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ABSTRACT
Reward-based e-commerce companies expose thousands of online
o�ers and coupons every day. Customers who signed up for online
coupon services either receive a daily digest email with selected
o�ers or select speci�c o�ers on the company website front-page.
High-quality online discounts are selected and delivered through
these two means by applying a manual process that involves a team
of experts who are responsible for evaluating recency, product
popularity, retailer trends, and other business-related criteria. Such
a process is costly, time-consuming, and not customized on users’
preferences or shopping history. In this work, we propose a content-
based recommender system that streamlines the coupon selection
process and personalizes the recommendation to improve the click-
through rate and, ultimately, the conversion rates. When compared
to the popularity-based baseline, our content-based recommender
system improves F-measures from 0.21 to 0.85 and increases the
estimated click-through rate from 1.20% to 7.80%. The experimental
system is currently scheduled for A/B testing with real customers.

CCS CONCEPTS
•Computingmethodologies→Classi�cation and regression trees;
• Applied computing → Online shopping;

KEYWORDS
Recommender Systems; Personalization; E-commerce o�ers and
coupons
ACM Reference format:
Yandi Xia, Giuseppe Di Fabbrizio, Shikhar Vaibhav, and Ankur Datta. 2017.
A Content-based Recommender System for E-commerce
O�ers and Coupons. In Proceedings of SIGIR eCom 2017, Tokyo, Japan, August
2017, 7 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR eCom 2017, Tokyo, Japan
© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Reward-based e-commerce services are a fast-growing online sector
that provides cashback to subscribers by leveraging discounted
prices from a broad network of a�liated companies.

Typically, a consumer would use the company website to search
for speci�c products, retailers or potentially click on one of the
prominent published o�ers. Shoppers are then redirected to the
websites of the respective retailers. A visit to the merchant’s website
generated by this redirection is de�ned as shopping trip.

At the same time, subscribers receive daily digest email with the
most popular discounts. Figure 1 shows a fragment of a daily digest
email featuring a list of current o�ers and coupons. Both website
and email contents are manually curated by experts focusing on
delivering the highest quality o�ers to customers.

Merchant	A

Merchant	B

Merchant	C

Merchant	D

Merchant	E

Figure 1: Example of email campaign message including of-
fers and coupons.

This manual process is laborious and does not scale well to
millions of online customers who are receiving the same o�er rec-
ommendations regardless of their previous browsing or purchase
history. A recommender system would be able to capture the cus-
tomers’ preferences by optimizing the coupon selection based on
the previous history and the similarity across users and / or items.
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However, compared to traditional recommender systems in other
domains, such as movies [6, 10] and music [16], online o�ers di�er
for a number of reasons: 1) Coupons are highly volatile items only
valid in a limited time span and removed after their expiration
date; 2) Customers using coupons are a�ected by high turnover ; 3)
Users’ population is skewed between a minority of heavy users and
a majority of occasional or light users; and �nally, 4) Online o�ers
are rarely rated like usually happens for movie and music domains.

Consequently, the online discount domain is more prone to the
cold-start problem [4], where there is insu�cient click history for
a new item or, conversely, there is not enough history for a new
subscriber. Matrix factorization methods are less robust to the cold-
start problem [4] and lack the capability to capture the number of
features necessary to model preferences of high volatile items and
large customer populations.

For these reasons, we adopted a content-based �ltering (CBF)
approach [17] where we exploit coupons and customers’ attributes
to build a stochastic classi�cation model that predicts the posterior
probability for a coupon to be clicked by the customer. We rely on
users’ implicit feedback which indirectly express users’ preferences
through behavior like clicking on speci�c o�ers in a ranked list. This
is typically a more noisy signal compared to explicit feedback such
as ratings and reviews, but it is also abundant and with consistent
bias across user’s click-through history [15, 23].

However, click information is more challenging to use since it
does not directly re�ect the users’ satisfaction neither provides
clues about items that are irrelevant (negative feedback) [18] which
is fundamental to build an e�ective discriminative model. In this
paper, we illustrate how to utilize noisy implicit feedback to build
a CFB model for o�ers and coupons recommendations. The main
contributions are the following:

(1) We describe a method to generate negative samples from
the implicit feedback data;

(2) We perform extensive experiments to compare di�erent
learning models;

(3) We demonstrate that our approach is e�ective with respect
to the baseline and the upper-bound baseline.

2 MODELING APPROACHES
We formalize the coupon recommendation problem as a content-
based �ltering [17] with implicit feedback. Let M and N indicate
the number of users and coupons, respectively. For each shopping
trip interaction included in the matrix Y ∈ RM×N , a user ui is
exposed to a number of coupons L and selects a speci�c coupon c j
generating the implicit feedback yui ,c j = 1, and yui ,ck = 0 for all
the other items in the list of length L, where k = {0, 1, . . . ,L − 1}
and k , j. Formally, predicting a user’s shopping trip for an online
o�er requires to estimate the function ŷui ,c j = f (ui , c j |Θ), where
ŷui ,c j is the predicted score for the online interaction (ui , c j ); Θ
represents the model parameters to learn, and f is the mapping
function between the parameters and the predicted scores. The
learning can be done by applying a machine learning classi�cation
algorithm that optimizes an object function such as logistic loss or
cross-entropy loss [12].

However, taking a closer look at the implicit feedback used for
modeling, yui ,ck = 0 does not necessarily mean that the user ui

dislikes the o�ers yui ,ck , but merely indicates the choice preference
in this round of interactions. The user may go back to the o�er list
and select another item which is di�erent from c j . This makes the
prediction modeling challenging since user’s implicit feedback is
noisy and there is a lack of negative feedback. In our case, we only
considered the positive feedback and modeled the shopping trip
predictions as one-class classi�cation (OCC) problem [21], where
we only use the positive samples and arti�cially derive the negative
samples from the user’s shopping history.

To handle the classi�cation task, we experimented with two non-
parametric learning methods that are resilient to noisy features,
robust to outliers, and capable of handling missing features (but
not necessarily robust to noisy labels): 1) Random forests [5] [12,
Chapter 15]; and 2) Gradient boosted trees [9].

2.1 Generating negative samples
When relying on the user’s implicit feedback, an accepted conven-
tion is that any higher ranked item that was not clicked on is likely
less relevant than the clicked ones [20]. In an industrial setting, it
is often the case that neither the coupon rank or the coupon list
exposed to users are available. In this case, it is necessary to derive
“negative shopping trips” (i.e., not relevant coupons) by some other
means. For the negative training and testing sets, we followed the
procedure described below:

For each shopping trip, we extracted the triple: user, coupon, and
click time;

• We retrieved the user’s shopping trip history and select all
the coupons clicked by them up to the current click time.
We call this data set A;

• Given the considered shopping trip click time, we retrieved
all the non-expired coupons at that time. We call this data
set S ;

• We removed all the clicked coupons by the user from the
non-expired coupons set and obtained the data set U =
S −A;

• We uniformly sampled 2, 4, 8, and 9 coupons from U, and
build from each of the sample set a list of negative shopping
trips that would simulate the missing negative sample in
our data set.

Note that we sampled di�erent sizes of negative sets for evaluation
purposes, but we only reported the results for negative sets of size
9 since it is the closest to the real system conditions where the user
is exposed to a list of 10 o�ers and selects one of them.

2.2 Random forests
Random forest (RF) models [5][12, Chapter 15] use bagging tech-
niques to overcome decision trees’s low-bias and high variance
problem. A RF model averages the results of several noisy and rela-
tively unbiased decision trees trained on di�erent parts of the same
training set. The general method to create a RF model follows the
steps below [12, Chapter 15]:

For b = 1, . . . ,B, where B is the total number of bagged tree:
(1) Draw N samples from the training set and build a tree

Tb by recursively apply the steps below for each terminal
node until reaching the minimum node size nmin :
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(a) Randomly selectm features from the total p features,
wherem ≤ p;

(b) Pick the best node split among them features;
(c) Split the selected node into two children nodes;

(2) Save the obtained ensemble tree {Tb }B1
To determine the quality of the node split, either Gini impurity

or cross-entropy measures can be used for the candidate split [12,
Chapter 9]. For a classi�cation task, the prediction is the majority
vote among the results from the tree ensemble. In other terms, if
Ĉb (x ) is the class prediction for the bth random-forest (rf) tree,
then the predicted class is: ĈB

r f (x ) =majority vote{Ĉb (x )}
B
1 .

2.3 Gradient boosted trees
Gradient boosted trees (GBTs) [9] optimize a loss functional: L =
Ey [L(y, F (x) |X)] where F (x) can be a mathematically di�cult to
characterize function, such as a decision tree f (x) over X. The opti-
mal value of the function is expressed as F?(x) =

∑M
m=0 fm (x, a,w),

where f0 (x, a,w) is the initial guess and { fm (x, a,w)}Mm=1 are addi-
tive boosts on x de�ned by the optimization method. The parameter
am of fm (x, a,w) denotes split points of predictor variables and
wm denotes the boosting weights on the leaf nodes of the decision
trees corresponding to the partitioned training set Xj for region j.
To compute F?(x), we need to calculate, for each boosting round
m,

{am ,wm } = argmina,w
N∑
i=1

L(yi , Fm (xi )) (1)

with Fm (x) = Fm−1 (x) + fm (x, am ,wm ). This expression is in-
dicative of a gradient descent step:

Fm (x) = Fm−1 (x) + ρm (−дm (xi )) (2)

where ρm is the step length and
[
∂L(y,F (x))

∂F (x)

]

F (xi )=Fm−1 (xi )
=

дm (xi ) being the search direction. To solve am and wm , we make
the basis functions fm (xi ; a,w) correlate most to −дm (xi ), where
the gradients are de�ned over the training data distribution. In
particular, using Taylor series expansion, we can get closed form
solutions for am and wm – see [7] for details. It can be shown that

am = argmina
N∑
i=1

(−дm (xi ) − ρm fm (xi , a,wm ))2 (3)

and

ρm = argminρ
N∑
i=1

L(yi , Fm−1 (xi ) + ρ fm (xi ; am ,wm )) (4)

which yields,

Fm (x) = Fm−1 (x) + ρm fm (x, am ,wm ) (5)

Each boosting round updates the weightswm, j on the leaves and
helps create a new tree in the next iteration. The optimal selection
of decision tree parameters is based on optimizing the fm (x, a,w)
using a logistic loss. For GBTs, each decision tree is resistant to

imbalance and outliers [12], and F (x) can approximate arbitrarily
complex decision boundaries.

2.4 Popularity-based baseline
To evaluate the contributions of our coupon recommender system, it
is necessary to establish a baseline measure that correlates with the
current recommender system performance. However, the current
coupon recommendation process cannot be evaluated o�ine since
recommendations are done by manually selecting popular retailers
and o�ers. The resulting list of coupons is then exposed to all the
users by either daily email or website front-page visits. All users see
the same list of coupons regardless of their shopping trip history or
preferences. A direct comparison with such a system would require
exposing both recommendation techniques through A/B testing
with real customers.

…....... Jun	07 Jun	08 Jun	09 Jun 10 Jun	11 Jun 12 Jun	13 Jun	14 Jun	15 Jun	16 ….......

Shopping	
trips	
history

Top	N	
most	
clicked	
coupons

Recommend to all members

2017

Mimic 
experts

Figure 2: Popularity-based baseline (PBB) coupon selection
obtained by considering all the valid coupons prior the shop-
ping trip date.

As an alternative approach, we propose an o�ine baseline eval-
uation based on popular coupons, where the popularity is derived
from shopping trips click-through rates. In addition to popularity
criteria, there could be other business reasons for o�er selection
in the current setting, but for baseline and simulation purposes we
have limited the selection to the popularity criteria only.

The assumption is that user-de�ned popularity correlates with
the current recommender system and it is likely to represent an
upper-bound estimation of the performance. At a high-level, we
give two baselines which select the most popular coupons based
only on the past click data (PBB) or only based on the future click
data (God-View PBB), which represents a strong upper bound.

As illustrated in Figure 2, we �rst divide users’ shopping trips into
training and testing partitions with a 90% and 10% ratio, respectively.
For each shopping trip in the shopping trip test set, we performed
the following steps:

• We extracted the shopping trip click date;
• From the shopping trip train set, we extracted all the shop-

ping trips prior the click date with a valid coupon (i.e.,
unexpired coupons at the time of the click date);

• We sorted the obtained list of coupons by click-through
rate and selected the top N popular coupons;

• If the coupon in the test shopping trip is in the top N
most popular coupons (with N = 10), then there would
be a match and the prediction is correct; otherwise the
prediction is wrong.



SIGIR eCom 2017, August 2017, Tokyo, Japan Y. Xia et al., Yandi Xia, Giuseppe Di Fabbrizio, Shikhar Vaibhav, and Ankur Da�a

The general idea is that the customized popularity list simulates
the expert selection by identifying the best o�er for each of the
considered day in the test set. We also de�ne a stronger baseline
where we have access to future click-through information after the
shopping trip under evaluation. By predicting the future, we can
build a baseline which is the upper-bound of the popularity-based
baselines when recommending the same list of o�ers to the whole
user population. We call this baseline God-View PBB (GVPBB).

2.5 Run-time
Figure 3 shows the simpli�ed architecture of the run-time system.
A daily list of thousands of candidate coupons is submitted for
selection to the recommender system. For each member subscribing
to the reward-based e-commerce company, each pair of member
/ o�er is evaluated by the recommender system and scored for
a�nity. The resulting score list is used to rank the predictions
which are then truncated to the top 10 candidates and used either
as personalized email campaigns or personalized front page o�ers.
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Figure 3: Run-time coupons selection and ranking.

3 DATA
We used data collected from customers directly clicking on the
published o�ers, e-shopping at the merchants’ website and conse-
quently adding o�ers, or auto-applying o�ers through browser’s
button extensions.

The data includes historical information about customers’ click-
throughs (i.e., shopping trips) to visit a�liated retailer websites. The
data was sampled across a full year of tra�c and anonymized for
privacy requirements. Table 1 summarizes the distributions of the
various data sets including active members generating shopping
trips, shopping trip counts, clicked coupons, and retailers that issued
the o�er.

Coupons are characterized by a textual descriptions (e.g., “25%
o� Tees Shorts Swim for Women Men Boys and Girls Extra 30% o� Sale
Styles and Extra 50% o� Final Sale Styles”.) and a date range de�n-
ing their validity (e.g., from 12/18/2016 to 12/27/2016). Optionally,
coupons are classi�ed by three categories: 1) percentage discount; 2)
money discount; and / or 3) free shipping o�er for speci�c brands or
products. Additionally, they can directly refer to a speci�c product
or retailer. Retailers’ information includes a business name (e.g.,
Stila Cosmetics) and an optional category (e.g., Health & Beauty)

Table 1: Shopping trips data distribution across di�erent
data sets.

Data set Members Shopping trips Coupons Retailers

Train 448,055 1,037,030 15,276 1,528
Test 49,789 114,300 7594 1,192
Train Negative 358,444 11,666,592 9,705 1,453
Test Negative 39,831 1,285,875 8,190 1,413

Table 2: Data counts and stats for head, torso, and tail sets of
the shopping trips distribution.

Data Members Shopping % Min Max Avg
set trips

Head 25,149 317,623 28.7% 8 1,569 15.79
Torso 132,337 441,533 39.8% 3 7 4.17
Tail 333,686 349,262 31.5% 1 2 1.31

The details about the negative data sets in Table 1 are explained
in the previous Section 2.1.

The number of shopping trips per customers follow the typical
power law probability distribution [1] where the heavy-tailed data
still holds a substantial amount of probability information. Figure 4
shows the probability density function (PDF) p (X ) in blue, the com-
plementary cumulative density function (CCDF) p (X ≥ x ) in red,
and the corresponding power law distribution �t with parameters
xmin = 1 and α = 3.27.

101 102 103

Shopping Trips Frequency

10-8
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100
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(X

),
  
p
(X
≥
x
)

PDF

Fit

CCDF

Fit

Figure 4: Probability density function (p (X ), blue) and com-
plementary cumulative density function (p (X ≥ x ), red)with
power law distribution �t for xmin = 1 and α = 3.27

Based on the shopping trips frequency (see Table 2), we split the
data in three segments: 1) The Head comprising the most active
members with more than 8 shopping trips; 2) the Torso including
the members with a click rate between 2 and 7; and 3) the Tail for
the less active members with 1 or 2 clicks.
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This data partition will be used in the Section 4.2 to evaluate the
user-based cold-start problem.

4 EXPERIMENTS
To build and evaluate random forests, XGBoost, and the baseline
models, we partitioned the data by members using 90% of the pop-
ulation for training and 10% for testing and derived the associated
shopping trips sets. Partitioning by members rather than by shop-
ping trips would increase the chances to capture the model gen-
eralization capabilities, since the shopping trips history of unseen
test users will not be biasing the training data. For the negative
samples, as explained in Section 2.1, we select 9 negative shopping
trips for each positive sample.

To capture the users / coupons a�nity, we experimented with a
number of features involving speci�c users’ and coupons’ attributes,
as well as shopping history features. The following list summarize
them:

• User-based features
– Devices used
– OS systems
– Email domain

• Coupon-based features
– Text description
– Originating retailer
– Retailer’s category
– Discount info (free shipping, dollar o�, percent o�)
– Cashback info

• Shopping trip history-based features
– Times the user has visited this coupon before
– Recent visited retailers
– Recent discount information
– Recent cash back information
– Recent coupon keywords (from descriptions)
– Recent retailer’s categories
– Recent luxury purchases

In the data pre-processing stage, we encoded text as bag of word
frequencies and members’ shopping behavior histories as bag of
frequencies, and categorical features as one-hot vector represen-
tation. All the other features are either binary or numeric values.
Since both RF and XGBoost models are insensitive to monotonic
feature transformations, we avoided numeric standardization and
normalization. We carefully handled the normalization of missing
information and replaced missing text with the label unk and both
categorical and numerical features with 0s. After pre-processing,
the resulting number of features is 45,329. For the XGBoost model,
we ran a partial grid-search optimization to set the most important
hyper-parameters, the maximum tree depth and the number of
estimators, to 15 and 1,000, respectively. We used the scikit-learn
[19] implementation of Random Forest Tree and XGBoost.

4.1 Results
Table 3 shows the experimental results for the machine learning
models and the baselines. We evaluated performance by truncating
the ranked prediction list at 10 items. RFC model could predict
click-through for 96.80% of the tested coupons (accuracy), while the
XGBoost model followed with 95.85% correct click predictions, but

with a substantial higher recall of 0.83. This pushed the XGBoost
predicted click-through rate to 8.30%. Both PBB and GVPBB base-
lines su�er of low recall since the popularity lists, once selected the
shopping trip day, are the same for all the users.

Table 3: Precision (P), recall (R), F-measure (F) and Click-
through rate (CTR) for random forest classi�cation (RFC),
XGBoost, popularity-based baseline (PBB), and God-View
PBB (GVPBB) with 10 maximum coupon recommendations.
Baseline methods are marked with (*).

Model P R F NDCG@10 CTR

PBB* 0.91 0.12 0.21 0.776 1.20%
GVPBB* 0.83 0.34 0.48 0.892 3.40%
XGBoost 0.77 0.83 0.80 0.857 8.30%
RFC 0.93 0.78 0.85 0.969 7.80%

Overall, both RFC and XGBoost outperform the baselines metrics.
In addition to precision, recall, and F-measure, we also report the
Normalized Discounted Cumulative Gain (NDCG) metric [14] for
a list of 10 o�ers generated by combining 1 positive sample with
9 randomly selected negative samples. NDCG is a ranking quality
measure that keeps into consideration the position of the clicked
item. Generally, positive samples should be ranked higher than the
negative ones.

As further validation, we evaluated the quality of the con�dence
scores estimated by the RFC model. Well-calibrated predicted prob-
abilities are fundamental when the classi�cation model scores are
used for ranking [18].

Figure 5: Probability calibration curve for the RFCmodel. X-
axis: mean predicted value; Y-axis: fraction of positive sam-
ples.

The con�dence calibration plot in Figure 5 shows that the RFC
model has a minor bias around a predicted value of 0.2 and 0.6, but
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overall the curve follows the ideal behavior by closely mimicking
the diagonal.

4.2 User-based cold-start evaluation
When new members join a reward-based system or new o�ers are
issued by retailers, recommender systems are a�ect by the sparse-
ness of the new data that compromise prediction performance [19].
To mitigate this problem, a di�erent selection strategy is used for
the tail of the distribution (i.e., hybrid methods) [19]. However,
we rely on the user’s and coupon’s based features to capture in-
formation that may generalize well with minimum shopping trip
history.

We evaluated our RFC model with the three segments of the
shopping trip distribution (see also Section 3). Table 4 shows the
results of such a test.

Table 4: Precision (P), recall (R), F-measure (F), Click-
through rate (CTR), andNDCG@10 for theRFCmodelwhen
testing users in the head, torso, and tail sections of the shop-
ping trip distribution.

Data set P R F NDCG@10 CTR

Head 0.95 0.77 0.85 0.980 7.70%
Torso 0.94 0.79 0.86 0.985 7.90%
Tail 0.90 0.78 0.84 0.976 7.80%

On average, the RCF model is quite robust across the three distri-
bution segments. When analyzing the main feature predictors, the
number of times this user clicked on the coupons before and being a
referred member are the major contributions to the predictions, but
further investigation is necessary to better understand the feature
interaction.

5 RELATEDWORK
A large body of work on recommender systems focuses on explicit
feedback where users express their preference with ratings [10,
22]. More recently, there is an increasing number of contributions
that rely on the more abundant and noisy implicit feedback data
[3, 11, 13]. However, most of this work frames the problem as a
collaborative �ltering (CF) model. CF is notoriously sensitive to
the cold-start problem and not �exible to handle extremely volatile
items such as online o�ers and coupons. Additionally, it is hard to
incorporate features that capture users’ and items’ properties.

The hybrid recommender system described in [11] is the closest
to our work. To address the cold-start problem, they use implicit
feedback to recommend online coupons by integrating both user’s
information and items features. In this work, the traditional col-
laborative �ltering matrix, including users and items, is enriched
with additional user and item features and factorized with SVD.
Nevertheless, the hybrid system requires to be retrained every time
there is a new coupon or user. In our case, there are thousands of
new coupons every day and re-training that often is impractical.

Our work is in line with content-based �ltering (CBF) approaches
such as [2, 8]. CBF methods are able to abstract items and represent
user / item interactions by encoding shopping trip history. There

is no need to re-train when adding new o�ers, although including
new retailers requires updating the model to capture the new user
/ item a�nity relations expressed in the new shopping trips. In
contrast to SVD and CF-based models, the content-based approach
can leverage di�erent classi�cation techniques and can be combined
with CF.

6 CONCLUSIONS
In this work, we developed a coupon recommender system with
content-based �ltering. We experimented with two popularity-
based baselines and compared them to both a random forest and
gradient boosted tree classi�cation models. To address the one-class
classi�cation problem, our framework automatically extracted neg-
ative samples from customers’ shopping trips. Negative samples
simulate the real selection scenario where one coupon, over the
visualized ten coupons, is actually selected by members. In this
experimental setup, both random forests and XGBoost classi�ers
perform substantially better than the two baselines except for the
NDCG10 metric.

In the future, to improve ranking results, we will extend the
classi�cation models with pair-based and list-based cost functions.
We will also validate our models under A/B testing evaluations with
real customers.
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