
Reasoning about Cloud Storage Systems

Hanpin Wang, Zhao Jin, Lei Zhang, Yuxin Jing, Jiang Xu and Yongzhi Cao
Key Laboratory of High Confidence Software Technologies (MOE),

School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, China

Email: {whpxhy, jinzhao, zhangleijuly, jyx, jiang.xu, caoyz}@pku.edu.cn

Abstract—The rapid growth of data has restricted the capabil-
ity of traditional storage technologies to store and manage data.
Massive growth in big data generated through cloud storage
systems (CSSs) has been observed. An important feature of
CSSs is that data are stored in blocks, and each block is
considered as a storage unit. Hence, CSSs usually have two
kinds of storage units: ordinary locations and block locations.
It makes CSSs very different from ordinary storage systems.
Then how do we appeal formal methods to model, describe and
reason about CSSs? In this paper, based on Separation Logic,
we propose a systematic method to verify the correctness of
management programs in CSSs.

The main contributions are as follows. (1) A language
is introduced to describe the cloud storage management. (2)
Assertions in Separation Logic are extended to describe the
properties of blocks in CSSs. (3) Hoare-style rules are proposed
to reason about the CSSs. Pre- and post-conditions are pairs
of assertions. Using these methods, the partial correctness of
cloud storage management can be verified.

Index Terms—cloud storage systems, Separation Logic, mod-
eling language, formal verification

1. Introduction

Data creation is occurring at a record rate, referred to
big data, has emerged as a widely recognized trend. Cloud
computing is a fast-growing technology to perform massive-
scale and complex computing. Big data and cloud computing
are conjoined [10]. The former provides users the ability
to process queries across multiple datasets, and the latter
provides the underlying engine. As an elementary part of
cloud computing, cloud storage plays an important role in
underlying data collection, storage, maintenance and output.
Nowadays, many clouding computing systems have already
been put into use, with their own cloud storage systems
(CSSs). One typical example is Google File System (GFS)
[8], which is a scalable distributed file system for large data-
intensive applications and takes Google cloud computing
into practice.

Like GFS, CSSs have more characteristics than tradi-
tional storage systems. An important one is that data files
are stored in a way of block. That is, the storage resources

of CSSs consist of small block spaces with a fixed size.
When storing a data file, the system may first cut the file
into some segments, and then put these segments into proper
blocks, taking every segment as a whole. Take GFS as an
example. Roughly, GFS works as follows. When a costumer
makes a request to store a file in a GFS, the system cuts the
file into several fragments, each with an equal size (usually
64MB) except for the last one. Then the system assigns a
sequence of blocks (called “chunks” [8] in GFS) to deposit
fragments of the file, one by one. Accordingly, each chunk
is of size 64M. Finally it returns all the block addresses so
that it can build a file table to record the relation between
the file fragments and the blocks. Other CSSs, like HDFS
[6], have a similar procedure.

At first glance, the above procedure of saving a file into
blocks in a CSS looks similar to that of saving values into
memory cells in a memory management system. But there
are still some substantial differences. For example, an array
can be put into a series of continuous memory cells, whereas
there are no “continuous” block addresses in most CSSs.
Instead, a file may be put into several discrete blocks, even
spreading in different block servers. These differences make
the properties of cloud storage management very different
from those of traditional memory management. Although
the concept of block storage has been proposed for many
years, it becomes more complicated in CSSs. Therefore it
brings the problem how to ensure the reliability of such
CSSs.

The reliability of CSSs may include many issues, such as
retrievability, search efficiency, correctness of management
programs, etc. Here we focus on the correctness of man-
agement programs, which is the basis of the reliability of
CSSs. Formal methods are mature enough for developing
the correctness of most computer programs. Furthermore,
formal method for traditional file system is a hot topic.
P. Gardner and G. Nizik proposed their work about local
reasoning for the POSIX file system [7,16]. W.H Hesselink
and M.I Lal provided abstract definitions for file systems
which are defined as a partial function from paths to data
[11]. In addition, some efforts to formalize CSSs have been
made. V. Serbanescu et al. proposed a modeling method
for distributed data aggregation service relied on a storage
system [19, 20]. Stephen et al. used formal methods to
analyze data flow and proposed an execution model for

107

2018 IEEE Third International Conference on Data Science in Cyberspace

978-1-5386-4210-8/18/$31.00 ©2018 IEEE
DOI 10.1109/DSC.2018.00024

executing Pig Latin scripts in cloud systems without sac-
rificing confidentiality of data [21]. Ateniese et al. used
so-called third party auditability in their “provable data
possession” model to ensure the file integrity on untrusted
storages [1, 2]. Wang et al. achieved a privacy-preserving
method in public cloud data auditing systems, and proposed
an auditing mechanism with lightweight communication
and computation cost [23, 24]. I. Pereverzeva et al. found
a formal solution for CSSs development [17]. It had the
capability of modeling large and elastic data storage system.

All the above works cannot reason about the existed
CSSs. Neither it has a unified modeling language and speci-
fications. Separation Logic [18], which is a Hoare-style logic
[12], has a strong theoretical and practical significance. By
using separation logic, some verification systems have been
implemented [3–5, 14, 15, 22].

In this paper, based on Separation Logic, we propose a
systematic method to verify the correctness of management
programs in CSSs. The main contributions are as follows.

• A language is defined to describe the cloud storage
management. The new commands mainly focus on
block operations. Accordingly, its operational seman-
tics is given by using the concepts of heap and store.

• Assertions in Separation Logic are extended to describe
the properties of blocks in CSSs. Quantifiers over block
variables and file variables are incorporated with ordi-
nary Separation Logic assertions. A tautology inference
system is built up and is proved to be sound.

• Hoare-style rules are proposed to reason about the
CSSs. Pre- and post-conditions are pairs of assertions.
One component of every pair is used to describe the
properties of ordinary locations (as in memory), while
the other component is used to describe the properties
of block locations.

We end up our paper with an example of appending file
to another to demonstrate the feasibility of our method.

2. The Modeling Language for CSSs

The Modeling language is an extension of WHILEh [9]
programming language with new ingredients to reflect the
new characteristics in CSSs, which is, data files are stored as
block. When storing a data file, the system may first cut a file
into some segments, and then put these segments into proper
blocks with taking every segment as a whole. Naturally, we
introduce the modeling language for CSSs by adding new
constructs for files and blocks. For space reasons, the content
of a block in our language will be considered as a single
integer value.

2.1. Syntax

In our language there are four kinds of expressions:
(arithmetic) location expressions, file expressions, block

expressions, and Boolean expressions. The full syntax for
expressions and commands in our language is as follows:

e ::= n | x, y, ... | e1 + e2 | e1 − e2 | e1 × e2 | #f

fe ::= nil | f | fe · bk | fe1 · fe2
bk ::= n | b | f(e)
be ::= e1 = e2 | e1 ≤ e2 | bk1 == bk2 | bk1 <== bk2 |

true | false | ¬be | be1 ∧ be2 | be1 ∨ be2

C ::= x := e | x := cons(e1, ..., en) | x := [e] | [e] := e′

| dispose(e) | f := create(bk∗) |
f := append(bk∗) | f1 := f2 � bk∗ | delete f |
b := bk | b := {bk} | {bk} := bk′ | delete bk |
C;C ′ | if be then C else C ′ | while be do C ′

where e is written for arithmetic location expressions, fe for
file expressions, bk for block expressions, be for Boolean
expressions, and C for commands.

Intuitively, #f means the block numbers the file f
occupies, and f(e) points out the address that the i-th block
of the file f corresponds to, where i is the value of the
expression e. As usual we write bk1 << bk2 to express the
Boolean expression (bk1 <== bk2) ∧ ¬(bk1 == bk2), and
e1 < e2 to express (e1 <= e2) ∧ ¬(e1 = e2).

Besides the commands in WHILEh , which contains all
commands of IMP [25], we introduce some new commands
to describe the special operations about files and blocks in
cloud storage management program.

File commands contain four core operations, which seem
to be enough to describe the majority of daily-file operations
in CSSs.

• f := create(bk∗): creation;
• f := append(bk∗): content appending;
• f1 := f2 � bk∗: address appending;
• delete f : file deletion.

Block commands express block operations. They are as
follows.

• b := {bk}: block lookup;
• b := bk: block assignment;
• {bk} := bk′: block mutation;
• delete bk: block deletion.

2.2. Domains

The model has five components: StoresV , StoresB ,
StoresF , HeapsV , and HeapsB . The StoresV is a total
function mapping from location variables to addresses. The
StoresB is a total function mapping from block variables
to block addresses. Strictly speaking, values, addresses, and
block addresses are different in type. But in our language,
to permit unrestricted address arithmetic, we assume that
all the values, addresses, and block addresses are integers.
The StoresF is a total function mapping from file variables
into a sequence of block addresses. The HeapsV is indexed
by a subset Loc of the integers, and is accessed using
indirect addressing [e], where e is an (arithmetic) location
expression. The HeapsB is indexed by a subset BlockLoc of

108

the integers, and is accessed using indirect addressing {bk},
where bk is a block expression.

Values � {...,−1, 0, 1, ...} = Z

Loc,BLoc,Atoms ⊆ Values

Var � {x, y, ...} BKVar � {b1, b2, ...} FVar � {f1, f2, ...}
StoresV � Var → Values StoresB � BKVar → Values

StoresF � Var → BLoc∗

HeapsV � Loc ⇀fin Values

HeapsB � BLoc ⇀fin Values

where ⇀ and ⇀fin can be found in [9]. Loc, BLoc and
Atoms are disjoint, and BLoc∗ = {(bloc1, ..., blocn) |
bloci ∈ BLoc, n ∈ N}, and for any element (bloc1, ...,
blocn) of BLoc∗, |(bloc1, ..., blocn)| means its length, that
is, |(bloc1, ..., blocn)| = n.

In order for allocation to always succeed, we place a
requirement on the sets Loc and BLoc. For any positive
integer m, there are infinitely many sequences of length m
of consecutive integers in Loc. For any positive integer n,
there are infinitely many sequences of length m of discrete
integers in BLoc. This requirement is satisfied if we take
Loc and BLoc as the non-negative integers. Then we could
take Atoms as the negative integers, and nil as -1.

The states of our language is defined as follows:

States � StoresV × StoresB × StoresF ×HeapsV ×HeapsB

A state σ ∈ States is a 5-tuple: (sV , sB , sF , hV , hB).

2.3. Semantics of the modeling language

Once the states are defined, we can specify the evalu-
ation rules of our new expressions. Notice that when we
try to give out the semantic of a expression, some stores
and heaps may not be used. For example, expression #f
only needs StoresF and StoresV . So we will only list the
necessary stores and heaps for each expression. Note that in
our language, expressions are heap-independent.

�#f�(sV , sF) = |sF (f)|; �b�(sV , sB , sF) = sB(b);

�f(e)�(sV , sB , sF) = bloci, if sF (f) = (bloc1, ...,

blocn), �e�(sV , sF) = i and 1 ≤ i ≤ n;

�nil�(sV , sF) = (); �f�(sV , sB , sF) = sF (f);

�fe · bk�(sV , sB , sF) = (bloc1, ..., blocn, bloc
′),

if �fe�(sV , sB , sF) = (bloc1, ..., blocn)

and �bk�(sV , sB , sF) = bloc′;
�fe1 · fe2�(sV , sB , sF) = (bloc1, ..., blocn, bloc1

′,
..., blocn

′),
if �fe1�(sV , sB , sF) = (bloc1, ..., blocn),

and �fe2�(sV , sB , sF) = (bloc1
′, ..., blocn′);

�bk1 == bk2�(sV , sB , sF)

=

{
T if �bk1�(sV , sB , sF) = �bk2�(sV , sB , sF)

F otherwise;

�bk1 <== bk2�(sV , sB , sF)

=

{
T if �bk1�(sV , sB , sF) <= �bk2�(sV , sB , sF)

F otherwise.

To state the semantics formally, following [9], we use
the crucial operations on the heaps:

• dom(hH) denotes the domain of a heap hH ∈ HeapsH ,
where hH range over hV and hB , HeapsH range over
HeapsV and HeapsB , and dom(sS) is the domain of a
store sS ∈ StoresS , where sS range over sV , sB and
sF , StoresS range over StoresV , StoresB and StoresF ;

• hH#hH
′ indicates that the domains of hH and hH

′ are
disjoint;

• hH ∗hH
′ is defined when hH#hH

′ holds and is a finite
function obtained by taking the union of hH and hH

′;
• i 	→ j is a singleton partial function which maps i to
j;

• for a partial function f from U to W and f ′ from V to
W , the partial function f [f ′] from U to W is defined
by:

f [f ′](i) �

⎧⎨
⎩

f ′(i) if i ∈ dom(f ′),
f(i) if i ∈ dom(f),
undefined otherwise.

Here we give out the operational semantics of our new
commands, which are specified by the following inference
rules. Each command is interpreted using a relation “�”
between configurations. Each configuration includes a state
σ, a command-state pair 〈C, σ〉, or a special configuration
fault indicating a memory fault.

(bk1, σ) −→ m1, ..., (bkn, σ) −→ mn

〈f := create(bk1, ..., bkn), σ〉� (sV , sB , sF [(m1
′

, ...,mn
′)/f], hV , [hB |m1

′ : m1|...|mn
′ : mn])

where m1
′, ...,mn

′ ∈ BLoc− dom(hB).

(bk1, σ) −→ m1, ..., (bkn, σ) −→ mn

〈f := append(bk1, ..., bkn), σ〉� (sV , sB , sF [(sF (f)�
(m1

′, ...,mn
′))/f], hV , [hB |m1

′ : m1|...|mn
′ : mn])

where m1
′, ...,mn

′ ∈ BLoc− dom(hB).

(bk1, σ) −→ m1, ..., (bkn, σ) −→ mn

〈f1 := f2 � (bk1, ..., bkn), σ〉�
(sV , sB , sF [(sF (f2) � (m1, ...,mn))/f1], hV , hB)

〈delete f, σ〉� (sV , sB , sF �(dom(sF) \ {f}), hV , hB)

(bk, σ) −→ m
〈b := {bk}, σ〉� (sV , sB [hB(m)/b], sF , hV , hB)

(bk, σ) −→ m
〈b := bk, σ〉� (sV , sB [m/b], sF , hV , hB)

(bk, σ) −→ m1, (bk
′, σ) −→ m2

〈{bk} := bk′, σ〉� (sV , sB , sF , hV , hB [m2/m1])
(bk, σ) −→ m

〈delete bk, σ〉� (sV , sB�(dom(sB) \ {m}), sF , hV , hB)

109

[f |x : a] denotes the function that maps variable x into
value a and all other variables y in dom(f) into f(y). [f�s]
denotes the restriction of the function f to domain s. They
both can be found in [18]. (m1, ...,mn) � (m1

′, ...,mn
′)

means the conjunction of two sequences. Since sF (f) is
a sequence of block addresses, sF (f) � (m1, ...,mn) denotes
a sequence of block addresses which is a composition of
sF (f) followed by (m1, ...,mn).

3. The Assertion Language for CSSs

To describe the properties of CSSs, we construct a logic
to deal with both locations and blocks. BI Pointer Logic [13]
provides an elegant and powerful formalism for ordinary
locations. We extend BI pointer logic with the file and
block expressions to describe files and blocks. Following
[9], the formal semantics of an assertion is defined by a
satisfactory relation “ |= ” between a state and an assertion.
(sV , sB , sF , hV , hB) |= p means that the assertion p holds
in the state (sV , sB , sF , hV , hB).

We rename the assertions of BI pointer logic as location
assertions, meanwhile call the block formulas as block
assertions. Both location assertions and block assertions are
built on expressions.

3.1. Location Assertion

3.1.1. Syntax. Location assertions describe the properties
about locations. However, there are some differences be-
tween the BI assertions and location assertions. Quantifiers
over file variables are allowed in location assertions. This
makes the location assertions much more complicated, since
they are not first-order quantifiers.

α ::= trueV | falseV | ¬α | α1 ∧ α2 | α1 ∨ α2 |
α1 → α2 | e1 = e2 | e1 ≤ e2 | ∀x.α | ∃x.α |
| ∀f.α | ∃f.α | empV | e 	→ e′ | α1 ∗ α2 |
α1 −∗ α2

3.1.2. Semantics. Intuitively, the truth value of a location
assertion depends only on the stores and heaps for loca-
tion variables. Note that a location assertion may contain
such kind of expressions as #f . So the satisfactory rela-
tion depends on the stores for files as well. Let sV be a
store for variables, sF be a store for files, and hV be a
heap for variables. Given a location assertion α, we define
sV , sF , hV |= α by induction on α in the following table 1.

Definition of other location assertions are similar to these
in BI pointer logic.

3.2. Block Assertion

3.2.1. Syntax. Block assertions describe the properties
about blocks. So they would include the logic operations

TABLE 1. SEMANTICS OF LOCATION ASSERTION

sV , sF , hV |= trueV ;
sV , sF , hV |= α1 → α2 iff if sV , sF , hV |= α1

then sV , sF , hV |= α2;
sV , sF , hV |= (∀x.α) iff sV [n/x], sF , hV |= α for any n ∈ Loc;
sV , sF , hV |= (∀f.α) iff sV , sF [n̄/f], hV |= α

for any n̄ = (n1, n2, . . . , nk) ∈ BLoc*;
sV , sF , hV |= (∃f.α) iff sV , sF [n̄/f], hV |= α

for some n̄ = (n1, n2, . . . , nk) ∈ BLoc*;
sV , sF , hV |= empV iff dom(hV) = ∅;
sV , sF , hV |= α1 ∗ α2 iff there exist h1

V , h2
V with

h1
V #h2

V and hV = h1
V ∗h2

V such that
sV , sF , h1

V |= α1 and sV , sF , h2
V |= α2.

and heap operations on block expressions besides ordinary
logical connectives and quantifies.

β ::= trueB | falseB | ¬β | β1 ∧ β2 | β1 ∨ β2 |
β1 → β2 | bk1 == bk2 | bk1 <== bk2 | ∀x.β |
∃x.β | ∀b.β | ∃b.β | ∀f.β | ∃f.β | empB |
bk 	→ bk′ | β1 ∗ β2 | β1 −∗ β2 | f � fe | fe = fe′

3.2.2. Semantics. Obviously, the truth value of a block
assertion depends on the stores and heaps for blocks. As a
block expression may contains the form f(e), the truth value
of a block assertion also depends on the stores for variables
and files. Let sV be a store for variables, sB be a store for
blocks, sF be a store for files, and hB be a heap for blocks.
Given a block assertion β, we define sV , sB , sF , hB |= β
by induction on β in the following table 2.

TABLE 2. SEMANTICS OF BLOCK ASSERTION

sV , sB , sF , hB |= trueB ;
sV , sB , sF , hB |= bk1 <== bk2 iff �bk1�σ ≤ �bk2�σ;
sV , sB , sF , hB |= (∀x.β) iff sV [n/x], sB , sF , hB |= β

for any n ∈ Loc;
sV , sB , sF , hB |= (∃b.β) iff sV , sB [n/b], sF , hB |= β

for some n ∈ BLoc;
sV , sB , sF , hB |= (∀f.β) iff sV , sB , sF [n̄/f], hB |= β

for any n̄ = (n1, n2, . . . , nk) ∈ BLoc*;
sV , sB , sF , hB |= (β1 −∗ β2) iff for any block heap hB

′,
if hB

′#hB and sV , sB , sF , hB
′ |= β1,

then sV , sB , sF , hB∗hB
′ |= β2;

sV , sB , sF , hB |= f � fe iff �f�σ = m̄ and �fe�σ = n̄,
and hB(mi) = ni for 1 ≤ i ≤ k,

where m̄ = (m1,m2, ...,mk), n̄ = (n1, n2, ..., nk) ∈ BLoc*
such that |m̄| = |n̄| = k.

Definition of other block assertions are similar to these
in location assertions.

3.3. Global Assertion

3.3.1. Syntax. Roughly speaking, (location assertion,block
assertion) pairs are called global assertions, and there are
several operations between pairs. More precisely, we use

110

the symbol p to stand for the global assertions, with the
following BNF equation:

p ::= 〈α, β〉 | true | false | ¬p | p1 ∧ p2 | p1 ∨ p2 |
p1 → p2 | ∀x.p | ∃x.p | ∀b.p | ∃b.p | ∀f.p | ∃f.p |
emp | p1 ∗ p2 | p1 −∗ p2

3.3.2. Semantics. The truth value of a global assertion de-
pends on all kinds of stores and heaps. Let sV be a store for
variables, sB be a store for blocks, sF be a store for files, hV

be a heap for variables and hB be a heap for blocks. Given
a global assertion p, we define sV , sB , sF , hV , hB |= p by
induction on p in the following table 3.

TABLE 3. SEMANTICS OF GLOBAL ASSERTION

true � 〈trueV , trueB〉; emp � 〈empV , empB〉;
sV , sB , sF , hV , hB |= 〈α, β〉 iff sV , sF , hV |= α and

sV , sB , sF , hB |= β;
sV , sB , sF , hV , hB |= ¬p iff sV , sB , sF , hV , hB �|= p;
sV , sB , sF , hV , hB |= p1 ∨ p2 iff

sV , sB , sF , hV , hB |= p1 or sV , sB , sF , hV , hB |= p2;
sV , sB , sF , hV , hB |= p1 → p2 iff

if sV , sB , sF , hV , hB |= p1 then sV , sB , sF , hV , hB |= p2;
sV , sB , sF , hV , hB |= ∀x.p iff sV [n/x], sB , sF , hV , hB |= p

for any n ∈ Loc;
sV , sB , sF , hV , hB |= ∀b.p iff sV , sB [n/b], sF , hV , hB |= p

for any n ∈ BLoc;
sV , sB , sF , hV , hB |= ∀f.p iff sV , sB , sF [n̄/f], hV , hB |= p

for any n̄=(n1, n2,. . ., nk)∈BLoc*;
sV , sB , sF , hV , hB |= emp iff dom(hV) = ∅ and dom(hB) = ∅;
sV , sB , sF , hV , hB |= p1 ∗ p2 iff there exists h1

H , h2
H with

h1
H#h2

H and hH = h1
H ∗ h2

H such that
sV , sB , sF , h1

V , h1
B |= p1 and sV , sB , sF , h2

V , h2
B |= p2,

where hi
H range over hi

V and hi
B and i = 1, 2;

sV , sB , sF , hV , hB |= (p1 −∗ p2) iff for any block heap hH
′,

if hH
′#hH and sV , sB , sF , hV

′, hB
′ |= p1,

then sV , sB , sF , hV ∗ hV
′, hB ∗ hB

′ |= p2,
where hH range over hV and hB .

There are some other laws about global assertions which
will be stated in another paper.

4. The Specification Language for CSSs

Specifications for CSSs can be similarly built up with
those of Separation Logic. But we restrict the pre- and post-
conditions to be global assertions only. Also we will only
discuss partial correctness here. Formally, a specification is
of the form {p} c {q}, where p and q are global assertion.
The semantics of specifications for CSSs is similar to that
for Hoare Logic or Separation Logic.

4.1. Transfer Function

According to syntax, any Boolean expression can not be
any kind of assertion. Hence it cannot appear in any specifi-
cation. Thus Boolean expressions in if or while commands
cannot be used directly in pre- or post-conditions. To fix
this problem, we define the transfer function T that maps
Boolean expressions to global assertions.

T ∈ Transfer functions = Boolean expressions ⇀ Global
assertions

T (e1 = e2) = 〈e1 = e2, trueB〉
T (e1 ≤ e2) = 〈e1 ≤ e2, trueB〉
T (bk1 == bk2) = 〈trueV , bk1 == bk2〉
T (bk1 <== bk2) = 〈trueV , bk1 <== bk2〉
T (true) = true T (false) = false T (¬be) = ¬T (be)
T (be1 ∧ be2) = T (be1) ∧ T (be2)

T (be1 ∨ be2) = T (be1) ∨ T (be2)

Now we are able to propose specification rules. Gener-
ally, a rule consists of some premises and a conclusion. As
in most kinds of logic, we distinguish such rules that have
no premises and call them axioms.

4.2. Axioms

We propose one or more axioms for each basic com-
mand:

Axioms of skip and variable assignment are similar to
corresponding axioms in Hoare Logic.

{p} skip {p} (A1)

{〈x = x′ ∧ empV , β〉} x := e

{〈x = e[x′/x] ∧ empV , β〉}
(A2)

Variable allocation and lookup will change StoresV , thus
may change the truth value of the variable assertion. Here
we confine that the variable changed does not appear in the
block assertion.

{〈x = x′ ∧ empV , β〉} x := cons(e1, ..., en)

{〈x 	→ e1[x
′/x], e2[x′/x], ..., en[x′/x], β〉} (A3)

where x does not appear in β.

{〈x = x′ ∧ e 	→ x′′, β〉} x := [e]

{〈x = x′′ ∧ e[x′/x] 	→ x′′, β〉} (A4)

where x does not appear in β.
Variable mutation and deallocation only have impact on

heapV , so the block assertion part will not change.

{〈e 	→ −, β〉} [e] := e′ {〈e 	→ e′, β〉} (A5)

{〈e 	→ −, β〉} dispose(e) {〈empV , β〉} (A6)

For the block commands, as block expressions will never
appear in variable assertions, so only the block assertion part
will change.

{〈α, b == b′ ∧ empB〉} b := bk

{〈α, b == bk[b′/b] ∧ empB〉}
(A7)

{〈α, bk 	→ −〉} {bk} := bk′ {〈α, bk 	→ bk′〉} (A8)

{〈α, bk 	→ −〉} delete bk {〈α, empB〉} (A9)

111

{〈α, b == b′ ∧ bk 	→ b′′〉} b := {bk}
{〈α, b == b′′ ∧ bk[b′/b] 	→ b′′〉} (A10)

In most time, we use block lookup command to find the
content of a file block, so we add this axiom of block lookup
in special case to make the verification more powerful.

{〈#f2 = i− 1, f1 � f2 · bk · f3〉} b := {f1(i)}
{〈#f2 = i− 1, f1 � f2 · bk · f3 ∧ b == bk〉} (A11)

where b does not appear in bk.
Commands of file will change StoresF , thus may have

impact on both variable assertions and block assertions. To
make axioms simple, we only discuss the situation when the
file changed in commands does not appear in the variable
assertion.

{〈α, f = f ′ ∧ empB〉} f := create(bk1, ..., bkn)

{〈α[f ′/f], f � bk1[f
′/f] · ... · bkn[f ′/f]〉} (A12)

{〈α, f = f ′ ∧ f � fe〉} f := append(bk1, ..., bkn)

{〈α[f ′/f], f � fe · bk1[f ′/f] · ... · bkn[f ′/f]} (A13)

{〈α, f � −〉} delete f {〈α, empB〉} (A14)

where f does not appear in α.

{〈α, f1 � − ∧ f2 � bk∗ � fe · (bk1, ..., bkn)〉} f1 := f2 � bk∗
{〈α, f1 � fe · (bk1, ..., bkn)}

(A15)

where f does not appear in α.

4.3. Rules

Rule of composition applies to sequentially executed
programs.

{p} C {q} {q} C ′ {r}
{p} C;C ′ {r} (R1)

Conditional rule states that a postcondition common to
then and else part is also a postcondition of the whole if
statement.

{p ∧ T (be)}C{q} {p ∧ ¬T (be)}C ′{q}
{p} if be then C else C ′ {q} (R2)

While rule states that the loop invariant is preserved by
the loop body.

{p ∧ T (be)}C ′{p}
{p} while be do C ′ {p ∧ ¬T (be)} (R3)

Consequence rule means we can strengthen the precon-
dition or weaken the postcondition.

|= p′ → p {p}C{q} |= q → q′

{p′}C{q′} (R4)

Similar to Auxiliary Variable Elimination rule of Sep-
aration Logic, we have the following Auxiliary Variable
Elimination rules.

{p}C{q}
{∃xS .p}C{∃xS .q} xS /∈ YS (R5)

where xS ∈ V arS and xS range over xV , xB , and xF .
Frame rule is also extended to Global Assertions.

{p}C{q}
{p ∗ r}C{q ∗ r} ModifyS(C) ∩ FV(r) = ∅ (R6)

where ModifyS(C) range over ModifyV (C), ModifyB(C),
and ModifyF (C).

4.4. Example: A Proof of APPEND Function

Now, we will demonstrate how to use these axioms and
rules by a simple example that proves the correctness of
append function.

function Append (f_1, f_2)
i := 1;
while i <= #f_1 do
bc := {f_1(i)};
f_2 := append(bc);
i := i + 1;
end while
end function

After the executing of function Append, the content of
f2 should be it’s initial content followed by the content of
f1, or formally:

{∃f3〈#f3 = #f1, f1 � f3 ∗ f2 � f4〉}
Append();

{∃f3〈#f3 = #f1, f1 � f3 ∗ f2 � f4 · f3〉}
where f1 is the file appended to f2, f3 is the content of f1,
f4 is the initial content of f2.

Here is the proof.

1©{∃f3〈#f3 = #f1, f1 � f3 ∗ f2 � f4〉} (Given)

2©{∃f3〈1 ≤ #f1 + 1 ∧#nil = 0 ∧#f3 = #f1, f1 � nil

· f3 ∗ f2 � f4 · nil〉} (1©)

3©{∃f5∃f6〈1 ≤ #f1 + 1 ∧#f5 = 0 ∧#f6 = #f1, f1 � f5

· f6 ∗ f2 � f4 · f5〉} (2©)

4©{∃f5∃f6〈1 ≤ #f1 + 1 ∧#f5 = 0 ∧#f6 = #f1, f1 � f5

· f6 ∗ f2 � f4 · f5〉}
i := 1;

{∃f5∃f6〈i ≤ #f1 + 1 ∧#f5 = i− 1 ∧#f6 = #f1 − i+ 1,

f1 � f5 · f6 ∗ f2 � f4 · f5〉} (3© A2)

We are proving the correctness of the function step
by step. So after the first command i := 1;, we get a
complicated condition from the initial condition. The next

112

command is a while-loop. To use the rule of while-loop(R3),
we must find the loop invariant first.

Let A ≡ ∃f5∃f6〈i ≤ #f1 + 1 ∧#f5 = i− 1 ∧#f6 = #f1

− i+ 1, f1 � f5 · f6 ∗ f2 � f4 · f5〉,
C ≡ bc := {f1(i)}; f2 := append(bc); i := i+ 1,

be ≡ i ≤ #f1,

Here f5 means the content copied, f6 means the rest
content. We will prove A is the loop invariant, i.e. {A ∧
T (be)} C {A}.
5©A ∧ T (be) = {∃f5∃f6〈i ≤ #f1 ∧#f5 = i− 1 ∧#f6 =

#f1 − i+ 1, f1 � f5 · f6 ∗ f2 � f4 · f5〉}
6©{∃f5∃f7∃bk〈i ≤ #f1 ∧#f5 = i− 1 ∧#f7 = #f1 − i+

1− 1, f1 � f5 · bk · f7 ∗ f2 � f4 · f5〉} (5©)

7©{∃f5∃f7∃bk〈i ≤ #f1 ∧#f5 = i− 1 ∧#f7 = #f1 − i+

1− 1, f1 � f5 · bk · f7 ∗ f2 � f4 · f5〉}
bc := {f1(i)};

{∃f5∃f7∃bk〈i ≤ #f1 ∧#f5 = i− 1 ∧#f7 = #f1 − i+ 1

− 1, f1 � f5 · bk · f7 ∗ f2 � f4 · f5 ∧ bc = bk〉}
(6© A11)

8©{∃f5∃f7∃bk〈i ≤ #f1 ∧#f5 = i− 1 ∧#f7 = #f1 − i+

1− 1, f1 � f5 · bk · f7 ∗ f2 � f4 · f5 ∧ bc = bk〉}
f2 = append(bc);

{∃f5∃f7∃bk〈i ≤ #f1 ∧#f5 = i− 1 ∧#f7 = #f1 − i+ 1

− 1, f1 � f5 · bk · f7 ∗ f2 � f4 · f5 · bk〉} (7© A13)

9©{∃f8∃f7〈i ≤ #f1 ∧#f8 = i− 1 + 1 ∧#f7 = #f1 − i+

1− 1, f1 � f8 · f7 ∗ f2 � f4 · f8〉} (8©)

10©{∃f5∃f6〈i ≤ #f1 ∧#f5 = i− 1 + 1 ∧#f6 = #f1 − i+

1− 1, f1 � f5 · f6 ∗ f2 � f4 · f5〉} (9©)

11©{∃f5∃f6〈i ≤ #f1 ∧#f5 = i− 1 + 1 ∧#f6 = #f1 − i+

1− 1, f1 � f5 · f6 ∗ f2 � f4 · f5〉}
i := i+ 1;

{∃f5∃f6〈i ≤ #f1 + 1 ∧#f5 = i− 1 ∧#f6 = #f1 − i+ 1,

f1 � f5 · f6 ∗ f2 � f4 · f5〉} (10© A2)

Let f6 = bk · f7, we can get 6© from 5©. And let
f8 = f5 · bk, we can get 9© from 8©. Exchange f7 and f8
in 9© to f6 and f5, we can get 10©.

And we notice that {∃f5∃f6〈i ≤ #f1 + 1 ∧ #f5 =
i−1∧#f6 = #f1−i+1, f1 � f5·f6∗f2 � f4·f5〉} in 11© is
A itself. So we prove that {A∧T (be)} C {A}. By the rule of
while-loop(R3), we get {A} while be do C {A∧¬T (be)}.
12©A ∧ ¬T (be) = ∃f5∃f6〈i = #f1 + 1 ∧#f5 = i− 1 ∧#f6

= #f1 − i+ 1, f1 � f5 · f6 ∗ f2 � f4 ∗ f5〉
13©{∃f5∃f6〈i ≤ #f1 + 1 ∧#f5 = i− 1 ∧#f6 = #f1 − i+

1, f1 � f5 · f6 ∗ f2 � f4 ∗ f5〉} (12©)

while be do C;

{∃f5∃f6〈i = #f1 + 1 ∧#f5 = i− 1 ∧#f6 = #f1 − i+ 1,

f1 � f5 · f6 ∗ f2 � f4 ∗ f5〉} (5©- 11© R3)

From the while-loop we know when it finishes, i =
#f1 + 1. We can get following conclusions from 13©.

14©{∃f5∃f6〈i = #f1 + 1 ∧#f5 = #f1 ∧#f6 = 0, f1 � f5

· f6 ∗ f2 � f4 ∗ f5〉} (13©)

15©{∃f5〈#f5 = #f1, f1 � f5 ∗ f2 � f4 ∗ f5〉} (14©)

16©{∃f3〈#f3 = #f1, f1 � f3 ∗ f2 � f4 ∗ f3〉} (15©)

With all 1©- 16© and the rule of composition(R1), we
proved the correctness of append function.

5. Conclusion

In the paper, we have extended Separation Logic to
verify the correctness of management programs in CSSs.
The imperative language of Separation Logic is incorporated
with block operations. Assertions in Separation Logic are
extended to contain quantifiers over block variables and file
variables. Hoare-style rules are proposed to reason about the
CSSs. Using these methods, the partial correctness of cloud
storage management can be verified.

Future work will be done alone the following directions:
(1) Consider more characteristics of CSSs, such as paral-
lelism, (key,value) pairs and the relations between blocks
and locations. (2) Investigate the expressiveness, decidability
and model checking algorithms of assertions. (3) Work out
the expressiveness and completeness of the specification
rules above.

Acknowledgments

This work was supported by the National Natural
Science Foundation of China under Grants 61170299,
61370053 and 61572003.

References

[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, Provable data possession at untrusted stores,
Proceedings of the 14th acm conference on computer and communi-
cations security, 2007, pp. 598–609.

[2] G. Ateniese, R.D Pietro, L.V Mancini, and G. Tsudik, Scalable and
efficient provable data possession, Proceedings of the 4th international
conference on security and privacy in communication netowrks, 2008,
pp. 9:1–9:10.

[3] Josh Berdine, Cristiano Calcagno, and Peter W O’Hearn, Symbolic
execution with separation logic, Aplas, 2005, pp. 52–68.

[4] Dino Distefano and Matthew J Parkinson J, jstar: Towards practical
verification for java, Acm sigplan notices, 2008, pp. 213–226.

[5] Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis,
Deny-guarantee reasoning, In esop09: European symposium on pro-
gramming, volume 5502 of lncs, 2009.

[6] Apache Software Foundation, Apache hadoop distributed file system,
2016. (accessed 16.05.10).

[7] P. Gardner, G. Ntzik, and A. Wright, Local reasoning for the posix
file system, Proceedings of the 23rd european symposium on program-
ming, 2014, pp. 169–188.

[8] S. Ghemawat, H. Gobioff, and S. Leung, The google file system, Pro-
ceedings of the 19th acm symposium on operating systems principles,
2003, pp. 29–43.

[9] Yang H, Local reasoning for stateful programs, Ph.D. Thesis, 2001.

113

[10] Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Nor Badrul Anuar,
Salimah Mokhtar, Abdullah Gani, and Samee Ullah Khan, The rise
of big data on cloud computing: Review and open research issues,
Information Systems 47 (2015), 98–115.

[11] W.H Hesselink and M.I Lal, Formalizing a hierarchical file system,
Formal Aspects of Computing 24 (2012), no. 1, 27–44.

[12] C. A. R. Hoare, An axiomatic basis for computer programming,
Commun. ACM 12 (October 1969), no. 10, 576–580.

[13] Samin S Ishtiaq and Peter W O’hearn, Bi as an assertion language for
mutable data structures, ACM SIGPLAN Notices 36 (2001), no. 3,
14–26.

[14] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer, Iris: Monoids and invariants
as an orthogonal basis for concurrent reasoning, ACM SIGPLAN
Notices 50 (2015), no. 1, 637–650.

[15] Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal, A
relational model of types-and-effects in higher-order concurrent sep-
aration logic., Popl, 2017, pp. 218–231.

[16] G. Ntzik and P. Gardner, Reasoning about the posix file system: Local
update and global pathnames, SIGPLAN Not. 50 (October 2015),
no. 10, 201–220.

[17] I. Pereverzeva, L Laibinis, E. Troubitsyna, M. Holmberg, and M. Pöri,
Formal modelling of resilient data storage in cloud, Proceedings of the
15th international conference on formal engineering methods, 2013,
pp. 363–379.

[18] J.C Reynolds, Separation logic: a logic for shared mutable data
structures, Proceedings of the 17th annual ieee symposium on logic
in computer science, 2002, pp. 55–74.

[19] V. Serbanescu, F. Pop, V. Cristea, and G. Antoniu, A formal method for
rule analysis and validation in distributed data aggregation service,
World Wide Web 18 (2015), no. 6, 1717–1736.

[20] Vlad Serbanescu, Florin Pop, Valentin Cristea, and Gabriel Antoniu,
Architecture of distributed data aggregation service, Advanced infor-
mation networking and applications (aina), 2014 ieee 28th interna-
tional conference on, 2014, pp. 727–734.

[21] J.J Stephen, S. Savvides, R. Seidel, and P. Eugster, Program analysis
for secure big data processing, Proceedings of the 29th acm/ieee
international conference on automated software engineering, 2014,
pp. 277–288.

[22] Kasper Svendsen and Lars Birkedal, Impredicative concurrent ab-
stract predicates., Esop, 2014, pp. 149–168.

[23] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, Toward secure and
dependable storage services in cloud computing, IEEE Transactions
on Services Computing 5 (2012April), no. 2, 220–232.

[24] C. Wang, Q. Wang, K. Ren, and W. Lou, Privacy-preserving public
auditing for data storage security in cloud computing, Proceedings of
the 30th ieee international conference on computer communications,
2010March, pp. 1–9.

[25] G. Winskel, The formal semantics of programming languages: an
introduction, MIT press, Cambridge, 1993.

114

