
Scalable Key Management for Distributed Cloud
Storage

Mathias Björkqvist
IBM Research - Zurich

Rüschlikon, Switzerland

mbj@zurich.ibm.com

Christian Cachin
IBM Research - Zurich

Rüschlikon, Switzerland

cca@zurich.ibm.com

Felix Engelmann
Ulm University

Ulm, Germany

felix.engelmann@uni-ulm.de

Alessandro Sorniotti
IBM Research - Zurich

Rüschlikon, Switzerland

aso@zurich.ibm.com

Abstract—As use of cryptography increases in all areas of
computing, efficient solutions for key management in distributed
systems are needed. Large deployments in the cloud can require
millions of keys for thousands of clients. The current approaches
for serving keys are centralized components, which do not scale
as desired.

This work reports on the realization of a key manager
that uses an untrusted distributed key-value store (KVS) and
offers consistent key distribution over the Key-Management
Interoperability Protocol (KMIP). To achieve confidentiality, it
uses a key hierarchy where every key except a root key itself
is encrypted by the respective parent key. The hierarchy also
allows for key rotation and, ultimately, for secure deletion of
data. The design permits key rotation to proceed concurrently
with key-serving operations.

A prototype was integrated with IBM Spectrum Scale, a
highly scalable cluster file system, where it serves keys for file
encryption. Linear scalability was achieved even under load from
concurrent key updates. The implementation shows that the
approach is viable, works as intended, and suitable for high-
throughput key serving in cloud platforms.

I. INTRODUCTION

Encryption plays a fundamental role for realizing secure

networked computing environments. Key management ensures

reliable and secure distribution of cryptographic keys to legiti-

mate clients, which are then able to encrypt data or to establish

secure communication channels. Key management for cloud-

scale distributed installations poses additional challenges over

classical, centralized systems, due to the vastly bigger systems

and the higher demands for resilience and security.

Maintaining the confidentiality of encryption keys is ex-

tremely important, especially for encrypting data in storage

systems, where losing access to the encryption key implies

losing the data itself. A communication system, in contrast,

may just restart the session if a key is lost.

As key management is critical for many environments,

industry standards have been introduced to separate key-

management functions from the components that consume

keys, and to consolidate key lifecycle management at cen-

tralized, well-protected systems [1]. Key management can

be seen as an essential service of an IT infrastructure and

especially for cloud platforms, similar to network connectivity,

computing, and storage. The most prominent standard for

distributed key management today is the OASIS Key Man-

agement Interoperability Protocol (KMIP) [2], which specifies

operations for managing, storing, and retrieving keys at a

remote server. For local key management using library-style

access PKCS #11 [3] is the prevalent interface. In the context

of cloud services, where service interactions are REST calls,

the open-source Barbican [4] key manager provides keys to

all services of OpenStack. Commercial cloud platforms use

proprietary protocols inside their infrastructure.

Key managers differ according to the operations they sup-

port and in terms of their performance, resilience, and security.

Prominent commercial key servers often put emphasis on the

needs of enterprise environments, such as fine-grained authen-

tication and support for hardware security modules (HSMs).

For example, governmental standards for handling health data

dictate a reliable audit trail to reconstruct all operations ac-

cessing cryptographic keys. Enterprise key managers are also

designed for high availability to allow uninterrupted service.

They must support the complete lifecycle of cryptographic se-

crets, with operations for creating, importing, storing, reading,

updating, exporting, and deleting keys.

Designing and operating a key-management service in a

distributed system with many entities running cryptographic

operations is challenging because it must balance between the

conflicting goals of performance and security.

A. Contribution

In this paper we present a solution for scaling a key

management service to cloud applications with thousands

of clients and possibly millions of keys. This includes the

capability to scale dynamically while maintaining security.

Our distributed key management solution should handle all

core key lifecycle-management tasks and scale in a linear

way. Existing enterprise-grade key managers do not provide

such scalability because they rely too heavily on centralized

components, such as HSMs or strongly consistent relational

databases.

In particular, we address key management for an enterprise

environment with a scalable cloud platform. The clients or

endpoints accessing the key manager primarily perform data-

at-rest encryption, but could be any other application that

executes cryptographic operations. The key server has to

provide a consistent view of the available keys when accessed

from multiple clients.

250

2018 IEEE International Conference on Cloud Engineering

0-7695-6371-6/18/31.00 ©2018 IEEE
DOI 10.1109/IC2E.2018.00051



The key manager consists of three components with differ-

ent security assumptions:

Trusted storage: A master key resides on a trusted medium

for persistent storage across power cycles. When the

system is turned off, no component apart from the trusted

storage medium maintains any relevant cryptographic

information; in other words, only the root of trust must

be guarded. For supporting lifecycle management and

key rotation, the medium should support secure erasure.

Potential implementations are hardware security modules

(HSMs), USB-attached smart cards, or also cheap re-

movable USB drives that can be physically destroyed for

key erasure. For better scalability, multiple instances of

trusted storage may be utilized.

Metadata key-value store: For supporting scalable opera-

tion, all cryptographic material apart from the master key

is held in an untrusted distributed storage system modeled

as a key-value store (KVS). All data stored in the KVS

is protected with the master key, i.e., by wrapping or

through a key hierarchy. The distributed KVS supports

high-throughput and scalable access to the stored key

material. The KVS platforms available today often do not

support atomic operations but only eventual consistency,

however. This can lead to issues caused by simultaneous

access to the same key by multiple clients.

Key server: Keys are delivered to the clients in cleartext and

are available in the memory of the key server. The key

server is trusted not to disclose keys to unauthorized

clients. It overwrites keys no longer needed according

to standard practice.

The KVS used for scalability does not permit strongly

consistent operations on keys, such as key rotation. We resolve

this through a novel design for concurrent key-management

operations that use a weakly consistent data store.

In particular, we describe an implementation of a key

manager using hierarchically protected keys, where only the

master key resides on trusted storage. The important features

of this design are:

1) The key server permits continuous access to keys in the

presence of ongoing key rotation operations;

2) The key server scales linearly with the available server

resources.

An implementation for the IBM Spectrum Scale cluster files

system (http://www.ibm.com/systems/storage/spectrum/scale/,

formerly known as General Parallel File System or GPFS)

was developed and evaluated for this purpose. Experiments

show that the design and prototype deliver the expected

performance, in particular, linear scalability with the server

resources.

B. Products and related work

Every cryptographic system must manage keys. Several

standalone key managers have been developed to provide a

generic service and support the standard protocols, such as

KMIP [2]. Key-lifecycle management operations are important

for enterprise deployment [1] and for satisfying regulatory

requirements [5].

Two prominent products addressing this space are the

Vormetric Data Security Management (DSM) server [6] and

the IBM Security Key Lifecycle Manager (ISKLM). Vormetric

DSM offers interoperability with KMIP and facilitates inte-

gration with database systems, such as Microsoft SQL Server.

It is certified at several FIPS 140-2 levels, depending on the

hardware on which it operates. With an appropriate HSM,

certification ranges up to FIPS 140-2 Level 3. Due to its

centralized architecture it is inherently not scalable. ISKLM

runs on standard servers atop a software stack that includes

IBM WebSphere and DB2. For key storage, ISKLM may use

a PKCS #11-attached HSM, and for resilience and high avail-

ability, it can run distributedly on a cluster. It provides a web

interface for management, control, and auditing, and a KMIP

interface serving keys to endpoints. Due to its dependence on

the database, ISKLM is also centralized. Although these and

other similar solutions are complex and incur high operational

expenses, they do not scale as well for distributed platforms.

Barbican [4] inside OpenStack is a scalable key-

management component for cloud platforms. It supports asyn-

chronous operations on symmetric and private keys, public

keys, and certificates. As all services in OpenStack, it is

accessed through a REST API and uses the Keystone [7]

component for authorization. Its operations are not as general

as those of KMIP, for instance. The backend of Barbican is

modular, designed as a plug-in system, so that it currently

supports an SQL database or a KMIP client for storing secrets

remotely, or an HSM accessed through PKCS #11 for local

key storage. In Barbican, multiple workers run concurrently

and on different hosts, but they all interact with the central

backend database through a message queue. This limits its

scalability. Considering also its restricted functionality in the

API, Barbican doesn’t offer the desired scalable support for

key storage in combination with key rotation and secure

erasure.

Several key management services are available in cloud

platforms today, such as Amazon KMS, CloudHSM, and IBM

Key Protect [8], [9], [10]; they hide the complexities of in-

house key management but rely on partial trust in the cloud

operator.

II. OBJECTIVES

A. Security goals

In a deployment of the key manager, there are two actors:

the key manager and the client. Only the key manager may

access the master key and the trusted storage. Any other entity

is subsumed into an adversary, an actor with complete access

to the metadata KVS, communication links, and so on. The

adversary might be an untrusted storage provider, the client

itself, or the operator of the network between the client and

the server.

Clients can authenticate themselves to the key manager and

establish a secure connection using TLS, with server- and

client-side certificates. The key manager authorizes access to

251



keys based on the identity in the client certificate and delivers

keys to the client over the secure channel. There are two

concrete goals addressing security.

Key confidentiality: The adversary should not be able to

learn any useful information about a key to which it does not

have access, i.e., keys for which it is not authorized, neither

by interacting with the server, by observing the KVS, nor by

listening on the network.

Key erasure: Clients can request that a key is deleted per-

manently. This supports the secure deletion of data protected

by this key, since physical deletion of stored data from disks or

solid-state storage is no longer possible in practice [11]. Key

deletion supports the approach to secure deletion introduced

by Di Crescenzo et al. [12] and recently extended by Cachin

et al. [13], where only a single key at the root of a hierarchy

must actually be erasable. All other metadata in the hierarchy

can be exposed to the adversary. From the perspective of the

key manager, secure deletion is supported through key rotation
of the master key and deletion of expired keys.

B. Other goals

Scalability: The service performance should scale lin-

early with the available resources and not disrupt client

operations. To achieve this, the key manager is implemented

by parallel stateless workers that have access to the master

key. The key server processes have to operate in a consistent

way, to serve the current version of a key consistent with the

data protected by it. It should also be possible to dynamically

adapt the number of servers to the load of the system.

Availability: Associated with scalability, the service must

also be resilient to failures of individual nodes. Problems with

the consistency of different key management servers can result

in loss of data, when different clients encrypt with different

keys.

Usability: In any security system, the weakest link is the

erroneous handling of sensitive material by users or operators

(as the reliance on user-memorable passwords shows). The

system should support operations in a straightforward and

transparent way.

III. DESIGN

A. Architecture

The architecture of the key server is shown in Figure 1.

Every node essentially runs the same key server independently

of the others, but has access to the distributed metadata KVS
and to the trusted storage. Having multiple key servers work

in parallel provides scalability. The core server locally caches

the most recently accessed keys in memory.

The KVS for metadata must support the usual put and get
operations on key/value pairs, with the additional requirement

that it supports conditional put. More precisely, the KVS

supports

get(key)→ (value, version)

put(key, value, version)→ success,

Key Cache

Core Server

KMIP

Server

Client

Application

Trusted

Storage

Metadata

KVS

Management

Tools

User

Local

Objec
ts

LKM

KMIP over TLS

Dire
ct

CLI

CLI, GUI, WWW

Key Server

Untrusted

Fig. 1. Overview of the key manager components. Cryptographic material is
only stored and handled inside the dashed regions.

where put takes effect only when success = TRUE. Every put
operation monotonically increments the version associated to a

value. The specification requires that put returns TRUE if and

only if the version of key that is replaced by the operation was

version. Multiple platforms can provide such operations, i.e.,

Comet [14], redis (https://redis.io), or Amazon DynamoDB

(https://aws.amazon.com/dynamodb/). The prototype that tar-

gets file encryption in IBM Spectrum Scale uses the cluster
configuration repository (CCR) as the distributed KVS im-

plementation, which is a Spectrum-Scale-internal distributed

data store with high availability that offers versioned put/get

operations.

Clients address keys through a unique, randomly generated

identifier in the KMIP interface. More user-friendly attributes

such as a name may be used to associate a key with the

function that the key plays in the context of the application,

and KMIP permits multiple keys to have the same name in the

scope of a KMIP server. The name, along with other attributes,

are part of the metadata of the key itself, and these attributes

can be used to retrieve the identifier of a key, which is then

used for subsequent operations. The communication between

the client and the key server is performed using the tag-type-

length-value (TTLV) transport of the KMIP protocol, which

in turn is communicated over a mutually-authenticated TLS

connection.

Cryptographic keys stored in the KVS are protected using

a master key retrieved from trusted storage. More precisely,

252



every key in the KVS is wrapped with the master key

using AES and authenticated encryption with Galois Counter

Mode (GCM). For every wrapped key (in the KVS), also the

identifier of the wrapping key is stored in the metadata. This

is needed for key rotation.

The trusted storage accessed by every node is initialized

with the master key. It can be evolved through key rotation. A

user interacts with the system through management tools for

the provisioning of the master key in trusted storage.

The core of the key server provides a local key manager
(LKM) interface towards a KMIP proxy server, which inter-

faces to the clients. This ensures compatibility with many ex-

isting endpoint clients in cloud and enterprise storage systems

that access a key manager over KMIP. The key management

service itself is completely stateless, and can flush its cache

at any time.

A client accesses a key over KMIP (via Create, Locate, Get,
Destroy, Rekey . . . operations), using the identifier, which is

stored e.g., in the metadata of the data unit protected by this

key. For a cloud object store, this could be in the metadata

of the account/container/object of an object as in OpenStack

Swift; for a distributed file system, this could be in the inode
of a file.

Storing keys in wrapped form ensures the key confidentiality
requirement. No data on persistent storage, apart from the

trusted storage, reveals any information about the keys. De-

crypted keys only exist in volatile memory. Furthermore using

authenticated encryption for wrapping also guards against

accidental or intentional alteration of cryptographic keys or

their attributes in the KVS.

The goals of scalability and availability are achieved by the

design of stateless key server nodes, which can be placed into

different failure zones, and by the use of a highly available

KVS for storing the key data. The inherent scalability and

availability of the distributed KVS is further enhanced by

deploying separate trusted storage on each key server node,

thus improving the characteristics of the entire system.

A potential drawback of this design is the overhead related

to the management of the trusted storage. The added complex-

ity comes from the fact that the master keys are now managed

internally by the system, and not delegated to an external

key management service. The overhead varies depending on

e.g., the choice of trusted storage media type, the degree of

integration of the trusted storage management with the rest of

the system, and regulatory compliance requirements.

B. Operations

Cryptographic material is stored in a format that is a

simplification of the network-level representation of KMIP.

This has the advantage that much of the needed functionality

is already available from existing KMIP libraries.

Clients authenticate to the KMIP server during the TLS

handshake using a client certificate, following the standard

practice that has been available and deployed with many KMIP

servers. After authentication, they may exchange data in the

KMIP format over the secure channel.

At system initialization time, the core server generates a

fresh master key and its identifier, and writes them to the

trusted storage over the local interface. Every key is stored in

the KVS as a separate data object under its identifier. During

operation the core server responds to client operations, arriving

through the KMIP interface, as follows.

Create: The key material is generated from a crypto-

graphically strong random source. The key itself is wrapped

with the master key; the master-key identifier together with the

key identifier are added as attributes. The data is serialized

in the KMIP-derived format and stored as an object in the

KVS, according to its key identifier. Key and key identifier

are returned to the client.

Get: For retrieving keys, the server uses the identifier

provided in the request by the client to locate the key. To

obtain the key material from the KVS, the server retrieves the

object containing the wrapped key, unwraps the key material

with the master key specified in the attributes, and verifies the

integrity of the unwrapped data. Then it returns key and key

identifier to the client.

Referencing a key with the unique identifier instead of the

name supports the implementation of client-side key rotation;

note that the name may be the same across different versions.

The key server additionally maintains a cache with the

recently served keys in cleartext. The server only has to query

the KVS when it has no cached copy of the key or when a

cached key reaches its refresh age.

Destroy: The server deletes the corresponding object with

the wrapped key in the KVS. Note this does not yet securely

erase the key according to the security model, as the KVS

may still keep a copy of the object and the master key has not

yet changed. This is addressed below.

Rekey: The KMIP Rekey operation for a given key creates

a fresh key with the same name and other attributes as the

existing key. It is implemented by creating a new key and

destroying the old one, and by removing the name from the

old key. The returned key material is fresh and has a new

identifier. The old key may still be accessible until the master

key is changed as well.

Secure deletion: The key server provides secure deletion

in the sense that the master key is rotated. Any key material

that was stored on the untrusted KVS wrapped with the

previous master key then becomes inaccessible. To support

this, master keys contain a version in their attributes. The

challenge lies in rotating the master key without disrupting

the other operations of the key server.

For the moment, assume that the rotation is triggered by a

dedicated agent, which may be a special management node

or an administrator client. For rotating one particular key in a

hierarchy, we call the keys that it wraps children (i.e., a client-

visible key) and the wrapping key the parent (i.e., master key).

To rotate the parent (i.e., master) key, fresh key material

with a higher version is first chosen and written to trusted

storage. From this moment on, any operation on the parent

key that does not specify a version or identifier returns the

new key. On the other hand, for any children wrapped with

253



the old key, the appropriate version can be retrieved with the

key identifier available in the metadata of the wrapping. This

ensures continuous operation while rotation is in progress, in

particular, key creation, retrieval, and destruction operations

can be served by other key-manager nodes. The agent now

cycles over all children of the parent, unwraps the child key,

rewraps it with the new parent key, and stores the outcome

in the corresponding object. When this is complete, the old

parent key is securely erased from the trusted storage.

This design can be generalized to key-wrapping hierarchies

of depth larger than one in a future extension. When the

key-rotation agent invokes a rotation operation for a key,

the rotation recursively trickles down to all its children. Key

rotation would then progress over the tree of children, until

they are all wrapped with the new key.

The only limitation regarding concurrent operation is that

the agent performing key rotation must be unique, as other-

wise, two rotation operations might occur concurrently and

leave the data in the KVS in an inconsistent state. With an

arbitrary, weakly consistent KVS, one can implement this by

partitioning the key space across the agents or alternatively by

using an external locking mechanism. With a versioned KVS,

however, the KVS-level objects can be replaced conditionally

on the old version containing the previous wrapping key

identifier. This ensures that each key is rotated atomically, with

the same parent key as for all of its siblings.

The operations for rotating the master key ensure the

security goal of key erasure.

IV. EVALUATION

To evaluate the key manager we have developed a prototype

and benchmarked it using the IBM Spectrum Scale distributed

cluster file system, formerly known as General Parallel File

System (GPFS). Spectrum Scale offers encryption at the level

of files, and some of the authors have already been involved in

the design and realization of the encryption feature (available

since GPFS V4.1). Each node in the cluster accesses the

encryption keys individually as a KMIP client; typically keys

are served using the IBM Security Key Lifecycle Manager

(ISKLM).

The benchmark was performed in a realistic environment

with a Spectrum Scale cluster (version 4.1) on two physical

servers. Each server was equipped with dual Intel Xeon E5630

processors and 40GB memory, running RedHat enterprise

Linux version 7. A Spectrum Scale cluster with a varying

number of clients was created on the physical servers. For

every file system node, a dedicated key manager node runs

on the same physical server. In production deployment we

envisage that every file-system/key-manager node pair is co-

located on each physical server; this enhances the reliability

as it spreads key management across different failure zones.

For the untrusted data store, we used the cluster configura-
tion repository (CCR) integrated with Spectrum Scale; it offers

a versioned KVS interface (in fact, its implementation supports

even stronger consistency). We created a file system in the

cluster with a policy to encrypt new files. Each Spectrum Scale

0 5 10 15 20 25 30
0

50

100

150

200

250

clients

re
q

u
es

ts
p

er
se

co
n

d

linear scaling

10 server threads

20 server threads

theoretical maximum

Fig. 2. Scalability of the service with client-side load balancing, showing
linear increase.

client was configured with the KMIP URL of its dedicated

key server, including a fail-over address at another key-server

node. The file system policy triggers the encryption process

whenever a new file is created. The default cache expiration

time was set to 15 min (but is irrelevant for the evaluation).

A. Scalability

A reasonable measure for the performance of the key man-

ager is throughput, measured as the number of keys served per

second. An artificial capacity limit was imposed by restricting

the size of the server thread pool that handles concurrent client

accesses.

We queried one key from a single key server with an

increasing number of clients running natively. Figure 2 shows

that performance scales linearly when the system operates

below its capacity limit (all measurements were taken over

an average of 10 seconds). By adapting the thread pool size,

we can show that the service scales as expected. The scaling

is independent of the distribution of threads over the servers.

In Figure 3 the independence of the threads from physical

servers is shown. Running six threads on one server yields

almost the same result as dividing them evenly among two

machines. In the case with two servers, the clients randomly

chose a server for each key. With the increasing number

of concurrent clients, we observe a degradation of the per-

formance as clients fight for resources. To resolve such a

situation, additional nodes would be added to the cluster.

Spectrum Scale clients configured in high-availability mode

and unable to reach a key manager would then automatically

fail over to other key-manager nodes.

B. Latency

During normal file-system operation the key server is rarely

exposed to high load. In this sense the throughput is more

254



0 2 4 6 8 10 12 14
0

20

40

60

80

clients

re
q
u
es

ts
p
er

se
co

n
d

linear scaling

3 threads each on 2 server

6 threads on 1 server

theoretical maximum

Fig. 3. Scalability of the key manager with client-side load balancing, showing
linear increase until reaching the capacity bound.

relevant for administrative tasks, such as booting the cluster

or mounting a file system. For the perceived performance the

latency until a requested key is available matters much more.

For instance, this cost occurs whenever an application opens

a new file, and the key is not cached.

To reliably measure the latency of the key retrieval, we

captured packet traces on the querying machine. In these traces

we can measure the total delay between the TCP handshake

packets, the KMIP response, and TLS-session tear-down. The

total latency is composed of two parts. First, a noticeable

fraction of time is spent to create the TLS channel. The

second part corresponds to the key manager’s operation. We

only describe results for key-manager operations, as the TLS

contribution is independent of it.

The client requests a key by its identifier. We measured

the time between the request and the response packet, which

depends on whether the key server has cached the key.

Fetching the key from the distributed KVS obviously comes at

a cost and results in about 90ms average latency. The timings

are shown in the following table, including the standard

ISKLM key server product running on the same hardware for

comparison:

Measurement Mean [ms] Stddev [ms]

Get key from KVS 90.06 ±0.76

Get key from key-server cache 0.30 ±0.05

Get key from ISKLM 200 −−

C. Concurrency and high availability

A second set of experiments was performed, where another

client concurrently stored new keys in the key server every

100 ms (which involves a write-through to the KVS). The

experiments of Section IV-A and IV-B, where clients only

retrieve keys, were executed. We saw no impact on the retrieval

rate or latency for the other client(s).

For testing high availability scenario, we performed a syn-

thetic test from a client stub to retrieve keys, using the same

native code as for key retrieval by the Spectrum Scale file

system. The parameters were set to time out after 20 seconds

and to retry once before selecting the next server. We queried

a key repeatedly and then shut down the primary key server

while monitoring the network traffic. The resulting behavior

matched the expected behavior.

V. CONCLUSION

As encryption of data at rest becomes more prevalent,

the challenge of managing the encryption keys also surfaces

for diverse systems. The scalable key-management design

presented in this work targets cloud-scale deployments. It

is compatible with storing the master keys in an HSM, but

achieves better performance than a solution exclusively relying

on a centralized key manager or a HSM.

The key manager is built on top of an untrusted key-value

store (KVS) and demonstrated in the context of the IBM

Spectrum Scale cluster file system. It serves file-encryption

keys using the KMIP standard. A key-hierarchy and key

rotation operations supporting secure deletion of critical data

have been described and prototyped.

The evaluation shows that the key manager was able to scale

linearly even under load from key updates, and performance

measurements conducted on the individual components indi-

cate that the throughput and latency are mostly limited by the

performance of the distributed KVS.

ACKNOWLEDGMENTS

This work has been supported in part by the European

Commission through the Horizon 2020 Framework Pro-

gramme (H2020-ICT-2014-1) under grant agreement number

644579 ESCUDO-CLOUD and in part by the Swiss State

Secretariat for Education, Research and Innovation (SERI)

under contracts number 15.0087.

REFERENCES

[1] M. Björkqvist, C. Cachin, R. Haas, X. Hu, A. Kurmus, R. Pawlitzek, and
M. Vukolić, “Design and implementation of a key-lifecycle management
system,” in Proc. Financial Cryptography and Data Security (FC 2010),
ser. Lecture Notes in Computer Science, R. Sion, Ed., vol. 6052.
Springer, 2010, pp. 160–174.

[2] OASIS Key Management Interoperability Protocol Technical Commit-
tee, “Key Management Interoperability Protocol Version 1.2,” 2015,
oASIS Standard, available from http://www.oasis-open.org/committees/
documents.php?wg abbrev=kmip.

[3] OASIS PKCS 11 Technical Committee, “PKCS #11 Cryptographic
Token Interface Current Mechanisms Specification Version 2.40,” 2016,
oASIS Standard, available from https://www.oasis-open.org/committees/
tc home.php?wg abbrev=pkcs11.

[4] “OpenStack Barbican,” https://wiki.openstack.org/wiki/Barbican, 2018.
[5] E. Barker, “Recommendation for key management — Part 1: General,”

National Institute of Standards and Technology (NIST), NIST Special
Publication 800-57 Part 1 Revision 4, 2016, available from http://csrc.
nist.gov/publications/PubsSPs.html.

[6] “Vormetric Data Security Management,” https://www.thalesesecurity.
com/products/data-encryption/vormetric-data-security-manager, 2018.

255



[7] “OpenStack Keystone,” https://wiki.openstack.org/wiki/Keystone, 2018.
[8] “Amazon CloudHSM,” https://aws.amazon.com/cloudhsm/, 2018.
[9] “Amazon Key Management Service,” https://aws.amazon.com/kms/,

2018.
[10] “IBM Key Protect,” https://console.ng.bluemix.net/catalog/services/

key-protect/, 2018.
[11] J. Reardon, S. Capkun, and D. Basin, “SoK: Secure data deletion,” in

Proc. 34th IEEE Symposium on Security & Privacy, 2013.
[12] G. Di Crescenzo, N. Ferguson, R. Impagliazzo, and M. Jakobsson, “How

to forget a secret,” in Proc. 16th Symposium on Theoretical Aspects of
Computer Science (STACS), ser. Lecture Notes in Computer Science,
C. Meinel and S. Tison, Eds., vol. 1563. Springer, 1999, pp. 500–509.

[13] C. Cachin, K. Haralambiev, H. Hsiao, and A. Sorniotti, “Policy-based
secure deletion,” in Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, ser. CCS ’13. New
York, NY, USA: ACM, 2013, pp. 259–270. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516690

[14] R. Geambasu, A. Levy, T. Kohno, A. Krishnamurthy, and H. M. Levy,
“Comet: An active distributed key-value store,” in Proc. 9th Symp.
Operating Systems Design and Implementation (OSDI), 2010.

256


