; S R2(U,∆+,D) = {r+(x) ∈ S R(U,∆+,D) | Ci1 < r+(x)}, ‖Ci2‖ =

max{‖Ci‖ | Ci ∈ r+(x) ∈ S R2(U,∆+,D)}; S R3(U,∆+,D) = {r+(x) ∈ S R(U,∆+,D) | Ci1 < r+(x) ∨ Ci2 <

r+(x)}, ‖Ci3‖ = max{‖Ci‖ | Ci ∈ r+(x) ∈ S R3(U,∆+,D)}; ...; S R j(U,∆+,D) = {r+(x) ∈ S R(U,∆+,D) |
Ci1 < r+(x) ∨ Ci2 < r+(x) ∨ ... ∨ Ci j−1 < r+(x)}, ‖Ci j‖ = max{‖Ci‖ | Ci ∈ r+(x) ∈ S R j(U,∆+,D)}, and

S R(U,∆+,D) = {r+(x) | Ci1 ∈ r+(x) ∨ Ci2 ∈ r+(x) ∨ ... ∨ Ci j ∈ r+(x)};
Step 5: Output the reduct 4∗+.

In Algorithm 4.3, there are two situations for constructing reducts of dynamic covering decision infor-

mation systems with immigration of attributes as follows: (1) if we have POS ∪∆+(D) = POS ∪∆(D), then

a reduct of (U,∆,D) belongs to R(U,∆+,D); (2) if we have POS ∪∆+(D) , POS ∪∆(D), then we compute

a reduct by Algorithm 4.3. Furthermore, if there are two coverings Ci and C j such that ‖Ci‖ = ‖C j‖ =

max{‖Ci‖ | Ci ∈ r+(x) ∈ S Rk(U,∆+,D)}, then we select ‖Ci‖ = max{‖Ci‖ | Ci ∈ r+(x) ∈ S Rk(U,∆+,D)}
or ‖C j‖ = max{‖Ci‖ | Ci ∈ r+(x) ∈ S Rk(U,∆+,D)}.

Example 4.4 (Continuation from Example 3.8) (1) In Example 3.8(1), we have S R(U,∆+,D) = {{C1,C3,

C5}, {C1,C2,C4,C5}, {C2,C4,C6}}. By Algorithm 4.3, firstly, we obtain S R1(U,∆+,D) = {{C1,C3, C5},
{C1,C2,C4,C5}, {C2,C4,C6}} and ‖C1‖ = max{‖Ci‖ | Ci ∈ r+(x) ∈ S R1(U,∆+,D)}. Secondly, we obtain

S R2(U,∆+,D) = {{C2,C4,C6}}, ‖C2‖ = max{‖Ci‖ | Ci ∈ r+(x) ∈ S R2(U,∆+,D)}. Finally, we get a reduct

4∗+ = {C1,C2} of (U,∆+,D).

(2) In Example 3.8(2), we get S R(U,∆+,D) = {{C1}, {C2,C3}}. By Algorithm 4.3, firstly, we obtain

S R1(U,∆+,D) = {{C1}, {C2,C3}} and ‖C1‖ = max{‖Ci‖ | Ci ∈ r+(x) ∈ S R1(U,∆+,D)}. Secondly, we get

S R2(U,∆+,D) = {{C2,C3}}, ‖C2‖ = max{‖Ci‖ | Ci ∈ r+(x) ∈ S R2(U,∆+,D)}. Finally, we have a reduct

4∗+ = {C1,C2} of (U,∆+,D).

Suppose (U,∆−,D) and (U,∆,D) are covering decision information systems, where U = {x1, x2, ..., xn},
∆ = {C1,C2, ...,Cm}, and ∆− = {C1,C2, ...,Cm−1}, D = {D1,D2, ...,Dk}, R(U,∆−,D) = {r−(x) | x ∈
POS ∪∆−(D)}, S R(U,∆−,D) = {r−(x) ∈ R(U,∆−,D) | x ∈ POS ∪∆−(D) ∧ (∀y ∈ POS ∪∆+(D), r−(y) *

r−(x) ∧ r−(y) ∈ R(U,∆−,D))}, and ‖C ‖ denotes the number of times for a covering C appeared in

S R(U,∆−,D).

Algorithm 4.5 (Heuristic Algorithm of Computing a Reduct of (U,∆−,D))(IHAD)

Step 1: Input (U,∆−,D);

Step 2: Construct POS ∪∆−(D);

Step 3: Compute R(U,∆−,D) = {r−(x) | x ∈ POS ∪∆−(D)}, where

r−(x) =


r(x) \ {Cm}, if x ∈ ∪ACm ;

r(x), otherwise.
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Step 4: Construct a reduct 4∗− = {Ci1 ,Ci2 , ...,Ci j}, where S R1(U,∆−,D) = S R(U,∆−,D), ‖Ci1‖ =

max{‖Ci‖ | Ci ∈ r−(x) ∈ R1(U,∆−,D)}; S R2(U,∆−,D) = {r−(x) ∈ S R(U,∆−,D) | Ci1 < r−(x)}, ‖Ci2‖ =

max{‖Ci‖ | Ci ∈ r−(x) ∈ S R2(U,∆−,D)}; S R3(U,∆−,D) = {r−(x) ∈ S R(U,∆−,D) | Ci1 < r−(x) ∨ Ci2 <

r−(x)}, ‖Ci3‖ = max{‖Ci‖ | Ci ∈ r−(x) ∈ S R3(U,∆−,D)}; ...; S R j(U,∆−,D) = {r−(x) ∈ S R(U,∆−,D) |
Ci1 < r−(x) ∨ Ci2 < r−(x) ∨ ... ∨ Ci j−1 < r−(x)}, ‖Ci j‖ = max{‖Ci‖ | Ci ∈ r−(x) ∈ S R j(U,∆−,D)}, and

S R(U,∆−,D) = {r−(x) | Ci1 ∈ r−(x) ∨ Ci2 ∈ r−(x) ∨ ... ∨ Ci j ∈ r−(x)};
Step 5: Output the reduct 4∗−.

In Algorithm 4.5, we see that there are two situations for constructing reducts of dynamic covering

decision information systems with emigration of attributes as follows: (1) if we have POS ∪∆−(D) =

POS ∪∆(D), then a reduct of (U,∆,D) belongs to R(U,∆−,D); (2) if we have POS ∪∆−(D) , POS ∪∆(D),

then we compute a reduct by Algorithm 4.5. Furthermore, if there exist two coverings Ci and C j such that

‖Ci‖ = ‖C j‖ = max{‖Ci‖ | Ci ∈ r−(x) ∈ S Rk(U,∆−,D)}, then we select ‖Ci‖ = max{‖Ci‖ | Ci ∈ r−(x) ∈
S Rk(U,∆−,D)} or ‖C j‖ = max{‖Ci‖ | Ci ∈ r−(x) ∈ S Rk(U,∆−,D)}.

Example 4.6 (Continuation from Example 3.16) (1) In Example 3.16(1), we derive S R(U,∆−,D) =

{{C1,C3}, {C2,C4}}. By Algorithm 4.5, firstly, we obtain S R1(U,∆−,D) = {{C1,C3}, {C2,C4}} and ‖C1‖ =

max{‖Ci‖ | Ci ∈ r−(x) ∈ S R1(U,∆−,D)}. Secondly, we have S R2(U,∆−,D) = {{C2,C4}}, ‖C2‖ =

max{‖Ci‖ | Ci ∈ r−(x) ∈ S R2(U,∆−,D)}. Finally, we get a reduct 4∗− = {C1,C2} of (U,∆−,D).

(2) In Example 3.16(2), we have S R(U,∆−,D) = {{C1}, {C2,C3}}. By Algorithm 4.5, we firstly obtain

S R1(U,∆−,D) = {{C1}, {C2,C3}} and ‖C1‖ = max{‖Ci‖ | Ci ∈ r−(x) ∈ S R1(U,∆−,D)}. Secondly, we get

S R2(U,∆−,D) = {{C2,C3}}, ‖C2‖ = max{‖Ci‖ | Ci ∈ r−(x) ∈ S R2(U,∆−,D)}. Finally, we obtain a reduct

4∗− = {C1,C2} of (U,∆−,D).

5 Experimental analysis

In this section, we perform experiments to illustrate the effectiveness of Algorithms 4.1, 4.3 and 4.5

for computing attribute reducts of dynamic covering decision information systems with immigration and

emigration of attributes.

To test Algorithms 4.1, 4.3 and 4.5, we converted eight data sets downloaded from UCI and depicted

by Table 1 into covering decision information systems. Concretely, we derive a covering and a partition by

a conditional attribute and a decision attribute, respectively. For the category attribute, we classify objects

with the same attribute value into a block. For the numerical attribute, we classify two objects into a block

if the Euclid Distance between them is less than 0.05 after normalization processing. Because the purpose

of the experiment is to test the efficiency of Algorithms 4.1, 4.3 and 4.5 for attribute reduction in dynamic

covering decision information systems, we do not discuss which is the best way to transform data sets into

covering decision information systems. Especially, we see that {(Ui,∆i,Di) | 1 ≤ i ≤ 4} are consistent
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covering decision information systems, and {(Ui,∆i,Di) | 5 ≤ i ≤ 8} are inconsistent covering decision

information systems. Moreover, we conducted all computations on a PC with a Intel(R) Dual-Core(TM)

i7-7700K CPU @ 4.20 GHZ 4.20 GHZ and 32 GB memory, running 64-bit Windows 10; the software

was 64-bit Matlab R2016a.

Table 1: Data sets for experiments.
No. Name Samples Conditional Attributes Decision Attribute
1 Wine 178 13 1
2 Breast Cancer Wisconsin(wdbc) 569 30 1
3 Seismic-Bumps 2584 18 1
4 Abalone 4177 8 1
5 Car Evaluation 1728 6 1
6 Chess (King-Rook vs. King-Pawn) 3196 36 1
7 Optical Recognition of Handwritten Digits 5620 64 1
8 Letter Recognition 20000 16 1

5.1 Compare effectiveness of computing attribute reducts using Algorithms 4.1 and 4.3

In this section, we construct attribute reducts of dynamic covering decision information systems when

adding attributes with Algorithms 4.1 and 4.3, and compare their effectiveness of computing attribute

reducts in dynamic covering decision information systems.

Firstly, we compare the times of computing a reduct using Algorithm 4.1 with those using Algorithm

4.3 in dynamic covering decision information systems when adding an attribute. Concretely, we perform

each experiment ten times, and show all times of computing attribute reducts of dynamic covering decision

information systems in Table 2. For instance, we have the computation times {0.5456, 0.5511, 0.5527, 0.5398, 0.5486, 0.5442, 0.5394, 0.5478, 0.5411, 0.5561}
and {0.1510, 0.1491, 0.1476, 0.1486, 0.1480, 0.1520, 0.1477, 0.1476, 0.1494, 0.1828} for constructing reducts

by Algorithms 4.1 and 4.3, respectively, in (U1,∆
+
1 ,D1). We see that the times of computing a reduct us-

ing Algorithm 4.1 are larger than those using Algorithm 4.3 in (Ui,∆
+
i ,Di). For example, we have the

computation times 0.5456 ≥ 0.1510, 0.5511 ≥ 0.1491, 0.5527 ≥ 0.1476, 0.5398 ≥ 0.1486, 0.5486 ≥
0.1480, 0.5442 ≥ 0.1520, 0.5394 ≥ 0.1477, 0.5478 ≥ 0.1476, 0.5411 ≥ 0.1494 and 0.5561 ≥ 0.1828

when computing a reduct in (U1,∆
+
1 ,D1).

Secondly, we employ Figure 1 to illustrate the effectiveness of Algorithms 4.1 and 4.3. For example,

Figure 1(i) illustrates the times of computing a reduct with Algorithms 4.1 and 4.3 in (Ui,∆
+
i ,Di). In each

figure, NIHA and IHAA mean Algorithms 4.1 and 4.3, respectively; j stands for the j-th experiment on

the dynamic covering decision information system (Ui,∆
+
i ,Di) in X Axis, where j = 1, 2, ..., 10, while

the y-coordinate stands for the time to construct a reduct. Therefore, Algorithm 4.3 performs better than

Algorithm 4.1 in dynamic covering decision information systems when adding attributes.
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Table 2: Computational times using NIHA and IHAA in {(Ui,∆
+
i ,Di) | 1 ≤ i ≤ 8}.

No \ t(s) Algo. 1 2 3 4 5 6 7 8 9 10 t SD

(U1,∆
+
1 ,D1) NIHA 0.5456 0.5511 0.5527 0.5398 0.5486 0.5442 0.5394 0.5478 0.5411 0.5561 0.5466 0.0057

IHAA 0.1510 0.1491 0.1476 0.1486 0.1480 0.1520 0.1477 0.1476 0.1494 0.1828 0.1524 0.0108

(U2,∆
+
2 ,D2) NIHA 12.2361 12.1000 12.2665 12.1443 12.0938 12.0783 12.1472 12.1665 12.1751 12.1190 12.1527 0.0611

IHAA 2.3138 2.3140 2.3219 2.3546 2.3145 2.3045 2.3005 2.2972 2.3155 2.3198 2.3156 0.0159

(U3,∆
+
3 ,D3) NIHA 15.7149 15.7251 15.7259 15.8077 15.6864 15.7181 15.7144 15.6278 15.7817 15.6703 15.7172 0.0513

IHAA 0.4880 0.5055 0.4843 0.4937 0.5091 0.5254 0.4962 0.5098 0.5082 0.4931 0.5013 0.0125

(U4,∆
+
4 ,D4) NIHA 71.1000 71.1486 71.0970 71.1462 71.0236 71.5354 71.0191 70.6481 70.7136 71.0167 71.0448 0.2442

IHAA 12.1369 12.1072 12.1357 12.1055 12.0998 12.0906 12.1626 12.1099 12.1588 12.0843 12.1191 0.0276

(U5,∆
+
5 ,D5) NIHA 0.5205 0.5167 0.5064 0.5094 0.5061 0.5006 0.5177 0.5030 0.5107 0.5005 0.5092 0.0072

IHAA 0.1010 0.1051 0.1055 0.1004 0.1013 0.1017 0.1010 0.1004 0.1004 0.1004 0.1017 0.0019

(U6,∆
+
6 ,D6) NIHA 7.1708 7.1779 7.1221 7.1867 7.1616 7.2006 7.1731 7.1350 7.3827 7.1822 7.1893 0.0719

IHAA 0.2026 0.2000 0.2028 0.2133 0.1942 0.2007 0.1973 0.1975 0.1999 0.1986 0.2007 0.0051

(U7,∆
+
7 ,D7) NIHA 42.1162 42.0302 42.1370 42.2014 42.1242 42.1460 42.2470 42.1718 42.1203 42.0872 42.1381 0.0599

IHAA 1.1013 1.0864 1.0815 1.1246 1.1178 1.0869 1.0932 1.1178 1.1056 1.0937 1.1009 0.0151

(U8,∆
+
8 ,D8) NIHA 54.0630 54.1615 54.0686 54.1015 54.0985 54.0088 54.1642 53.9911 53.9212 54.1004 54.0679 0.0761

IHAA 3.8415 3.8329 3.8280 3.8307 3.8462 3.8390 3.8444 3.8290 3.8315 3.8338 3.8357 0.0066
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Figure 1: Computational times using Algorithms 4.1 and 4.3 in {(Ui,∆
+
i ,Di) | 1 ≤ i ≤ 8}.
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Figure 2: Average computational times using Algorithms 4.1 and 4.3 in {(Ui,∆
+
i ,Di) | 1 ≤ i ≤ 8}.

Thirdly, we show the average time t of ten experimental results in the 13-th column of Table 2 and
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Figure 2, which illustrates that Algorithm 4.3 executes faster than Algorithm 4.1 in dynamic covering

decision information systems with immigrations of attributes. In Figure 2, NIHA and IHAA mean Algo-

rithms 4.1 and 4.3, respectively; i stands the experiment on the dynamic covering decision information

system (Ui,∆
+
i ,Di) in X Axis, where i = 1, 2, ..., 8, while the y-coordinate stands for the time to construct

a reduct. From the last column of Table 2, we get the standard deviations(SD) of ten computational times

using Algorithms 4.1 and 4.3 in the dynamic covering decision information system (Ui,∆
+
i ,Di)(1 ≤ i ≤ 8),

which illustrate that Algorithms 4.1 and 4.3 are stable for computing attribute reducts of dynamic covering

decision information systems with emigrations of attributes.

Remark: In this experiment, we take eight covering decision information systems induced by data

sets of UCI as dynamic covering decision information systems, and get the original covering decision in-

formation system by deleting the last covering from a dynamic covering decision information system. For

example, we transformed Wine data set into a dynamic covering decision information system (U1,∆
+
1 ,D1),

and get the original covering decision information system (U1,∆1,D1) by deleting C13 from (U1,∆
+
1 ,D1),

where |U1| = 178, |∆+
1 | = 13, |∆1| = 12 and |D1| = 1.

5.2 Compare effectiveness of computing attribute reducts using Algorithms 4.1 and 4.5

In this section, we construct attribute reducts of dynamic covering decision information systems when

deleting attributes with Algorithms 4.1 and 4.5, and compare their effectiveness of computing attribute

reducts in dynamic covering decision information systems.

Firstly, we compare the times of computing a reduct using Algorithm 4.1 with those using Algorithm

4.5 in dynamic covering decision information systems when deleting an attribute. Concretely, we perform

each experiment ten times and show all times of constructing attribute reducts of dynamic covering deci-

sion information systems in Table 3. For instance, we have the computation times {0.7177, 0.5120, 0.5026, 0.4946, 0.4931, 0.4897, 0.5035, 0.4916, 0.4909, 0.4861}
and {0.1050, 0.0977, 0.1069, 0.1133, 0.0993, 0.0967, 0.0972, 0.0970, 0.0978, 0.0969} for computing reducts

by Algorithms 4.1 and 4.5, respectively, in (U1,∆
−
1 ,D1). We observe that the times of computing a reduct

using Algorithm 4.1 are larger than those using Algorithm 4.5 in (Ui,∆
−
i ,Di). For example, we see the

computation times 0.1050 ≤ 0.7177, 0.0977 ≤ 0.5120, 0.1069 ≤ 0.5026, 0.1133 ≤ 0.4946, 0.0993 ≤
0.4931, 0.0967 ≤ 0.4897, 0.0972 ≤ 0.5035, 0.0970 ≤ 0.4916, 0.0978 ≤ 0.4909, and 0.0969 ≤ 0.4861

when computing a reduct in (U1,∆
−
1 ,D1).

Secondly, we employ Figure 3 to illustrate the effectiveness of Algorithms 4.1 and 4.5. For example,

Figure 3(i) illustrates the times of computing a reduct using Algorithms 4.1 and 4.5 in dynamic covering

decision information systems (Ui,∆
−
i ,Di). In each figure, NIHA and IHAD mean Algorithms 4.1 and

4.5, respectively; j stands for the j-th experiment in the dynamic covering decision information system

(Ui,∆
−
i ,Di) in X Axis, where j = 1, 2, ..., 10, while the y-coordinate stands for the time to construct a

reduct. Therefore, Algorithm 4.5 performs better than Algorithm 4.1 for computing reducts of dynamic

covering decision information systems when deleting attributes.
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Thirdly, we depict the average time t of ten experimental results for covering decision information

systems in the 13-th column of Table 3 and Figure 4, which illustrates that Algorithm 4.5 executes faster

than Algorithm 4.1 in dynamic covering decision information systems with emigrations of attributes. In

Figure 4, NIHA and IHAA mean Algorithms 4.1 and 4.3, respectively; i stands the experiment on the

dynamic covering decision information system (Ui,∆
−
i ,Di) in X Axis, where i = 1, 2, ..., 8, while the y-

coordinate stands for the time to construct a reduct. From the last column of Table 3, we get the standard

deviations(SD) of ten computational times using Algorithms 4.1 and 4.5 in the dynamic covering decision

information system (Ui,∆
−
i ,Di), which illustrate that Algorithms 4.1 and 4.5 are stable for computing

attribute reducts of dynamic covering decision information systems with emigrations of attributes.

Table 3: Computational times using NIHA and IHAD in {(Ui,∆
−
i ,Di) | 1 ≤ i ≤ 8}.

No \ t(s) Algo. 1 2 3 4 5 6 7 8 9 10 t SD

(U1,∆
−
1 ,D1) NIHA 0.7177 0.5120 0.5026 0.4946 0.4931 0.4897 0.5035 0.4916 0.4909 0.4861 0.5182 0.0705

IHAD 0.1050 0.0977 0.1069 0.1133 0.0993 0.0967 0.0972 0.0970 0.0978 0.0969 0.1008 0.0057

(U2,∆
−
2 ,D2) NIHA 11.7085 11.7356 11.6772 11.7660 11.6128 11.6953 11.7016 11.7953 11.6521 11.7422 11.7086 0.0540

IHAD 1.8740 1.8793 1.8742 1.8628 1.8543 1.8580 1.9130 1.9525 1.8774 1.8667 1.8812 0.0299

(U3,∆
−
3 ,D3) NIHA 15.4702 15.3512 15.3561 15.4176 15.5611 15.6066 15.4625 15.3614 15.4634 15.3918 15.4442 0.0870

IHAD 0.2330 0.2302 0.2298 0.2300 0.2323 0.2324 0.2350 0.2355 0.2366 0.2299 0.2325 0.0025

(U4,∆
−
4 ,D4) NIHA 59.2708 59.4960 59.6643 59.4157 59.0895 59.4361 59.3471 59.7387 59.4707 59.6875 59.4616 0.2003

IHAD 0.7984 0.7838 0.7756 0.7955 0.7887 0.7749 0.7742 0.7895 0.8173 0.7774 0.7875 0.0136

(U5,∆
−
5 ,D5) NIHA 0.4130 0.4127 0.4153 0.4121 0.4109 0.4156 0.4092 0.4161 0.4122 0.4168 0.4134 0.0025

IHAD 0.0127 0.0119 0.0121 0.0118 0.0122 0.0119 0.0123 0.0123 0.0125 0.0121 0.0122 0.0003

(U6,∆
−
6 ,D6) NIHA 7.0067 7.0072 6.9822 6.9787 6.9936 7.0719 7.0488 6.9692 6.9778 6.9946 7.0031 0.0331

IHAD 0.0334 0.0335 0.0343 0.0440 0.0340 0.0334 0.0336 0.0331 0.0334 0.0339 0.0347 0.0033

(U7,∆
−
7 ,D7) NIHA 41.2621 41.2001 41.4330 41.2749 41.2382 41.3336 41.5394 41.5857 41.4748 41.4061 41.3748 0.1331

IHAD 0.2605 0.2605 0.2662 0.2579 0.2581 0.2743 0.2704 0.2602 0.2596 0.2643 0.2632 0.0055

(U8,∆
−
8 ,D8) NIHA 50.4549 50.7105 50.5666 50.8127 50.6475 50.4567 50.4641 50.6006 50.6763 50.4885 50.5878 0.1237

IHAD 0.4483 0.4325 0.4369 0.4220 0.4297 0.4242 0.4263 0.4312 0.4254 0.4304 0.4307 0.0076
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Figure 3: Computational times using Algorithms 4.1 and 4.5 in {(Ui,∆
−
i ,Di) | 1 ≤ i ≤ 8}.
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Figure 4: Average computational times using Algorithms 4.1 and 4.5 in {(Ui,∆
−
i ,Di) | 1 ≤ i ≤ 8}.

Remark: In this experiment, we take eight covering decision information systems induced by data

sets of UCI as the original covering decision information systems and get a dynamic covering decision

information system by deleting the last covering from the original covering decision information system.

For example, we transformed Wine data set into a covering decision information system (U1,∆1,D1),

and get a dynamic covering decision information system (U1,∆
−
1 ,D1) by deleting C13 from (U1,∆1,D1),

where |U1| = 178, |∆1| = 13,|∆−1 | = 12 and |D1| = 1.

6 Conclusions

Knowledge reduction of dynamic covering information systems is a significant challenge of covering-

based rough sets. In this paper, firstly, we have analyzed the related families-based mechanisms of con-

structing attribute reducts of dynamic covering decision information systems with variations of attributes

and employed examples to illustrate how to compute attribute reducts of dynamic covering decision in-

formation systems when varying attribute sets. Secondly, we have presented the related families-based

heuristic algorithms for computing attribute reducts of dynamic covering decision information systems

with attribute arriving and leaving and employed examples to demonstrate how to update attribute reducts

with the heuristic algorithms. Finally, we have employed the experimental results to illustrate that the re-

lated families-based incremental approaches are effective and feasible for attribute reduction of dynamic

covering decision information systems.

In the future, we will study knowledge reduction of dynamic covering decision information systems

with variations of object sets. Especially, we will provide effective algorithms for knowledge reduction of

dynamic covering decision information systems when object sets are varying with time.
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