2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery

Scheduling of Security Resources in Software
Defined Security Architecture

Gang Zhang, Xiaofeng Qiu, Wei Chang
Beijing Key Laboratory of Network System Architecture and Convergence, Beijing University of Posts
and Telecommunications, Beijing 100876, China
zhanggang1408@bupt.edu.cn, qiuxiaofeng@bupt.edu.cn, changweitju@163.com

Abstract—With the development of Software Defined
Networking, its software programmability and openness
brings new idea for network security. Therefore, many
Software Defined Security Architectures emerged at the
right moment. Software Defined Security decouples
security control plane and security data plane. In
Software Defined Security Architectures, underlying
security devices are abstracted as security resources in
resource pool, intellectualized and automated security
business management and orchestration can be realized
through software programming in security control plane.
However, network management has been becoming
extremely complicated due to expansible network scale,
varying network devices, lack of abstraction and
heterogeneity of network especially. Therefore, new-type
open security devices are needed in SDS Architecture for
unified management so that they can be conveniently
abstracted as security resources in resource pool. This
paper firstly analyses why open security devices are
needed in SDS architecture and proposes a method of
opening security devices. Considering this new
architecture requires a new security scheduling
mechanism, this paper proposes a security resource
scheduling algorithm which is used for managing and
scheduling security resources in resource pool according
to user’s security demand. The security resource
scheduling algorithm aims to allocate a security
protection task to a suitable security resource in
resource pool so that improving security protection
efficiency. In the algorithm, we use BP neural network
to predict the execution time of security tasks to improve
the performance of the algorithm. The simulation result
shows that the algorithm has ideal performance. Finally,
a usage scenario is given to illustrate the role of security

resource scheduling in software defined security
architecture.
Keywords—open security devices; security resources

scheduling; software defined security; security task abstracting;
security resource capability abstracting

978-1-5386-2209-4/17 $31.00 © 2017 IEEE
DOI 10.1109/CyberC.2017.46

494

L INTRODUCTION

Traditional network security is facing enormous
challenges mainly due to the revolution of IT system and the
challenge of security threats. The existing security system
bases on the assumption that network perimeter is fixed, and
it depends on physical methods a lot such as the deployment
of hardware security devices and the control of physical
topology. However, the emergence of network virtualization,
cloud computing and software defined architecture brings
new challenges for network security.

The challenges include the following three main aspects:

1) The existing security devices are not open. Therefore,
security devices are difficult to be managed as its
heterogeneity. They are also difficult to be expanded later.
So, it is difficult to meet rapid change of security business
demands.

2) Security operation depends on network environment.
The deployment of security devices needs according to
network topology and practical environment. Therefore,
high-efficiency migration and reuse of security devices is
difficult to realize.

3) Network security strategy still needs manual
configuration. This leads the validity and rationality of
security strategy deployment depends on operation staffs a
lot. This also leads the high cost of network operation and
maintenance.

4) There is no effective orchestration mechanism
between security services, which limits the threats detection
efficiency.

Based on above analysis, network security operation
should keep pace with network evolution. Recent years, the
evolution of network presents the trend of virtualization,
openness and software defined. In order to keep up with the
pace of network evolution and the speed of business
innovation, network security should develop towards to
software-oriented security mechanism, open interface, easy
extension and separation of functional architecture.
Applying these network evolution characteristic in network
security field, the concept of software defined security (SDS)
is emerged. Different enterprises and organizations have

different viewpoints for software defined security. The
following are some typical representations:

1) Fortinet[1]

Fortinet’s software defined security architecture
emphasizes the combination with data center. They aim to
apply ‘software defined’ into network security so that
security operation can be flexible as other parts in data
center. Fortinet adds three network security planes, which
are data plane, control plane and management plane, in
network architecture. The function of data plane is realizing
device abstraction and service abstraction. The control plane
is used for realizing cooperation and automation of the
platform. The function of management plane is providing
management interface.

2) Embrane[2]

The core of it is replacing hardware devices with virtual
devices, and centralizing virtual devices’ control in one
platform. Therefore, the security operation system can
provide security protection service more rapidly and
improve operation efficiency.

3) Catbird[3]

Catbird divides security system into two layers. The first
layer groups all assets and composes ‘catbird TrustZones’,
and the other layer receives assets’ status and the
relationship between them. The system platform can find
security threats and deal with them in time, and the assets
grouping guarantees the flexibility of security strategy.

4) Software defined security architecture that we
proposed[4][5]

With SDN for reference, we also put forward a kind of
software defined security architecture. Considering SDN’s
most basic principle, which is the decoupling of control
plane and data plane, the software defined security
architecture that we put forward has three layers (including
application plane, control plane and infrastructure plane).
Application plane includes many kinds of security
applications, and users can select their needed security
protection service. Control plane is the core system of this
architecture. For realizing specific security protection
function, control plane needs collect network resources,
collect user storage and computing resources, manage
security resources and schedule security resources, etc.
Therefore, we develop a security controller in control plane
to finish above-mentioned tasks. Infrastructure plane, which
is also called data plane, is composed of physical or
virtualized security devices. It communicates with control
plane through southbound interface. Security strategies and
network data are issued from control plane to data plane
through southbound interface. Then, security devices in data
plane execute the security protection according to the
command from southbound interface.

As can be seen from the four typical software defined
security architectures, all of them realize the decoupling of

495

security control plane and data plane. Underlying security
devices, which are physical or virtualized, are centralized
deployment and form a resource pool. Furthermore, the
control of these security resources is logically centralized in
one control plane. Therefore, new-type open security
devices are needed in SDS Architecture due to following
reasons:

» Network management has been becoming
extremely complicated due to varying network
devices and heterogeneity of network. With open
security devices, the centralized management and
scheduling of security devices becomes more
easier so that they can be conveniently abstracted
as security resources in resource pool
As is well-known, a very important reason for the
emergence of SDN is that it breaks the lock of
network devices vendors, so that users can freely
choose network devices, develop or purchase
network applications according to their business
needs. The same problem exists in the field of
network security.

With software defined security architecture and security
resource pool, resource utilization of network security
devices can be improved and security task execution
efficiency can be improved. Therefore, network security can
be improved. Considering that the new situation needs a
new resource scheduling mechanism, we propose a security
resource scheduling algorithm which is applied in software
defined security architecture with above-mentioned situation.

When dealing with security resources scheduling
problem in software defined security architecture, the
following two main difficulties are existing. The first is
there are a wide range of existing security devices and each
type of security devices has a different vendor. However,
these existing security devices are not open enough. This
means existing security devices' interfaces may limit the
effect of resource scheduling algorithm because software
defined security architecture emphasizes the openness of
underlying security devices. The second is how to ensure
load balance among security devices so that improving
overall performance of security resource pool. In this way,
security task execution efficiency and security protection
efficiency can be improved so that network security is
improved. In order to realize high performance load balance
among security resources, the load variance of security
resources over future period of time should be considered.
So, it is important to predict when a security task will finish
executing and release occupancy of a resource. This is
difficult to deal with as different security task has different
complexity degree so that its execution time is difficult to
measure.

In our proposed algorithm, we first abstract a security
protection task as several its determined parameters

according to task type. Then, we develop a method which is
used for forecasting execution time of security protection
tasks according to their abstracted parameters. And then, we
describe security resources' task execution ability abstractly
based on above work. The security resources scheduling
algorithm will select the security resources with suitable
type and maximum task execution ability. Therefore, load
balancing among security resources can be realized and
security protection efficiency can be improved, and then
network security is improved.

In this paper, we firstly analyze the reasons of putting
forward software defined security and introduce three
typical software defined security architecture as well as our
own software defined security architecture. Then, we
expound the reason why open security devices are needed in
SDS architecture and propose a method to open security
devices. Next, we introduce the security resource scheduling
algorithm we have designed detailedly and show the
simulation result of the algorithm. At last, this paper shows
an application scenario of the resource scheduling algorithm
in our proposed SDS architecture and gives a conclusion.

II.

Almost all of the existing research on software defined
security is to study the implementation architecture of SDS
or its northbound applications, such as paper [4][6][7][8].
The most basic feature of these SDS architectures is the
decoupling of control plane and data plane. To the best of
our knowledge, there are no research on open security
devices and security resources scheduling issue in software
defined security architecture.

Based on the analysis of the difference of the definition
of network resource between SDN and traditional IP
network, the idea of the integrated allocation of link
bandwidth and flow table for multiple control applications
in SDN is proposed in paper [9]. Paper [10] proposes a
middle box management architecture with SDN
OpenMiddlebox, by extending OpenFlow to support middle
boxes with ClickOS virtual machines (VM), so that
programmable middleboxes could be deployed and
managed in switches with fast booted ClickOS VMs
flexibly. Different from the management and scheduling of
network resources in software defined network,
management and scheduling of security resources encounter
new problems because there are many types of security
devices, and their functional features, deployment patterns
and working methods are also different. Therefore, it is not
possible to abstract out control protocols such as OpenFlow,
which is also one of the reason that we develop security
controller [4] [5]. Therefore, security resource scheduling
requires new mechanism in SDS architecture.

Paper [11] proposes an Application-aware Resource
Allocation (App-RA) scheme to predict resource
requirements and allocate an appropriate number of virtual

RELATED WORK

496

machines (VMs) for each application in SDN-based cloud
datacenters. The proposed App-RA is an application-aware
resource allocation scheme that adapts to all types of
applications. The proposed App-RA adopts the neural
network based predictor to forecast the requirements of
resources (CPU, Memory, GPU, Disk I/O and bandwidth)
for an application. Paper [12] presents a load balancing and
scheduling algorithm that is stock optimal, without assumed
that job durations, which are modeled as random variables,
are known or are upper bounded. In our work, the security
resources scheduling mechanism is security task type-aware.
For different type of security devices, the parameters used in
the scheduling algorithm are different. Inspired by App-
RA’s work, we use BP neural network to forecast the
execution time of a security task. With predicted execution
time of a security task, the scheduling of security resources
can be more efficiency than scheduling tasks with unknown
duration.

III. ANALYSING AND DESIGN

A. Open method of security devices

In software defined security architecture, physical or
virtualized security devices are centrally controlled in
control plane. Therefore, it has significant meaningful to
open security devices and formulate unified interface for the
same type of security device. This makes centralized
management and scheduling of security resources become
feasible and convenient.

There are various types of security devices, and their
functional features, deployment modes and operating mode
are also different. Therefore, it is not possible to abstract a
control protocol like ‘OpenFlow’ between security control
plane and data plane. However, the following two works can
be done at least.

The first is summarizing the common features of
functional requirements of different security devices, listing
their common application interfaces. No matter what kind of
security device, the following four types of interfaces are
needed:

1) Basic information interface: accesses to basic
information about the device, such as version number, host
name, CPU usage, memory usage, executing security
protection tasks and their execution progress, etc.

2) Configuration interface: gets or sets some
configuration values for the device, such as network
interface, operating mode, etc.

3) Policy interface: some security policies that can be
used by the device, such as the five tuple of firewall, WAF
protection rules, etc.

4) Log interface: stores and retrieves uploaded log and
alarm messages of security device

Second, for a specific type of security device, a unified
protocol standard can be developed. Take the firewall as an
example, the delivery interface of access control strategy

five tuple can be specified so that the same application
interfaces can be used by different vendors’ firewall.

Through above-mentioned steps, centralized
management and scheduling of security resources become
feasible and convenient. With centralized scheduling of
security resources in resource pool, the utilization of
security resources can be increased and the security task
execution efficiency can be improved. Furthermore,
network security is improved. Therefore, a high
performance security resource scheduling algorithm is
important.

B. Overview of security resource scheduling algorithm

Traditional security resources scheduling methods are
generally based on polling mode or random fashion. Some
systems adopt weighted calculation according to security
resources' capability to decide which security resource a
security protection task is allocated to. However, these
security resources scheduling methods do not consider
dynamic factors such as execution time of a task and task
progress of an executing task. This results in scheduling of
security resources not efficiency enough.

For dealing with above-mentioned problems, this paper
proposes a novel security resources scheduling algorithm. In
the algorithm, we first abstract a security protection task as
several its determined parameters according to type of task.
Then, we develop a method which is used for forecasting

execution time of security protection tasks according to
their abstracted parameters. The reason for using the BP
neural network will be explained in section ‘4. Solution I’
of ‘IV. Evaluation’. Then, we describe security resources'
task execution ability abstractly based on above work. The
security resources scheduling algorithm will calculate the
task execution ability of each security resource synthetically
and allocate a security protection task to the security
resource with suitable type and maximum task execution
ability. Therefore, security resource utilization and security
task execution efficiency can be improved in software
defined security architecture.

Realization process of the proposed security resources
scheduling algorithm in software defined security
architecture is shown in Figure 1. The operation flow is as
follows:

1) The security control plane receives security protection
request and generates security protection tasks.

For each security protection task, security task abstract
description module firstly abstracts it into several its
determined parameters. Output of this module is a
security task abstract description data structure, which
is sent to security task amount forecast module and
security resources preliminary screening module. The
abstract description method of a security protection task
will be discussed in detail in 'C. Abstract Description
Method of Security Task'.

2)

(Security protection request

‘ Security task abstraction description |

Security Security resources

resources preliminary screening

pool

Alternative security

resources list

. Historical
Security task amount forecast
Data

| Predicted execution time of security tasks

Performance information of
alternative security

resources

Executing task information and
corresponding progress of
alternative security resources

Selecting security resource which is

used for executing security task

Security resources
scheduling algorithm

Scheduling security task

Figure 1. Realization process of security resources scheduling algorithm

497

3) After extracting the data from security task abstract
description data structure, security resources primary
screening module selects suitable security resources
from security resource pool according to needed
security resource type and vendor of security devices.
Output is the selected alternative security resources list.
Security task amount forecast model forecasts
execution time of a security protection task according to
values of task type and task execution parameters,
which are defined in security task abstract description
data structure. The BP neural network, which is used
for forecasting task execution time, in this module is
trained by historical task execution data in advance.
Output of this module is the predicted task execution
time of a security protection task, its value will be
stored in module ‘Predicted execution time of security
tasks’, and the data in this module will be used in
security resource scheduling algorithm later to measure
the performance of security devices. The execution time
forecast method will be discussed in detail in 'D.
Execution Time Forecast Method of Security Task'.
Security resource scheduling module acquires CPU
usage, memory usage and each on-going task's
execution process of each security resource in the
selected alternative security resource list. Combining
with the on-going security tasks’ predicted execution
time, which are forecasted by module ‘security task
amount forecast’, of each security device in the selected
alternative security resources list, this module describes
each security resource's task execution ability abstractly
and calculates their equivalent load. The abstract
description method of security resource and calculation
method of security resource's equivalent load will be
discussed in detail in 'E. Abstract Description Method
of Security Resource'.

Selecting the security resource with minimum
equivalent load and allocating the corresponding
security protection task to this security resource.

4)

5)

6)

C. Abstract Description Method of Security Task

For measuring the complexity degree of a security
protection task, it should be described abstractly. In the
algorithm, a security protection task is abstracted as several
its determined parameters according to task type. These
parameters are digitized description of a security task and
related to their task amount. Therefore, these parameters can
be used for measuring the execution time of security tasks.
Following are two examples of the abstract description of
two kinds of security business. The first example is web
scan security business. Its three determined parameters,
which are digitized description of a web scan security task
and related to its task amount, are maximum number of
webpage that needed to be scanned, scan depth and number

498

of concurrency. The second example is Anti DDOS
security business. Its three determined parameters, which
are digitized description of a Anti DDOS security task and
related to its task amount, are protection strategy, protection
level and rate-limiting level.

D. Execution Time Forecast Method of Security Task

For measuring task execution capability of a security
resource synthetically, we need forecast the execution time
of on-going security protection tasks in that security
resource. We establish relationship between abstract
description parameters of a security task and execution time
of that security task through BP neural network. For
different type of security business, the system will train BP
neural network independently and generate different groups
of neural network weights.

The specific steps of task execution time forecast method
are as following:
1) Establishing BP neural network module

randomizing node’s weights in the map space.

2) Training neural network with historical security
business execution data. Each type of security business
establishes BP neural network module independently.
When training BP neural network, input parameters
include abstract description parameters of security tasks
and their practical execution time. The relationship is
established between abstract description parameters of a
security task and its practical execution time.
Repeat procedure 2 until weight vector of neural
network has no significant change.
After training BP neural network, inputting the abstract
description parameters of a new security protection task
into the trained BP neural network model, output is the
predicted execution time of the corresponding task.
Each time a task has been executed, its abstract
description parameters and practical execution time will
be used for incremental training of BP neural network.

and

3)

4)

5)

E. Execution Time Forecast Method of Security Task

For describing task execution capability of a security
resource intuitively, this paper proposes an abstract
description method for security resources. Capability of a
security resource is determined by two main factors.

The first factor is the real-time physical load, which is
calculated by formula (1), of a security resource.

load = cpu _usageWeight x cpu _usage +

memory _usageWeight x memory _usage @))]
+disk _usageWeight x disk _usage
In formula (1), cpu usage, memory usage and

disk usage are real-time utilization of CPU, memory and
disk of a security resource respectively. Their values are

acquired from security resource. Cpu_ usageWeight,
memory usageWeight and disk usageWeight are
corresponding weight of each parameters, weight values
represent the important degree of each parameter when
measuring how busy a security resource is. Different
security business has different preference for these three
parameters.

The other factor is defined as 'time factor', which is
related to the remainder execution time of all on-going tasks
in a security resource. The remainder execution time of a
security task is calculated by task progress and its
corresponding predicted execution time.

Capability of security resource is determined by above
two factors, and we use 'equivalent load', which is
calculated by formula (2), to describe security resources'
capability. In formula (2), factor ‘load’ and ‘time factor’ are
combined with a simple multiplication for the following
three reasons: (i) ‘equivalent load’ is proportional to factor
‘load’ and ‘time factor’; (ii) for considering the two factors
synthetically; (iii) for reducing computation complexity so
that improving computation efficiency.

equivalent _load =

[z (1=task _ progress,)x Predicted _Time]x load (2)
k=1

In formula (2), parameter 'task progress,’, which is
acquired from security resource, represents execution
progress of task 'k' in a security resource. Parameter
‘predicted_time,' represents the predicted execution time,
which is forecasted by BP neural network module, of task 'k'.

Lower equivalent load means higher task execution
capability, so the algorithm will select the security resource
with minimum equivalent load to deal with the
corresponding task. In this way, resource utilization of
network security resources in the security resource pool can
be improved and security task execution efficiency can be
improved. Therefore, network security can be improved.

IV. EVALUATIONV

Due to the lack of open security devices and real
network environment, we made a simulation to evaluate the
performance of the security resource scheduling algorithm.

In order to make the simulation results easy to observe,
this paper uses a simple case to verify the proposed
algorithm. We take web scan task as an example in this
paper, and the simulation environment is set as following:

(1) Number of security task is set as 500. And the arrival
of tasks subject to Poisson distribution. Therefore, time
interval between adjacent coming tasks is subject to
exponential distribution. Task parameters are assumed as
Table 1.

(2) For each security resource pool. Number of security
resources in it is set as 5. And their initial CPU usage and
memory usage is generated as Table 2.

In Table 1, 'i' represents task sequence number. And
TaskNew(i,9) = TaskNew(1,6) - TaskNew(i,5), in simulation,
practical execution time of task is assumed in proportional
to 'TaskNew(i,2)' and introducing randomness to
compensate the differences (scan depth, amount of
concurrency and complexity of different websites) with
practical application.

TABLE 1. TASK PARAMETERS OF SIMULATION

No. Parameters Description Distribution type
1 TaskNew(i,1) Task ID —_
2 TaskNew(i,2) Maximum number of webpages Discrete Uniform Distribution
a=1000, b=10000
3 TaskNew(i,3) Scan depth Discrete Uniform Distribution
a=0, b=10
4 TaskNew(i,4) Amount of concurrency Discrete Uniform Distribution
a=1,b=10
5 TaskNew(i,5) Arrival time of task Exponential Distribution
6 TaskNew(i,6) End time of task —_—
7 TaskNew(i,9) Practical execution time of task —_
8 TaskNew(i,10) Predicted execution time of task —_—

TABLE 2. GENERATION OF INITIAL CPU USAGE AND MEMORY USAGE

No. Parameters Description Distribution type
1 cpu_usage Percentage of CPU usage Continuous Uniform Distribution
a=0.2, b=0.3
2 memory_usage Percentage of memory usage Continuous Uniform Distribution
a=0.2, b=0.4

499

The CPU occupancy ('TaskNew(i,7)") and memory
occupancy ('TaskNew(i,8)') of a task are set as constant
value according to experience.

In simulation, ‘load’ in formula (1) is calculated by
parameters in Table 2; ‘Predicted time’ in formula (2) is
forecasted by BP neural network with parameter
TaskNew(i,2), TaskNew(i,3) and TaskNew(i,4) in Table 1
as input; ‘Task progress’ in formula (2) is calculated by
[Current time - TaskNew(i,5)]/TaskNew(i,10). And the
difference of TaskNew(i,9) and TaskNew(i,10) in Table 1 is
the back error of BP neural network. The BP neural network
is set as three layers: input layer includes three nerve cells,
hidden layer includes five nerve cells and output layer
includes one nerve cell. Number of hidden layers is set
according to experience. Number of iterations is set as
15000. Learning rate is set as 0.1. Target error is set as 0.01.

As shown in Figure 2, the simulation result shows that
the complete proposed resource allocation algorithm can
realize load balance among security resources. In Figure 2,
each different color line represents a security resource’s
load condition.

Figure 2 shows that with proposed security resources
scheduling algorithm, a security protection task will not be
allocated to security resource with minimum load but
minimum equivalent load. Therefore, we can see from
Figure 2, as the increasing of security tasks with different
complexity degree, the five security resources’ load are
relative balanced all the time with proposed high
performance algorithm.

; Load
09 1
08 4

0.7

0.6

0.5

load rate

0.4 i My 1
0.3 ! Pt o, E|
0.2]

0.1

0 L I 1
0 10 20 30 40 50 60 70 80 20

t

100

Figure 2. Equivalent load of five security resources

As shown in Figure 3, as the increasing of security
tasks with different complexity degree, the five security
resources’ CPU usages are relative balanced all the time
with proposed high performance algorithm.

As shown in Figure 4, the memory usage of each
security resource is also relative balanced, but its effect is
not as ideal as CPU usage. This is because memory has
smaller weight than CPU when considering the composite
load of a resource.

500

CPU

CPU usage

100

Figure 3. CPU usage of five security resources

Memory

memory usage
(=]
w

100

Figure 4. Memory CPU usage of five security resources

As the simulation result shows an ideal performance, we
developed the security resources scheduling algorithm in
our proposed SDS architecture. The following is an
application scenario of security resource scheduling in our
SDS architecture.

The software defined security architecture that we
proposed has been introduced in ‘Introduction’. Based on
this architecture, we developed a very important northbound
application, which is security business orchestration
application. The whole system is shown in Figure 5.
Orchestration engine combines independent and different
types of security resources in the resource pool effectively
through utilizing centralized management and scheduling
capability of security controller to security resources.
Therefore, security protection efficiency can be improved
through alliance of several security resources. For realizing
automated and intelligentized security orchestration,
uniform scheduling of security resources and analysis of
some security threats are needed.

APPStoreServer

I

Application Plane

Orchestration
Engine

4
PolicyResolution

1
Security Task
Driver

1

ServiceDriver

Orchestration
Service
Templates

11
Topology &
flows IE
|
|

Control Plane i Flow
Network | 55U | ommand]

|controller

contraoller
agent

Securitycontroller
Flow
Polling

Command
Pusher

Security Resource
Scheduler

AppManager

Scheduler

Event
Resolver

Service
Chain

DeviceManager e

|
|
|
|
|
|
|
Policy :
|
|
|
|
Monitor |

OpenFlow

r 1 flow
Data Plane Netv_vark ’
Devices

security
devices(virtualized
or physical)

__________________________________ |
et T Thuesa TMensz T T T
commands Results

E=
Device ice

Figure 5. Software defined security architecture

The security resources scheduling algorithm proposed in
this paper is deployed in module 'Security Resource
Scheduler' in security controller. Users can input the IP
address of the host that needed to be protected in APPStore,

which is a user interface between users and APPStoreServer.

Then, after policy resolution, the vulnerabilities of the host
will be detected. According to these detected security

However, existing security devices cannot meet the need
of high performance resources sharing and scheduling in
software defined security architecture because they are not
open enough. At here, we list the supported parameters of
some typical security devices.

TABLE 4. SUPPORTED PARAMETERS OF ‘NIKTO’

vulnerabilities, the orchestration engine will create a series Supported
of security orchestration tasks which are sent to security Parameters Remarks
controller by service driver. The security resources Cgidirs Catalog of CGI that needed to be scanned
scheduling algorithm in it will allocate each task to a Replacing local ‘config.txt’ with specific
. : . config .
suitable security resource according to task type and task config file
execution capability of security resources. The Service dbcheck Selecting scan database with wrong
Chain Module interacts with SDN controller to make sure grammer
network flows are led into security resources sequentially. evasion Using avoiding technology for IDS
inLibWhisker
TABLE 3. SUPPORTED PARAMETERS OF ‘SKIPFISH’ findonly Only finding port of HTTP‘ and HTTPS
but not execute detection rule
Supported Parameters Remarks Appointing file f Cof t check
Authentication and Setting parameters related to http, Format ppomting e :)er;;?t of output chee
access oprions hOSt&.lp’ cookle, ete host Target host (name, IP, host list file)
Crawl scope options .Indudmg max_depth Authenticati
(maximum crawl tree depth) id uthentication for competent HTTP by
Reporting options Setting the format of scan report _ ID and .passyvord .
Dictionary Setting parameters that related to maxtime Maximum execution time per host, in
management options dictionary i .seconds i
Setting max global simultaneous Tuning Controlling leto to scan target with
Performance settings TCP connections, max d;ffe.rent mode
simultaneous connections per port Assigning scan port
target IP, etc Display Controlling output display of Nikto

Other settings Setting max_req, duration

501

Another security protection application is 'Paros proxy',
its supported parameters includes Connection, Local proxy,
Authentication, Certificate, View, Trap, Spider and Scanner.
Obviously, these options can not reflect the real-time load as
well as task execution capability of security resources.

Above material shows that existing security devices
(applications) are not open enough for software defined
security architectures because business demands are
different between traditional network security and SDS.
Traditional security devices are not deployed through cloud,
so there is no need for considering security resources
sharing and scheduling. But SDS emphasizes the openness
of security devices and need to consider security resources
sharing and scheduling. Therefore, there are always
differences when investigating resources scheduling in
software defined security architectures with traditional
security devices.

For realizing the complete function of the software
defined security system, this paper proposes following two
solutions.

A. Solution 1

In that application scenario, 'Nikto' is adopted as web
scanner. For Nikto, just the parameter 'maxtime' can reflect
the task amount of a task. Parameter 'maxtime' is used for
setting parameter 'amount of concurrency' in our proposed
algorithm. For acquiring CPU usage and memory usage of
security devices, we installed 'Nikto' in different Ubuntu
systems and compute each security resource's CPU usage
and memory usage through return value of 'top' command.
Therefore, for realizing the complete function of the system,
we applied a customized version of the proposed security
resource scheduling algorithm according to the parameters
that can be acquired from the security devices. In the
customized version algorithm, 'time factor' defined in
formula (2) will not be considered. This means we make
'equivalent load' just equal to 'load' for compatible with
existing security devices. With the compatible version
security resource scheduling algorithm, a task can be
allocated to a security resource with specific type and
maximum capability. An example of scheduling of web
scanner resources is shown in Figure 6, we can see that each
time a web scan task will be allocated to the scanner with
minimum load. Minimum load means maximum task
execution capability, therefore, security protection
efficiency can be improved.

Although the customized version of proposed resource
allocation algorithm can also realize the expected target
which is realizing the load balance among security devices
so that improving security protection efficiency. However,
one situation may leads to transient unbalance of load. For
example, assuming one security resource are executing 30
tasks with average task progress 90%, the other security
resource are executing 26 tasks with average task progress
10%, if there are another 10 Web Scan requests this time,

502

these 10 task may be allocated to the first security resource
because it has smaller composite load, this will cause load
unbalance later and lower task execution efficiency. This
may be a serious problem in data center. This defect may be
overcome as introducing 'time factor' in the complete
proposed algorithm.

What’s more, using security devices that are not open
enough to form security resource pool, the centralized
management and scheduling of security devices in security
control plane are difficult to realize.

B. Solution 2

As the development of network, SDS is the future
development direction of network security. Therefore, it is
necessary to create new style open security devices
(applications) to meet the demand of software defined
security architecture.

When designing virtualized and containerization new
style open security devices, which are used for forming into
security resource pool, their supported parameters should
include the parameters that used to measure the task amount
of security tasks. For example, a web scanner should
support parameters includes maximum number of webpage
that needed to be scanned, scan depth and amount of
concurrency, etc. These parameters can reflect the task
amount of a security task. Therefore, the security resources
scheduling algorithm proposed in the paper can be used in
future software defined security architectures so that
realizing high performance resources scheduling in security
resource pool. In this way, resource utilization of network
security resources in the security resource pool can be
improved and security task execution efficiency can be
improved. Furthermore, network security can be improved.

Device Load

13:28:30 13:29:00 13:29:30

scannerl -4 scanner2 scanner3

Figure 6. Scheduling of web scanner resources

V.

This paper analyzes the reasons of putting forward
software defined security and introduce three typical
software defined security architecture as well as our own
software defined security architecture. Based on this, this
paper expounds the reason why open security devices are
needed in SDS architecture and propose a method to open
security devices. Taking advantage of the characteristic of
centralized control in Software Defined Security, we
designed a security resource scheduling algorithm which is
applied in software defined security architecture with
security resource pool. The algorithm can allocate a security
task to a suitable security resource in the resource pool
according to their type and abstracted capability. Therefore,
resource utilization of network security resources in the
security resource pool can be improved and security task
execution efficiency can be improved. Furthermore,
network security can be improved
The contributions of this paper are as follows:

We proposed a method to open security devices so that
centralized management and scheduling of security
resources become feasible and convenient

We proposed a kind of security protection task
abstraction description method.

We proposed an execution time forecast method for
security task according to abstraction description
parameters based on BP neural network.

We proposed a security resource capability abstraction
description method based on above works

We designed a security resource scheduling algorithm
which is deployed in software defined security
architecture with security resource pool and verified its
performance.

We proposed parameters design of future new style
security devices that applied in software defined
security architecture.

As the number of security protection task is huge in
cloud security center, a good performance resource
scheduling algorithm is important. So, we will deploy the
resource scheduling algorithm proposed in the paper when
there has open security devices (applications).

CONCLUSION

1)

2)

3)

4)

5)

6)

503

ACKNOWLEDGMENT

This work is supported in part by the following grants:
National High-tech R&D Program ("863" Program) of China
(No. SS2015AA011709), Beijing Laboratory of Advanced
Information Networks.

REFERENCES

“The Fortinet ~ Software-Defined Security Framework”
https://www.fortinet.com/demand/gated/SDN -Security-Framework
WhitePaper.html
http://support.embrane.com/index.php?/Knowledgebase/ Article/view/
79/13/Download-heleos

“Catbird:Private Cloud Security”
cloudsecurity-white-paper.

[1]

[2]

[3] http://info.catbird.com/private-
Wenmao Liu, Xiaofeng Qiu, Pengcheng Chen, Xinxin He, Xutao
Wen, Dongsheng Wang, SDSA: a Programmable Software Defined
Security Platform, International Conference on Cloud Computing
Research and Innovation, CloudAsia2014, Oct 29th-30th, Singapore

Weijia Wang, Xiaofeng Qiu, Li Sun, Rui Zhao."A Data Driven
Orchestration Framework in Software Defined Security".IEEE
International Conference on Network Infrastructure and Digital
Content,2016

A. Darabseh, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M. Vouk
and A. Rindos, "SDSecurity: A Software Defined Security
experimental framework," 2015 IEEE International Conference on
Communication Workshop (ICCW), London, 2015, pp. 1871-1876
LIUWenmao, QIU Xiaofeng, CHEN Pengcheng, WEN Xutao, HE
Xinxin, WANG Dongsheng, LI Jun. SDN Oriented SoftwareDefined
Security Architecture [J].Journal of Frontiers of Computer Science
and Technology. 2015. 9.

L. Yanbing, L. Xingyu, J. Yi and X. Yunpeng, "SDSA: A framework
of a software-defined security architecture,” in China
Communications, vol. 13, no. 2, pp. 178-188, Feb. 2016.

Feng T, Bi J, Wang K. Joint allocation and scheduling of network
resource for multiple control applications in SDN[M]. 2014.

(5]

(7]

Wang W, He W, Su J. Network intrusion detection and prevention
middlebox management in SDN[C]/ IEEE, International
PERFORMANCE Computing and Communications Conference.
IEEE, 2015:1-8.

Hong W, Wang K, Hsu Y H. Application-Aware Resource Allocation
for SDN-based Cloud Datacenters[C]// International Conference on
Cloud Computing and Big Data. 2013:106-110.

Maguluri S T, Srikant R. Scheduling Jobs With Unknown Duration in
Clouds[J]. Networking IEEE/ACM Transactions on, 2014,
22(6):1938-1951

(1]

[12]

