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a b s t r a c t

The goal of this paper is to show that crude oil volatility is predictive of stock volatility in the
short-term from both in-sample and out-of-sample perspectives. The revealed predictability is also
of economic significance, as shown by examining the performance of portfolios constructed on
the oil-based forecasts of stock volatility. Results from robustness tests suggest that oil volatility
provides different information from traditional macro variables. Further analysis shows that
simple linear regression is sufficient for capturing predictive relationships between oil and stock
volatility. Oil volatility is found to predict return volatilities of a significant number of industry
portfolios during recent periods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Since the seminal work of Schwert (1989a), economic sources of financial volatility have been investigated extensively
(e.g., Asgharian et al. (2013); Choudhry et al. (2016); Christiansen et al. (2012); Diebold and Yilmaz (2008); Engle and Rangel
(2008); Engle et al. (2013); Nonejad (2017); Paye (2012)). This interest stems from the fact that financial volatility is a crucial
input in risk management, portfolio allocation and asset pricing. Financial volatility is also found to successfully predict business
cycles, providing early signals of upcoming recessions (Chauvet et al., 2015). However, a recent paper by Paye (2012) shows that
although some variables such as treasury spread and default returns can theoretically affect stock volatility, it is difficult to find an
individual variable that can predict stock volatility. In detail, adding any macro variables to the benchmark autoregressive model
cannot significantly improve out-of-sample forecasting performance. The failure of individual fundamental variables in forecasting
stock volatility is further confirmed by more comprehensive analyses conducted by Christiansen et al. (2012), unless some modeling
issues such as parameter instability and model uncertainty are addressed (Nonejad, 2017).

In this paper, we show that a new variable, crude oil volatility, can be strongly predictive of stock volatility. We demonstrate that oil
volatility improves the short-horizon predictability of stock volatility over the autoregressive benchmark model. This predictability is
significant during various sample periods. Our investigation complements studies of modeling and forecasting volatility by providing
a new fundamental determinant of stock volatility. Our findings are helpful for understanding the economic sources of changes in
stock volatility.

Various studies have investigated the relationship between oil and stock volatility (see, e.g., Degiannakis et al. (2014); Arouri
et al. (2011, 2012); Creti et al. (2013)). Most papers take an in-sample perspective using multivariate GARCH models. However, it
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is commonly understood that good in-sample performance does not imply that the predictive model displays superior out-of-sample
performance. We contribute to the literature by paying attention to the ability of oil to predict stock volatility from an out-of-sample
perspective. We employ a parsimonious predictive regression based on realized volatility to provide forecasts, the superiority of which
over the GARCH has been well documented in the literature.

Our paper is closely related to Driesprong et al. (2008), who find that changes in oil prices predict stock returns in-sample. We
complement their work by showing that oil volatility can also predict stock volatility both in-sample and out-of-sample. This paper is
also linked to Chen et al. (2010), who show that commodity prices cannot predict asset prices such as exchange rate. We provide a
novel example whereby the volatility of a special commodity, crude oil, is shown to have predictive power over stock return volatility.
We extend the idea of Chen et al. (2010) to a volatility case and obtain different results.

We use daily data spanning January 1990 to December 2015 for the S&P 500 index and prices of West Texas Intermediate (WTI)
and Brent oils. We use simple predictive regressions for realized volatility of stock index and take past oil volatility as a predictor
in addition to lagged stock volatility. The squared daily returns in each month are summed to construct monthly realized volatility.
Our in-sample results indicate significant Granger causality from oil volatility to stock volatility. An increase in current month’s oil
volatility can result in a significant increase in next month’s stock volatility. WTI oil volatility provides greater in-sample predictive
power than Brent oil volatility; possibly and plausibly because WTI oil is more closely related to the U.S. economy.

We use both recursive and rolling estimation window to generate one-step-ahead out-of-sample forecasts of stock volatility for
January 1996 through December 2015. We compare the out-of-sample forecasting performance of oil models for stock volatility with
the benchmark autoregressive model to detect the information content of oil. In addition to the standard regression, we impose an
economic constraint on the coefficient of oil volatility in the forecasting procedure. In detail, according to standard economic theory,
oil price uncertainty should have positive effects on stock uncertainty. If the sign of the oil volatility coefficient is not consistent
with economic theory (i.e., negative), we abandon the oil model forecasts and instead use the benchmark alternatives. The similar
parameter restriction method has hitherto been applied in stock return forecasting studies (Campbell and Thompson, 2008; Pettenuzzo
et al., 2014). The rationale is that the ‘‘abnormal’’ coefficient sign implies that the variable of interest is not a determinant of the
dependent variable. The incorporation of irrelevant variables in the predictive regression is likely to cause overfitting, manifesting
itself as improved in-sample performance but inferior out-of-sample performance.

Following the literature (Paye, 2012; Goyal and Welch, 2008), we use the out-of-sample 𝑅2 (𝛥𝑅2
𝑂𝑂𝑆 ) to evaluate out-of-sample

performance. This criterion measures the percentage decrease in the mean squared predictive error (MSPE) of the model of interest
relative to the MSPE of the benchmark model. A positive 𝛥𝑅2

𝑂𝑂𝑆 implies that the model of interest produces more accurate forecasts.
The Clark and West (2007) statistic is used to test the equivalence of MSPEs between two nested models. We find significant
predictability from WTI oil to stock volatility over each of a variety of sample periods. Imposing economic constraints on coefficients
improves predictive ability moderately when a rolling window is used.

We also explore the economic significance of the volatility predictability. We consider an investor with mean–variance utility
who allocates his/her wealth between the stock index and risk-free Treasury bill, where the volatility forecast is a key input in
computing optimal ex-ante stock index weights. The usefulness of volatility forecasts is evaluated by observing portfolio performance.
We compare the utility of a portfolio constructed on volatility forecasts of oil models with the utility of an alternative constructed
on benchmark forecasts. Our results indicate that accounting for oil volatility information improves portfolio performance. Notably,
the percent increase in portfolio utility of oil model relative to that of the benchmark model is as high as 79% during the 2001–2005
period.

To explore whether oil volatility information has been covered by macro variables considered in the literature, we use 12
fundamental variables reflecting stock market activity to carry out the robustness analysis. These fundamental variables are regularly
used in studies of return and volatility forecasting (Rapach et al., 2010; Neely et al., 2014; Christiansen et al., 2012; Zhu and Zhu,
2013). We put these variables in the benchmark of autoregressive model and investigate whether oil volatility information still
improves the predictive ability of these amended models. Our empirical results indicate that the reduction of MSPE is significant
after taking advantage of oil information for different benchmark models. Furthermore, we also consider the uncertainty variables
developed by Ludvigson et al. (2015) and Jurado et al. (2015). The out-of-sample predictability from oil to stock volatility becomes
weaker after using economic uncertainty as a control variable. Nevertheless, significant predictability still exists during more recent
periods. Therefore, the revealed out-of-sample predictability is generally robust to alternative benchmarks. Oil information does not
substantively overlap with traditional macro information.

Our empirical analysis is further extended to nonlinear models. We consider two types of nonlinear relationships including
asymmetric oil models and regime switching models. In summary, we find little evidence supporting the superiority of nonlinear
models over linear specifications in forecasting stock volatility. Our forecasting exercise is also conducted for longer horizons. We
find significant predictability for horizons of 3 and 6 months. However, the predictability disappears for longer horizons. A plausible
explanation for this is that the response of stock prices to oil information completes within a short period of time (Wang et al., 2013).
Oil volatility is further found to predict the return volatilities of a significant number of portfolios during more recent periods.

The predictability of stock volatility revealed by oil volatility can be explained by information transmissions from oil to stock
markets. Crude oil is a core input in modern industry. Oil price shocks can certainly lead to changes in stock prices by affecting
real economic activities (Hamilton, 1983; Kilian, 2009), current and future cash flows (Jones and Kaul, 1996) and monetary policy
(Bernanke et al., 1996). In addition to transmissions of price information, there are three channels for transmitting oil volatility
information to stock volatility. The first is the business cycle channel. It has been well documented in the literature that stock
volatility is always higher when the economy undergone a recession (Schwert, 1989b; Hamilton and Lin, 1996). Because of the
great importance of crude oil for the real economy, the large increase in oil price (i.e., high volatility) is an important factor driving
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business cycles. For example, Hamilton (2013) finds that all but one of the 11 postwar recessions were associated with high oil price
volatilities.

The second is the risk premium channel. The economic model of Mele (2007) reveals that macro variables such as price–
dividend ratios capturing time-varying risk premia are primary candidates for understanding and forecasting volatility. The theory
of investment under uncertainty and real option advocates that current uncertainty about oil prices depresses future investment and
consumption (e.g., Henry (1974); Bernanke (1983); Brennan and Schwartz (1985)). More recently, Elder and Serletis (2010) find
that high oil price volatility has negative effects on real output, durable consumption and fixed investment. The risks associated with
these variables are major fundamentals of stock risk premia.

The third channel is related to financialization of commodities (Tang and Xiong, 2012; Cheng and Xiong, 2013). Over the last
decade, commodity futures have become a popular asset class for portfolio investors, just like stocks and bonds. Crude oil is one
of the most important commodities. Oil futures prices are weighted most heavily in some popular commodity price indices such as
S&P Goldman Sachs Commodity Index and the Dow-Jones UBS Commodity Index (DJ-UBS). Investors’ asset reallocations between
commodity indices and stocks results in volatility spillovers between oil and stock markets.

The remainder of this paper is organized as follows. Section 2 presents the methodology, including the predictive regressions,
parameter restriction and the forecast evaluation method. Section 3 briefly describes the empirical data. We report the in-sample
and out-of-sample results in Sections 4 and 5, respectively. Section 6 extends our analysis to nonlinear models. Section 7 reports the
forecasting results for longer horizons. Section 8 documents the performance of oil in forecasting industry volatility. Finally, Section 9
concludes the paper.

2. Methodology

2.1. Realized volatility

The goal of this paper is to use oil return volatility to predict stock volatility. The regression-based approaches to modeling
conditional volatility always build upon the ex-post measures of variance. Following the literature (e.g., Taylor (1986); Schwert
(1989a); Paye (2012)), we sum the squared daily returns to construct the proxy for the variance of stock and oil returns at the
monthly frequency. For a specific month t, the realized volatility is defined as:

𝑅𝑉𝑡 =
𝑀
∑

𝑗=1
𝑟2𝑡,𝑗 , 𝑡 = 1, 2,… , 𝑇 , (1)

where M is the number of business days in each month, and 𝑟𝑡,𝑗 denotes the jth daily return of the t th month. According to the
arguments of Andersen and Bollerslev (1997), Andersen et al. (2001), and Andersen et al. (2003), this ‘‘realized volatility’’ contains
less noise and is a better measure of ex-post variance than the squared monthly returns. The realized volatility is also employed in
the recent literature on the predictive relationships between macroeconomic variables and stock volatility (see, e.g., Paye (2012);
Christiansen et al. (2012)).

The original realized volatility defined by (1) is leptokurtic. We model and forecast volatility using the predictive regressions, the
parameters of which are estimated via the ordinary least squares (OLS). However, it is well known that the statistical inference based
on OLS is misleading when the errors are non-Gaussian. Motivated by this fact, we follow Paye (2012) in using the natural logarithms
of realized volatility, 𝑉𝑡 = log

(

𝑅𝑉𝑡
)

, the distribution of which is approximately Gaussian according to the finding of Andersen et al.
(2001).

2.2. Predictive regressions

A standard benchmark to forecast stock volatility at the horizon of one month is the following autoregressive model (AR):

𝑉𝑡+1 = 𝜔 +
𝑝−1
∑

𝑖=0
𝛼𝑖𝑉𝑡−𝑖 + 𝜀𝑡+1, (2)

where 𝑉𝑡 = log
(

𝑅𝑉𝑡
)

, the error term 𝜀𝑡+1 is assumed to follow an independent and identically normal distribution. Following Paye
(2012), the lag order p is set equal to 6 when using monthly data. The use of such long lag length is to sufficiently capture the strong
autocorrelation in stock volatility.

To investigate the predictive content of oil volatility, we extend the AR(6) benchmark by incorporating a log realized volatility of
crude oil as an additional predictor:

𝑉𝑡+1 = 𝜔 +
𝑝−1
∑

𝑖=0
𝛼𝑖𝑉𝑡−𝑖 + 𝛽𝑉𝑡,𝑜𝑖𝑙 + 𝜀𝑡+1, (3)

where 𝑉𝑡,𝑜𝑖𝑙 is the oil volatility in the t th month. The parameter 𝛽 captures the effects of oil market volatility on future stock volatility.
We obtain the parameter estimates in (3) using the OLS. The null hypothesis of no predictability, 𝛽 = 0, can be tested using the
standard t -statistic. In order to take into account the possible presence of serial correlation in the data, we employ the Newey–West
covariance correction for serial correlation when computing the t -statistics.

We use predictive regressions to generate out-of-sample volatility forecasts based on both techniques of rolling and recursive
estimation windows. Specifically, we divide the total sample of T observations for each oil and stock volatility series into an in-
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sample part containing the first M observations and the out-of-sample part containing the remaining T-M observations. The first
out-of-sample forecast of stock volatility based on oil volatility is given by,

𝑉𝑀+1 = �̂�𝑀 +
𝑝−1
∑

𝑖=0
�̂�𝑖,𝑀𝑉𝑀−𝑖 + 𝛽𝑀𝑉𝑀,𝑜𝑖𝑙 , (4)

where �̂�𝑀 , �̂�𝑖,𝑀 and 𝛽𝑀 are the OLS estimates of 𝜔, 𝛼𝑖 and 𝛽 in (3), respectively. These estimates are obtained by regressing
{

𝑉𝑡
}𝑀
𝑡=𝑝+1

on a constant,
{

𝑉𝑡
}𝑀−𝑝+𝑗−1
𝑡=𝑗 for 𝑗 = 1, 2, . . . , p, and

{

𝑉𝑡,𝑜𝑖𝑙
}𝑀−1
𝑡=𝑝 . The second out-of-sample forecast is given by,

𝑉𝑀+2 = �̂�𝑀+1 +
𝑝−1
∑

𝑖=0
�̂�𝑖,𝑀+1𝑉𝑀−𝑖+1 + 𝛽𝑀+1𝑉𝑀+1,𝑜𝑖𝑙 . (5)

For the recursive estimation window method, the parameter estimates �̂�𝑀+1, �̂�𝑖,𝑀+1 and 𝛽𝑀+1 are obtained by regressing
{

𝑉𝑡
}𝑀+1
𝑡=𝑝+1

on a constant,
{

𝑉𝑡
}𝑀−𝑝+𝑗
𝑡=𝑗 for 𝑗 = 1, 2, . . . , p, and

{

𝑉𝑡,𝑜𝑖𝑙
}𝑀
𝑡=𝑝. Going forward like this through the end of out-of-sample period, a series

of T-M forecasts of stock return volatility is generated. For the rolling estimation window, the first forecast is exactly the same to
the first forecast based on recursive window. Differently, after adding a new observation rolling window method should drop the
most distant one to do parameter estimation. In this way, when the estimation window rolls forward, the window size is fixed. For
example, the parameter estimates �̂�𝑀+1, �̂�𝑖,𝑀+1 and 𝛽𝑀+1 in (5) are obtained by regressing

{

𝑉𝑡
}𝑀+1
𝑡=𝑝+2 on a constant,

{

𝑉𝑡
}𝑀−𝑝+𝑗
𝑡=𝑗+1 for

𝑗 = 1, 2, . . . , p, and
{

𝑉𝑡,𝑜𝑖𝑙
}𝑀
𝑡=𝑝+1.

2.3. Parameter restriction

The predictive ability of an individual model is argued to suffer from the problem of model uncertainty (Avramov, 2002; Rapach
et al., 2010). In detail, it is less possible that oil volatility is relevant to stock volatility all the time. During the period of time
when stock volatility is not affected by past oil price fluctuations, the inclusion of irrelevant variable in the predictive regression is
likely to cause overfitting, a situation that the in-sample performance is improved but out-of-sample performance is deteriorated. To
reduce the effect of model uncertainty on forecasting performance, we use a parameter restriction method which imposes economic
constraints on the signs of parameter estimates of predictive regressions. This method has been applied in recent studies on stock
return forecasting (see, e.g., Campbell and Thompson (2008); Pettenuzzo et al. (2014)).

The standard economic theory suggests that higher oil return volatility cause higher stock volatility. The explanation is that because
of the great importance of crude oil for the U.S. economy, an increase in oil volatility leads to higher macroeconomic uncertainty
(Elder and Serletis, 2010), resulting in larger stock volatility. The volatility spillover from oil to stock has been also well documented
in the literature (see, e.g., Arouri et al. (2011)). Therefore, the coefficient of oil volatility 𝛽 in (3) is restricted to be positive. In detail,
if the sign of the estimated coefficient 𝛽𝑡 conditioned on the information available until the t -month is consistent with the economic
theory (i.e., 𝛽𝑡 > 0), we use (3), the model with oil volatility, to produce stock volatility forecast in the (𝑡+1)th month; otherwise, we
use the benchmark model to generate forecast in the (𝑡 + 1)th month. This parameter restriction procedure is reasonable in practice
because it is more rational for economic forecasters to abandon the forecasts when the predictive model reveals ‘‘abnormal’’ in-sample
predictive relations.

2.4. Forecast evaluation

To evaluate the forecast quality, we follow Campbell and Thompson (2008) and Rapach et al. (2010) using out-of-sample 𝑅2,
i.e., the percent reduction of mean squared predictive error (MSPE) of the model of interest relative (𝑀𝑆𝑃𝐸model) to the MSPE of
benchmark model (𝑀𝑆𝑃𝐸bench), defined as

𝛥𝑅2
𝑂𝑂𝑆 = 1 −

𝑀𝑆𝑃𝐸model
𝑀𝑆𝑃𝐸bench

, (6)

where 𝑀𝑆𝑃𝐸𝑖 =
1

𝑇−𝑀
∑𝑇

𝑡=𝑀+1
(

𝑉𝑡 − 𝑉𝑡,𝑖
)2(i = model, bench); 𝑉𝑡 and 𝑉𝑡,𝑖 are, respectively, the true value and forecast of log realized

volatility. The autoregressive model of log RV is taken as the benchmark model to be compared with. A positive 𝛥𝑅2
𝑂𝑂𝑆 implies that

the forecasts from the model of interest have lower MSPE than the benchmark model, implying the greater forecasting accuracy.
Furthermore, we use the Clark and West (2007) method to test the null hypothesis that the benchmark forecast MSPE is less

than or equal to competing forecast MSPE against one-sided (upper-tail) alternative hypothesis that the benchmark forecast MSPE is
greater than the competing forecast MSPE. This statistic is a correction of Diebold and Mariano (1995) statistic and is demonstrated
to be suitable for nested models. The Clark and West (2007) statistic is computed by defining,

𝑓𝑡 =
(

𝑉𝑡 − 𝑉𝑡,𝑏𝑒𝑛𝑐ℎ
)2 −

(

𝑉𝑡 − 𝑉𝑡,𝑚𝑜𝑑𝑒𝑙
)2 +

(

𝑉𝑡,𝑏𝑒𝑛𝑐ℎ − 𝑉𝑡,𝑚𝑜𝑑𝑒𝑙
)2. (7)

The t -statistic from the regression of 𝑓𝑡 on a constant is the MSPE-adjusted statistic.
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Fig. 1. Oil and stock volatilities. Notes: This figure provides graphical representation of realized volatilities of oil and stock index returns. The left vertical axis labels
oil volatility, while the right vertical axis labels stock volatility.

3. Data

We collect daily price data of S&P 500 index from Yahoo! Finance (finance.yahoo.com). We use the prices of two oils, West Texas
Intermediate (WTI) crude oil and Brent oil, which are available at the website of Energy Information Administration.1 Both prices
are the benchmark of international oil pricing but have slight differences. WTI oil price reflects more information about U.S. domestic
oil supply and demand, while Brent price is more global and is the benchmark price of oil traded in the Europe and Africa.2 Our
data cover the sample period for January 1991 through December 2015.

Daily price data are employed to construct the monthly realized volatility. Fig. 1 illustrates the graphical representations of stock
and oil volatility during our sample period. We can obtain some meaningful findings by looking at the evolution of oil and stock
volatility. First, oil return volatility is about 3–4 times larger than stock volatility. Second, some large volatilities of crude oil always
occurred together with or even before large stock volatilities. For example, the Iraqi invasion of Kuwait in 1990 and the subsequent
Gulf War caused the monthly oil volatility of about 25% in January 1991, the largest value during our sample period. Stock volatility
during this period is also higher than the volatility during the next years of early 1990s. The monthly stock volatility in October
2008 reached the historical summit of 5.7%. Notably, WTI oil volatility achieved its historical summit after 1991 in September 2008,
one month before the time when the U.S. stock market crashed. Of course, the financial crisis caused the extremely fluctuated stock
prices in later 2008. Hamilton (2009) nevertheless noted some avenues by which high oil prices contributed directly to the financial
crisis itself. These meaningful findings motivate us to find whether oil volatility can provide useful information regarding future stock
volatility.

4. In-sample results

According to the results from Inoue and Kilian (2004), in-sample predictability is a necessary condition for out-of-sample
predictability. It would be unreasonable to find out-of-sample predictability in the absence of in-sample predictability. Table 1
displays the estimated coefficients of the predictive regression with oil volatility expressed by (3), as well as the 𝑡-statistics based on
the Newey–West covariance correction for serial correlation. We also report the increase in 𝑅2 for the regression with oil volatility
relative to the benchmark of AR(6) model, expressed as a percentage.

The coefficient estimates of 𝛼1 and 𝛼2 are positive and highly significant, suggesting the stylized fact of volatility persistence. Being
of our interest, the coefficient estimate of 𝛽 is significantly positive at 10% level, regardless of whether WTI or Brent oil volatility
is included in the predictive model, indicating the in-sample predictability from oil to stock volatility. The coefficient estimate of
𝛽 is 0.107 and 0.072 for WTI and Brent oil volatility, respectively. Therefore, one percent increase in current month’s WTI (Brent)
oil volatility will lead to 0.072 (0.107)% increase in next month’s volatility of S&P 500 returns. The percent increase in 𝑅2 after
adding WTI and Brent oil volatility to the benchmark regression is 1.200 and 0.536, respectively. These values are greater than the
increase in 𝑅2 due to the inclusion of most macroeconomic variables in predictive regressions reported in Table 3 of Paye (2012)
paper, implying that oil volatility can provide greater predictive content than most popular predictors for stock volatility.

1 www.eia.gov.
2 In the literature of oil and the real economy, the refiner acquisition cost (RAC) of imported oil is considered the oil price most relevant to the U.S. economic

activity. However, RAC price is available at the monthly frequency and is always published with a delay of about two or three months, which is not suitable for market
participants to do real-time risk management or asset allocation. Therefore, we do not use RAC to forecast stock volatility.
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Table 1
In-sample estimation results. This table reports the in-sample estimation results for
the predictive regressions for monthly stock volatility with oil volatility. The spec-
ification of the predictive model is given by, 𝑉𝑡+1 = 𝜔 +

∑𝑝−1
𝑖=0 𝛼𝑖𝑉𝑡−𝑖 + 𝛽𝑉𝑡,𝑜𝑖𝑙 + 𝜀𝑡+1,

where 𝑉𝑡 and 𝑉𝑡,𝑜𝑖𝑙 are the natural logarithm of monthly realized volatility of stock
and oil returns, respectively. The maximum lag order is set as 𝑝 = 6. We report the
estimate of the slope coefficient, as well as the corresponding heteroskedasticity-
adjusted t -statistic based on the Newey–West method. We also show the percent
increase in 𝑅2 of the model of interest relative to that of the benchmark of AR(6)
(i.e., the predictive regression with 𝛽 = 0). The asterisks *, **, *** denote rejections
of null hypothesis at 10%, 5% and 1% significance levels, respectively.

WTI oil volatility Brent oil volatility

Coefficient t -stat Coefficient t -stat

Parameter estimation results

𝜔 −0.811** −2.508 −0.857*** −2.637
𝛼1 0.464*** 5.849 0.480*** 6.073
𝛼2 0.165*** 2.724 0.165*** 2.717
𝛼3 0.091 1.449 0.091 1.451
𝛼4 −0.101 −1.399 −0.097 −1.320
𝛼5 0.097 1.480 0.097 1.465
𝛼6 0.078 1.486 0.076 1.446
𝛽 0.107** 2.298 0.072* 1.704

Percent increase of 𝑅2

𝛥𝑅2 1.200 0.536

Table 2
Out-of-sample forecasting results, recursive window. This table reports the forecasting results for the predictive regressions with oil volatility. We present the results
from the regression given by, 𝑉𝑡+1 = 𝜔 +

∑𝑝−1
𝑖=0 𝛼𝑖𝑉𝑡−𝑖 + 𝛽𝑉𝑡,𝑜𝑖𝑙 + 𝜀𝑡+1, where 𝑉𝑡 and 𝑉𝑡,𝑜𝑖𝑙 are the natural logarithm of monthly realized volatility of stock and oil returns,

respectively. The maximum lag order is set as 𝑝 = 6. The forecasts are generated using a recursive window with the initial sample covers the period of 60 months.
The table reports the out-of-sample 𝑅2, defined by the percent reduction of mean squared predictive error (MSPE) of the oil model relative to that of the benchmark
of AR(6). The p-values of Clark and West (2007) (CW) tests for the equivalence of MSPEs between oil model and the benchmark model are given in the parentheses.
The asterisks *, ** and *** indicate rejections of null hypothesis at 10%, 5% and 1% significance levels, respectively.

1996–2015 2001–2015 2006–2015 2011–2015

Without restriction With restriction Without restriction With restriction Without restriction With restriction Without restriction With restriction

WTI 0.826*
(0.093)

0.826*
(0.093)

1.460**
(0.045)

1.460**
(0.045)

2.172**
(0.023)

2.172**
(0.023)

3.666**
(0.025)

3.666**
(0.025)

Brent −0.133
(0.443)

−0.071
(0.404)

0.380
(0.196)

0.460
(0.164)

0.754
(0.111)

0.839*
(0.090)

1.523*
(0.091)

1.523*
(0.091)

5. Out-of-sample results

It has been shown in extensive literature that a good in-sample performance does not gauge that the predictive model displays
superior performance from an out-of-sample perspective. For example, a relatively large number of studies on stock return forecasting
documents that many single predictive models perform poorly out-of-sample (see, e.g., Goyal and Welch (2008); Rapach et al. (2010)).
The results in Paye (2012) show that some variables related to macroeconomic uncertainty, time-varying expected stock returns and
credit conditions indeed can predict stock volatility in-sample but any individual predictive models involving these variables is difficult
to beat the benchmark of autoregressive model out-of-sample. Actually, market participants are more interested in the out-of-sample
performance of a predictive model because they are more concerned about how well they can do in the future using this model.
Motivated by these facts, we pay more attention to the predictive content of oil volatility from an out-of-sample perspective. In detail,
we investigate whether adding oil volatility to the benchmark model can improve the forecasting accuracy. Accordingly, we compare
the out-of-sample performance of the model (3) with the benchmark of autoregressive model (2).

5.1. Out-of-sample forecasting performance of oil volatility models

We generate volatility forecasts for January 1996 through December 2015 and evaluate the forecasting performance over a
variety of sample periods. The volatility forecasts of regressions with WTI and Brent oil volatility are illustrated in Figs. 2 and 3,
respectively. Table 2 reports the evaluation results of the predictive regression with and without parameter restriction based on the
recursive estimation window. We give the values of out-of-sample 𝑅2, as well as the p-values of CW test for the equivalence of MSPEs
of two nested models.

We first look at the forecasting performance of WTI oil volatility. The values of 𝛥𝑅2
𝑂𝑂𝑆 suggest that the inclusion of WTI oil

volatility in the right-hand side of predictive regression can lead to a reduction of MSPE of 0.826% in the full out-of-sample period.
The 𝑝-value of CW test suggests that the improvement of forecasting accuracy is significant. The 𝛥𝑅2

𝑂𝑂𝑆 values are even larger
during more recent subperiods, indicating that the predictive ability of oil volatility becomes stronger over time. We can find that
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Fig. 2. WTI oil forecasts of stock volatility based on rolling and recursive windows. ‘‘True vol’’, ‘‘Oil-REC’’ and ‘‘Oil-ROLL’’ represents true volatility, volatility forecasts
from recursive window and forecasts from rolling window, respectively. We use the predictive regressions with WTI oil volatility.

Fig. 3. Brent oil forecasts of stock volatility based on rolling and recursive windows. ‘‘True vol’’, ‘‘Oil-REC’’ and ‘‘Oil-ROLL’’ represents true volatility, volatility
forecasts from recursive window and forecasts from rolling window, respectively. We use the predictive regressions with Brent oil volatility.

the forecasting results of the restricted and unrestricted models with WTI oil volatility are exactly the same. The reason is that the
coefficient estimates of oil volatility are positive all the time.

The forecasting performance of the model with Brent oil volatility is a bit weaker. The evidence is that 𝛥𝑅2
𝑂𝑂𝑆 is negative over the

full 1996–2015 sample period. The plausible explanation is that Brent oil price is determined by oil market situation in the Europe
and Africa, and is less relevant to the U.S. economy than WTI price. The unrestricted model can significantly beat the benchmark of
AR(6) during the 2011–2015 period but it cannot outperform the benchmark model during 2001–2015 or 2006–2015 subperiods.
Interestingly, we find that during the 2006–2015 period the predictability becomes significant after imposing economic constraints
on the slope coefficient of oil volatility, signaling the benefit of forecasting gains from parameter restriction.

Table 3 reports the forecasting results based on rolling window. We can find that the predictive regressions with oil volatility
can significantly beat the benchmark model, regardless of whether WTI or Brent oil is included. This evidence indicates the strong
predictive content of oil volatility for stock volatility. The revealed predictability is stronger over more recent periods. During 2011–
2015 period the percent decrease of MSPE, i.e., out-of-sample 𝑅2, is as high as 6%. The parameter restriction can improve the
predictability greatly over some specific sample periods. For example the 𝛥𝑅2

𝑂𝑂𝑆 value of WTI (Brent) oil volatility model in the
whole out-of-sample period increases from 0.581% to 1.368% (from 0.090% to 1.489%) after imposing economic constraint. Overall,
we find the existence of significant predictability from oil volatility to stock volatility and the predictability is more prominent when
WTI oil is employed.
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Table 3
Out-of-sample forecasting results, rolling window. This table reports the forecasting results for the predictive regressions with oil volatility. We present the results from
the regression given by, 𝑉𝑡+1 = 𝜔+

∑𝑝−1
𝑖=0 𝛼𝑖𝑉𝑡−𝑖+𝛽𝑉𝑡,𝑜𝑖𝑙+𝜀𝑡+1, where 𝑉𝑡 and 𝑉𝑡,𝑜𝑖𝑙 are the natural logarithm of monthly realized volatility of stock and oil returns, respectively.

The maximum lag order is set as 𝑝 = 6. The forecasts are generated using a rolling window with each window covers a period of 60 months. The table reports the out-
of-sample 𝑅2, defined by the percent reduction of mean squared predictive error (MSPE) of the oil model relative to that of the benchmark of AR(6). The p-values of
Clark and West (2007) (CW) tests for the equivalence of MSPEs between oil model and the benchmark model are given in the parentheses. The asterisks *, ** and ***
indicate rejections of null hypothesis at 10%, 5% and 1% significance levels, respectively.

1996–2015 2001–2015 2006–2015 2011–2015

Without restriction With restriction Without restriction With restriction Without restriction With restriction Without restriction With restriction

WTI 0.581**
(0.039)

1.368**
(0.035)

1.461**
(0.028)

2.165**
(0.029)

2.454**
(0.032)

2.701**
(0.029)

5.977**
(0.023)

5.977**
(0.023)

Brent 0.090*
(0.061)

1.489**
(0.034)

0.891**
(0.042)

2.185**
(0.027)

1.707**
(0.049)

2.723**
(0.027)

4.766**
(0.026)

4.766**
(0.026)

5.2. Portfolio exercise

Comparing with the statistical gains of volatility predictability, market investors care more about the economic gains. To evaluate
the economic significance, we take the volatility forecasts as the key determinant of portfolio optimization by maximizing investor
utility following Fleming et al. (2001, 2003) and Guidolin and Timmermann (2005, 2007). The usefulness of volatility forecasts is
evaluated by observing the portfolio performance. We consider a mean–variance investor who allocates his or her wealth between
stock index and risk-free asset following the majority of stock return forecasting literature (see, e.g., Guidolin and Na (2006); Neely
et al. (2014); Rapach et al. (2010)) and recent studies of volatility forecasting (Wang et al., 2016). The utility from investing in this
portfolio is:

𝑈𝑡
(

𝑟𝑡
)

= 𝐸𝑡
(

𝑤𝑡𝑟𝑡 + 𝑟𝑡,𝑓
)

− 1
2
𝛾𝑣𝑎𝑟𝑡(𝑤𝑡𝑟𝑡 + 𝑟𝑡,𝑓 ), (8)

where 𝑤𝑡 is the weight of stock in this portfolio, 𝑟𝑡 is the stock return in excess of risk-free rate, and 𝛾 denotes the risk aversion degree.
For the risk-free rate 𝑟𝑡,𝑓 , we use 3-month Treasury bill rate. 𝐸𝑡(⋅) and 𝑣𝑎𝑟𝑡 are, respectively, the conditional mean and variance given
the information available at the t th month.

Maximizing 𝑈𝑡
(

𝑟𝑡
)

respect to 𝑤𝑡 yield the ex-ante optimal weight of stock index at the (𝑡 + 1)th month:

𝑤∗
𝑡 = 1

𝛾

(

�̂�𝑡+1
�̂�2𝑡+1

)

, (9)

where �̂�𝑡+1 and �̂�2𝑡+1 denote the mean and volatility forecasts of stock excess returns, respectively. We use the same historical average
forecast which is the well-known benchmark model in stock return forecasting analysis. Goyal and Welch (2008) find that it is
difficult for an individual model to significantly outperform this benchmark out-of-sample. In this way, the portfolio performance
differs depending on the various volatility forecasts.

Obviously, the optimal weight depends on the risk aversion degree 𝛾. A higher value of 𝛾 implies that stock receives lower weight
in the portfolio. We use 𝛾 = 3 in portfolio analysis; the results are qualitatively similar for reasonable 𝛾 values. The optimal weight is
restricted between 0 and 1.5 to preclude short sales and to prevent more than 50% leverage following the literature (e.g., Rapach et
al. (2010); Neely et al. (2014)).

The portfolio return can be written as:

𝑅𝑡+1 = 𝑤∗
𝑡 𝑟𝑡+1 + 𝑟𝑡+1,𝑓 . (10)

We use the popular criterion of certainty equivalent return (CER) to evaluate portfolio performance:

𝐶𝐸𝑅𝑝 = �̂�𝑝 −
𝛾
2
�̂�2𝑝 , (11)

where �̂�𝑝 and �̂�2𝑝 are the mean and variance of portfolio returns over the sample period, respectively.
Table 4 reports the percent increase in utility of portfolio formed by predictive regression with oil volatility relative to that formed

by benchmark model. When using recursive window, the utility gains are about 3% in the whole out-of-sample period. During the
other three subperiods, the increase in utility is about 7.7%-8.8% after adding oil volatility to the benchmark model. The economic
gains from the information of oil volatility are larger for more recent periods. When using rolling window, the improvement of
portfolio performance is more prominent. The increase in utility is about 10% during the whole sample period. This value is as high
as 66% during the 2001–2015 period for unrestricted models and even higher using economic constraints (79%). Overall, our results
based on portfolio exercise suggest that accounting for oil market information is also quite helpful for asset allocation.

5.3. Robustness tests

It is possible whether forecast improvement can be obtained by adding oil volatility to the benchmark model is sensitive to omitted
variables in models (2) and (3). To examine this question, we also consider following benchmark model to do robustness check:

𝑉𝑡+1 = 𝜔 +
𝑝−1
∑

𝑖=0
𝛼𝑖𝑉𝑡−𝑖 + 𝜃𝑧𝑡 + 𝜀𝑡+1, (12)

97



Y. Wang et al. Journal of Empirical Finance 47 (2018) 90–104

Table 4
Performance of portfolio. This table provides the performance of portfolio formed by volatility forecasts. Each period a mean–variance investor allocates wealth between

stock and T-bill based on return and volatility forecasts. In this framework, the stock index is assigned the weight 𝑤∗
𝑡 =

(

1
𝛾

)

(

�̂�𝑡+1
�̂�2
𝑡+1

)

, where 𝛾 denotes the risk aversion

degree. We use the popular historical average return forecasts and use 𝛾 = 3. The optimal weight of stock is restricted between 0 and 1.5. The portfolio performance is
evaluated based on certainty equivalent return (CER). We show the percent increase of portfolio utility of the oil model relative to that of the benchmark model AR(6).

1996–2015 2001–2015 2006–2015 2011–2015

Without restriction With restriction Without restriction With restriction Without restriction With restriction Without restriction With restriction

Panel A: Portfolio results based on recursive window

WTI 3.110 3.110 7.704 7.704 7.084 7.084 8.795 8.795
Brent 2.864 2.838 7.311 7.230 5.336 5.287 6.216 6.216

Panel B: Portfolio results based on rolling window

WTI 9.487 8.281 57.52 44.52 16.59 16.97 17.36 17.36
Brent 10.23 15.45 66.06 79.15 28.91 30.18 35.41 35.41

where 𝑧𝑡 is a vector with non-oil macro variables. As an alternative to these benchmarks, we add an oil volatility variable:

𝑉𝑡+1 = 𝜔 +
𝑝−1
∑

𝑖=0
𝛼𝑖𝑉𝑡−𝑖 + 𝜃𝑧𝑡 + 𝛽𝑉𝑡,𝑜𝑖𝑙 + 𝜀𝑡+1. (13)

The sets of potential macro variables 𝑧𝑡 should be very large. In detail, to determine whether each of n variables is included in
the model, one can obtain 2𝑛 − 1 potential sets of macro variables. We follow Rapach et al. (2010) and Paye (2012) in using single
popular predictors.

Following Christiansen et al. (2012), we use 12 macroeconomic variables for stock market activity suggested by Goyal and Welch
(2008). These popular predictor variables are the dividend–price ratio (DP), dividend yield (DY), earning–price ratio (EP), book-
to-market ratio (BM), net equity expansion (NITS), Treasury bill rate (TBL), long-term yield (LTY), long-term return (LTR), default
yield spread (DFY), default return spread (DFR), inflation (INFL) and value-weighted stock index return (SR).3 The 3rd–14th rows in
Table 5 report the forecasting results of the models with WTI volatility based on a recursive window.4 We find that the incorporation
of oil volatility in almost all benchmark models with these popular predictor variables significantly improves predictive ability. The
revealed predictability is also stronger over more recent sample periods.

Furthermore, Ludvigson and Ng (2007) use a large and near-exhaustive set of economic variables for forecasting stock market
volatility,5 using factor analysis to deal with the large dimension problem. We use the aforementioned 12 macroeconomic variables
as the control benchmark case, which may not be as complete as those put forward by those authors. By extension, Ludvigson et
al. (2015) and Jurado et al. (2015) proposed three uncertainty variables: ‘‘financial uncertainty’’, ‘‘macro uncertainty’’ and ‘‘real
uncertainty’’, applying factor analysis for a large data set including crude oil prices. We also use these three uncertainty variables as
control variables to explore the robustness of predictability6 from oil to stock volatility. The last three rows in Table 5 present the
out-of-sample forecasting results of model (13) relative to (12) when these three uncertainty variables are taken as control variables.7
For the full out-of-sample period, the out-of-sample 𝑅2 values are positive, but the forecasting gains become insignificant. However,
for three more recent sub-periods, 𝛥𝑅2

𝑂𝑂𝑆 values remain positive and statistically significant at least at the 10% level. In comparison
with the figures in Table 2, the 𝛥𝑅2

𝑂𝑂𝑆 values decrease to different extents during each of three subsample periods after adding the
three uncertainty measures as control variables. These results suggest that oil price volatility indeed provides predictive information
regarding stock volatility that partly overlaps with the three new uncertainty variables. This is expected because oil price uncertainty
can affect economic uncertainty (Elder and Serletis, 2010), which contains important information about stock volatility (Ludvigson
and Ng, 2007).

We can also confirm that oil price volatility information cannot be substituted by any of these uncertainty variables. Plausible
explanations for this are twofold. First, Jurado et al. (2015) use monthly WTI oil prices when constructing the uncertainty variable.
Differently, we use daily price data to compute realized volatility. According to arguments in the literature (Andersen and Bollerslev,
1997; Andersen et al., 2001), realized volatility is a better proxy for unobserved volatility and contains much less noise than the
volatility proxy computed using monthly returns directly (e.g., squared monthly returns). If we use monthly oil price data, more useful
predictive information in higher-frequency daily data may be omitted. As supporting evidence, our non-reported results indicate that
the predictability of stock volatility disappears when the squared monthly return is used as the proxy for true oil volatility. Second,
Jurado et al. (2015) use factor analysis to draw out salient information from a large data set; the principal component they use may
account for major but not all specificities of oil information.

3 The detailed description of these macro variables can be seen in Goyal and Welch (2008). We thank Amit Goyal for providing these data via his homepage (
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_factors.html).

4 For brevity, we do not report results for the predictive regressions with Brent volatility. The results based on a rolling forecasting window are also consistent in
quality.

5 We thank an anonymous referee for this constructive suggestion.
6 Data associated with these three uncertainty variables are available via Sydney Ludvigson’s homepage (https://www.sydneyludvigson.com/data-and-

appendixes/).
7 We use the log differences of the uncertainty for consistency.
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Table 5
Out-of-sample forecasting results, alternative benchmarks. This table reports the forecasting results for the predictive regressions with oil volatility. We present the
results from the regression of the specification 𝑉𝑡+1 = 𝜔+

∑𝑝−1
𝑖=0 𝛼𝑖𝑉𝑡−𝑖+𝛽𝑉𝑡,𝑜𝑖𝑙+𝜃𝑧𝑡+𝜀𝑡+1, where 𝑉𝑡 and 𝑉𝑡,𝑜𝑖𝑙 are the natural logarithm of monthly realized volatility of stock

and oil returns, respectively. 𝑧𝑡 denotes a vector with macro variables, the symbols of which are listed in the first column. The maximum lag order is set as 𝑝 = 6. The
forecasts are generated using a recursive window with the initial length of 60 months. We give the out-of-sample 𝑅2, defined by the percent reduction of mean squared
predictive error (MSPE) of the oil model relative to the benchmark model without oil volatility, 𝑉𝑡+1 = 𝜔+

∑𝑝−1
𝑖=0 𝛼𝑖𝑉𝑡−𝑖+𝜃𝑧𝑡+𝜀𝑡+1. The first 12 macroeconomic variables are

suggested by Goyal and Welch (2008). The last three variables FU, MU and RU are financial uncertainty, macro uncertainty and real uncertainty, respectively (see, e.g.,
Ludvigson and Ng, 2007; Ludvigson et al., 2015). The p-values of Clark and West (2007) (CW) tests for the equivalence of MSPEs between oil model and the benchmark
model are given in the parentheses. The asterisks *, ** and *** indicate rejections of null hypothesis at 10%, 5% and 1% significance levels, respectively.

Macro variable 1996–2015 2001–2015 2006–2015 2011–2015

Without restriction With restriction Without restriction With restriction Without restriction With restriction Without restriction With restriction

DP 1.269**
(0.044)

1.269**
(0.044)

1.859**
(0.030)

1.859**
(0.030)

2.701**
(0.014)

2.701**
(0.014)

4.378**
(0.023)

4.378**
(0.023)

DY 1.230**
(0.048)

1.230**
(0.048)

1.840**
(0.030)

1.840**
(0.030)

2.654**
(0.015)

2.654**
(0.015)

4.336**
(0.022)

4.336**
(0.022)

EP 1.570**
(0.028)

1.570**
(0.028)

2.126**
(0.023)

2.126**
(0.023)

3.223***
(0.008)

3.223***
(0.008)

4.846**
(0.017)

4.846**
(0.017)

BM 1.164*
(0.053)

1.164*
(0.053)

1.974**
(0.021)

1.974**
(0.021)

2.681**
(0.014)

2.681**
(0.014)

4.406**
(0.019)

4.406**
(0.019)

NTIS 0.714
(0.111)

0.714
(0.111)

1.270*
(0.061)

1.270*
(0.061)

2.047**
(0.027)

2.047**
(0.027)

3.410**
(0.031)

3.410**
(0.031)

TBL 0.742
(0.111)

0.779
(0.104)

1.681**
(0.032)

1.729**
(0.029)

2.245**
(0.026)

2.245**
(0.026)

3.806**
(0.028)

3.806**
(0.028)

LTY 0.918*
(0.075)

0.918*
(0.075)

1.520**
(0.039)

1.520**
(0.039)

2.088**
(0.028)

2.088**
(0.028)

3.608**
(0.029)

3.608**
(0.029)

LTR 0.833*
(0.088)

0.833*
(0.088)

1.499**
(0.040)

1.499**
(0.040)

2.186**
(0.021)

2.186**
(0.021)

3.687**
(0.023)

3.687**
(0.023)

DFY 0.984*
(0.065)

0.984*
(0.065)

1.411**
(0.049)

1.411**
(0.049)

2.153**
(0.024)

2.153**
(0.024)

3.667**
(0.025)

3.667**
(0.025)

DFR 0.844*
(0.094)

0.844*
(0.094)

1.543**
(0.037)

1.543**
(0.037)

2.271**
(0.018)

2.271**
(0.018)

3.912**
(0.018)

3.912**
(0.018)

INFL 0.807*
(0.095)

0.807*
(0.095)

1.489**
(0.042)

1.489**
(0.042)

2.163**
(0.022)

2.163**
(0.022)

3.678**
(0.025)

3.678**
(0.025)

SR 0.815*
(0.091)

0.815*
(0.091)

1.481**
(0.039)

1.481**
(0.039)

2.146**
(0.021)

2.146**
(0.021)

3.619**
(0.023)

3.619**
(0.023)

FU 0.062
(0.324)

0.280
(0.238)

0.870*
(0.084)

1.026*
(0.057)

1.249*
(0.063)

1.298*
(0.056)

2.394**
(0.049)

2.394**
(0.049)

MU 0.314
(0.196)

0.512
(0.138)

0.950*
(0.071)

1.225**
(0.034)

1.487**
(0.037)

1.537**
(0.033)

2.545**
(0.034)

2.545**
(0.034)

RU 0.713
(0.106)

0.730
(0.102)

1.303*
(0.051)

1.406**
(0.038)

1.974**
(0.025)

1.726**
(0.038)

3.150**
(0.029)

3.150**
(0.029)

6. The nonlinear oil-stock volatility relationship

We have found the predictability of stock volatility using the simple linear regression with oil volatility which assumes the linear
predictive relationship. If the oil-stock relationship is nonlinear, the linear models are misspecified and are likely to generate less
accurate forecasts. Due to this motivation, we investigate whether some nonlinear models are better candidates for stock volatility
forecasting. We consider two specifications accounting for different types of nonlinearity in the lead–lag linkages between oil and
stock volatility, asymmetric effect and regime change.

6.1. Asymmetric effect

The asymmetric effect of oil price on the real economy is initially documented by Mork (1989). The author finds that the effect
of increase in oil price on the U.S. GDP is significantly negative, whereas the effect of oil price decrease is minor. Therefore, it is
possible that the effect of oil shocks on stock market activity is asymmetric. Because oil price increases (i.e., positive returns) are
always associated with higher volatilities, we isolate the impact of oil volatility due to positive returns using two regressions based
on different volatility measures. The first model takes an indicator of positive return as an additional variable:

𝑉𝑡+1 = 𝜔 +
𝑝−1
∑

𝑖=0
𝛼𝑖𝑉𝑡−𝑖 + 𝛽𝑉𝑡,𝑜𝑖𝑙 + 𝛿𝑉𝑡,𝑜𝑖𝑙𝐼(𝑟𝑡,𝑜𝑖𝑙 > 0) + 𝜀𝑡+1, (14)

where I (.) is an indicator function which is equal to 1 when the condition in the parentheses is satisfied and zero otherwise.
The second model capturing asymmetric effect is based on the decomposition of realized volatility. We use the methodology of

Patton and Sheppard (2015) which decomposes monthly realized variance into a component that relates only to positive daily returns
and a component that relates only to negative daily returns. This specification of this model is given by:

𝑉𝑡+1 = 𝜔 +
𝑝−1
∑

𝑖=0
𝛼𝑖𝑉𝑡−𝑖 + 𝛽+𝑉 +

𝑡,𝑜𝑖𝑙 + 𝛽−𝑉 −
𝑡,𝑜𝑖𝑙 + 𝜀𝑡+1, (15)
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Table 6
Out-of-sample forecasting results of nonlinear models. The table reports the
forecasting results for the nonlinear predictive regressions with oil volatility. We
present the results from the three regressions of the specifications Asymmetric
model 1: 𝑉𝑡+1 = 𝜔 +

∑𝑝−1
𝑖=0 𝛼𝑖𝑉𝑡−𝑖 + 𝛽𝑉𝑡,𝑜𝑖𝑙 + 𝛿𝑉𝑡,𝑜𝑖𝑙𝐼

(

𝑟𝑡,𝑜𝑖𝑙 > 0
)

+ 𝜀𝑡+1 Asymmetric
model 2: 𝑉𝑡+1 = 𝜔 +

∑𝑝−1
𝑖=0 𝛼𝑖𝑉𝑡−𝑖 + 𝛽+𝑉 +

𝑡,𝑜𝑖𝑙 + 𝛽−𝑉 −
𝑡,𝑜𝑖𝑙 + 𝜀𝑡+1 Regime switching model:

𝑉𝑡+1 = 𝜔 +
∑𝑝−1

𝑖=0 𝛼𝑖𝑉𝑡−𝑖 + 𝛽𝑠𝑡𝑉𝑡,𝑜𝑖𝑙 + 𝜖𝑡+1 , 𝜖𝑡+1 ∼ 𝑁
(

0, 𝜎2
𝑠𝑡

)

, 𝑠𝑡 = (0, 1) where 𝑉𝑡 and
𝑉𝑡,𝑜𝑖𝑙 are the natural logarithms of monthly realized volatility of stock and oil
returns, respectively. 𝑉 +

𝑡,𝑜𝑖𝑙 and 𝑉 −
𝑡,𝑜𝑖𝑙 are log semivariances related to positive and

negative oil returns, respectively. The maximum lag order 𝑝 = 6. The forecasts
are generated using a recursive window with the initial length of 60 months
for parameter estimation. We give the out-of-sample 𝑅2, defined by the percent
reduction of mean squared predictive error (MSPE) of the oil model relative to the
benchmark of AR(6). The p-values of Clark and West (2007) (CW) tests for the
equivalence of MSPEs between oil model and the benchmark model are given in
the parentheses. The asterisks *, ** and *** indicate rejections of null hypothesis
at 10%, 5% and 1% significance levels, respectively.

1996–2015 2001–2015 2006–2015 2011–2015

Panel A: Forecasting results of Asymmetric model 1

WTI −0.158
(0.261)

0.457
(0.180)

0.771
(0.158)

1.970*
(0.098)

Brent −1.517
(0.828)

−0.452
(0.521)

−0.072
(0.390)

0.922
(0.176)

Panel B: Forecasting results of Asymmetric model 2

WTI −0.497
(0.322)

0.430
(0.190)

0.460
(0.218)

−0.676
(0.411)

Brent −2.099
(0.268)

−1.893
(0.443)

−2.787
(0.639)

−4.988
(0.790)

Panel C: Forecasting results of regime switching model

WTI 0.726*
(0.051)

1.177*
(0.065)

2.115*
(0.062)

6.319**
(0.025)

Brent 0.081*
(0.078)

−0.085
(0.145)

0.630
(0.139)

6.183**
(0.018)

where 𝑉 +
𝑡,𝑜𝑖𝑙 = log𝑅𝑆+

𝑡,𝑜𝑖𝑙 and 𝑉 −
𝑡,𝑜𝑖𝑙 = log𝑅𝑆−

𝑡,𝑜𝑖𝑙; 𝑅𝑆
+
𝑡,𝑜𝑖𝑙 and 𝑅𝑆−

𝑡,𝑜𝑖𝑙 are the monthly realized semivariances of oil returns related to
positive and negative returns, respectively. Here, the realized semivariance is defined as follows:

𝑅𝑆+
𝑡,𝑜𝑖𝑙 =

𝑀
∑

𝑗=1
𝑟2𝑡,𝑗,𝑜𝑖𝑙𝐼(𝑟𝑡,𝑗,𝑜𝑖𝑙 > 0), and,

𝑅𝑆−
𝑡,𝑜𝑖𝑙 =

𝑀
∑

𝑗=1
𝑟2𝑡,𝑗,𝑜𝑖𝑙𝐼(𝑟𝑡,𝑗,𝑜𝑖𝑙 < 0), 𝑡 = 1, 2,… , 𝑇 , (16)

where 𝑟𝑡,𝑗,𝑜𝑖𝑙 is the oil return on jth day of the t th month.
Table 6 reports the forecasting results of two asymmetric models. We find that the benchmark model of AR(6) cannot be

significantly outperformed by regressions with WTI or Brent oil volatility for most cases. The only exception is that during 2011–2015
period the asymmetric regression (15) reveals the significant predictability with the out-of-sample 𝑅2 of 1.97% when WTI volatility
is used. The gains of predictability from asymmetric models measured by 𝑅2

𝑂𝑂𝑆 are lower than those from simple symmetric models.
Therefore, accounting for the asymmetry in the predictive regressions cannot obtain more accurate forecasts and even worsens the
forecasting performance. This evidence reinforces the finding in Kilian and Vigfusson (2013) that the regressions with symmetric oil
price measure are good enough to capture the joint dynamics between oil price and macro variables.

6.2. Regime change

Because of some factors such as business cycle and occasional events, the effects of oil shocks on stock market experience regime
shifts over time (Aloui and Jammazi, 2009; Chen, 2010). To address time-variation in the oil-stock volatility relationship, we consider
a Marko regime switching model given by:

𝑉𝑡+1 = 𝜔 +
𝑝−1
∑

𝑖=0
𝛼𝑖𝑉𝑡−𝑖 + 𝛽𝑠𝑡𝑉𝑡,𝑜𝑖𝑙 + 𝜖𝑠𝑡+1 , 𝜖𝑠𝑡 ∼ 𝑖.𝑖.𝑑𝑁

(

0, 𝜎2𝑠𝑡

)

, 𝑠𝑡 = (0, 1). (17)

For simplicity, our model just imposes regime switching on the coefficient of oil volatility and assumes that the intercept and
autoregressive coefficient are regime-independent.

The lower part of Table 6 shows the forecasting results of regime switching model based on recursive window. We find that the
relative forecasting performance between two-regime model and single-regime model depends on which sample period is considered
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Table 7
Out-of-sample forecasting results for longer horizons. The table reports the longer-horizon forecasting results for the predictive regressions with oil volatility. We present
the results from the regression given by, 𝑉𝑡+ℎ = 𝜔 +

∑𝑝−1
𝑖=0 𝛼𝑖𝑉𝑡−𝑖 + 𝛽𝑉𝑡,𝑜𝑖𝑙 + 𝜀𝑡+1, where 𝑉𝑡 and 𝑉𝑡,𝑜𝑖𝑙 are the natural logarithm of monthly realized volatility of stock and

oil returns, respectively; h denotes the forecasting horizon. The first column lists the names of oil variable. The maximum lag order is set as 𝑝 = 6. The forecasts are
generated using a recursive window with the initial estimation window covers a period of 60 months. The table reports the out-of-sample 𝑅2, defined by the percent
reduction of mean squared predictive error (MSPE) of the oil model relative to that of the benchmark of AR(6). The p-values of Clark and West (2007) (CW) tests for
the equivalence of MSPEs between oil model and the benchmark model are given in the parentheses. The asterisks *, ** and *** indicate rejections of null hypothesis
at 10%, 5% and 1% significance levels, respectively.

1996–2015 2001–2015 2006–2015 2011–2015

Without restriction With restriction Without restriction With restriction Without restriction With restriction Without restriction With restriction

Forecasting horizon ℎ = 3

WTI 2.101***
(0.009)

2.101***
(0.009)

0.018
(0.102)

0.018
(0.102)

2.473**
(0.014)

2.473**
(0.014)

3.741**
(0.035)

3.741**
(0.035)

Brent 1.886***
(0.008)

1.886***
(0.008)

1.450**
(0.019)

1.450**
(0.019)

2.117**
(0.027)

2.117**
(0.027)

4.268**
(0.034)

4.268**
(0.034)

Forecasting horizon ℎ = 6

WTI 2.156**
(0.010)

2.156**
(0.010)

0.731*
(0.082)

0.731*
(0.082)

1.334*
(0.097)

1.334*
(0.097)

9.045***
(0.001)

9.045***
(0.001)

Brent 1.844***
(0.009)

1.844***
(0.009)

1.904**
(0.017)

1.904**
(0.017)

1.230*
(0.081)

1.230*
(0.081)

7.508***
(0.003)

7.508***
(0.003)

Forecasting horizon ℎ = 9

WTI 0.408
(0.143)

0.408
(0.143)

−0.099
(0.284)

−0.099
(0.284)

−0.991
(0.640)

−0.991
(0.640)

3.618**
(0.034)

3.618**
(0.034)

Brent 0.592
(0.112)

0.592
(0.112)

0.589
(0.138)

0.589
(0.138)

−1.473
(0.695)

−1.473
(0.695)

2.538*
(0.099)

2.538*
(0.099)

for forecast evaluation and which oil volatility is incorporated in the model. For example, during the period of 2011–2015, regime
switching model can achieve higher 𝑅2

𝑂𝑂𝑆 values than single regime model (see Table 2), implying greater forecasting accuracy.
During the whole period of 1996–2015, imposing regime switching on the regression with WTI volatility cannot improve predictive
ability. As a contrast, the 𝑅2

𝑂𝑂𝑆 of regression with Brent volatility turns from negative to significantly positive, indicating the gains of
predictability from regime switching. During the other two periods of 2001–2015 and 2006–2015, regime switching model performs
worse than single regime model. Therefore, whether regime change is helpful to obtain more accurate oil forecasts of stock volatility
is rather mixed. The plausible explanation is that regime switching model can lead to overfitting when oil-stock volatility relationship
is rather stable. In summary, the regime switching model is not a consistently better candidate than the single-regime regression for
capturing oil-stock volatility relationship from the out-of-sample perspective.

7. Forecasting performance for longer horizons

This section investigates the forecasting performance of oil volatility model of stock volatility for longer horizons. The predictive
model is given by:

𝑉𝑡+ℎ = 𝜔 +
𝑝−1
∑

𝑖=0
𝛼𝑖𝑉𝑡−𝑖 + 𝛽𝑉𝑡,𝑜𝑖𝑙 + 𝜀𝑡+ℎ, (18)

where h is the forecasting horizon.
Table 7 reports forecasting results for the horizons of 3, 6 and 9 months based on recursive window.8 We can see that the

predictability from oil to stock volatility changes over forecasting horizons. For the horizons of 3 and 6 months, both WTI and
Brent oil volatility can predict stock volatility, evidenced by significantly positive out-of-sample 𝑅2 during all periods. However, the
predictability disappears in most cases for the horizon of 9 month. The absence of predictability for longer horizons can be explained
by the finding in the literature that the responses of stock market activities to oil shocks complete within a certain period of time
(Wang et al., 2013).

8. Forecasting return volatilities of industry portfolios

We have revealed significant predictability from oil to stock index volatility. This section examines whether oil volatility can
also predict industry portfolio return volatilities.9 We use the daily returns of 12 industrial portfolios to compute monthly industry
volatility, which are available via the Kenneth French Data Library’s website.10 The forecasting results are reported in Table 8. In
the full sample, significant stock predictability is found for 5 out of 12 industry portfolios when the restricted model is used. The

8 To save space, we do not report results based on rolling window.
9 We are grateful to an anonymous referee for this constructive suggestion.

10 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Table 8
Forecasting results for return volatilities of industry portfolios. The table reports the forecasting results for the predictive regressions with oil volatility for return
volatilities of industry portfolios. We present the results from the regression given by, 𝑉𝑡+1 = 𝜔+

∑𝑝−1
𝑖=0 𝛼𝑖𝑉𝑡−𝑖 + 𝛽𝑉𝑡,𝑜𝑖𝑙 + 𝜀𝑡+1, where 𝑉𝑡 and 𝑉𝑡,𝑜𝑖𝑙 are the natural logarithm

of monthly realized volatility of industry portfolio returns and oil returns, respectively. The first column lists the names of industries. NoDur is consumer nondurables,
Durbl is consumer durables, Manuf is manufacturing, Enrgy is energy related industries such as oil, gas, and coal extraction and products, Chems is chemicals and
allied Products, BusEq is business equipment, Telcm is telephone and television transmission, Utils is utilities, Shops is wholesale, retail, and some services (laundries,
repair shops), Hlth is healthcare, medical equipment, and drugs and Money is finance industries. The maximum lag order is set as 𝑝 = 6. The forecasts are generated
using a recursive window with the initial estimation window covers a period of 60 months. We give the out-of-sample 𝑅2, defined by the percent reduction of mean
squared predictive error (MSPE) of the oil model relative to that of the benchmark of AR(6). The p-values of Clark and West (2007) (CW) tests for the equivalence of
MSPEs between oil model and the benchmark model are given in the parentheses. The asterisks *, ** and *** indicate rejections of null hypothesis at 10%, 5% and
1% significance levels, respectively.

Macro variable 1996–2015 2001–2015 2006–2015 2011–2015

Without restriction With restriction Without restriction With restriction Without restriction With restriction Without restriction With restriction

NoDur 0.601
(0.121)

1.138*
(0.060)

1.218*
(0.064)

1.707**
(0.025)

2.238**
(0.025)

2.247**
(0.024)

4.193**
(0.022)

4.193**
(0.022)

Durbl 0.127
(0.172)

0.013
(0.216)

1.084*
(0.070)

1.357**
(0.039)

2.152**
(0.031)

1.974**
(0.038)

1.430
(0.148)

1.430
(0.148)

Manuf 0.642
(0.103)

0.836*
(0.071)

1.238*
(0.057)

1.608**
(0.026)

1.941**
(0.034)

2.134**
(0.025)

2.649*
(0.063)

2.649*
(0.063)

Enrgy −0.750
(0.728)

−0.764
(0.804)

−0.406
(0.761)

−0.064
(0.485)

−0.201
(0.566)

−0.088
(0.485)

0.238
(0.330)

0.238
(0.330)

Chems 1.433**
(0.026)

1.660**
(0.015)

2.714***
(0.006)

3.051***
(0.002)

3.857***
(0.003)

4.002***
(0.002)

5.809***
(0.008)

5.809***
(0.008)

BusEq −0.091
(0.446)

0.294
(0.171)

0.141
(0.305)

0.443
(0.147)

0.347
(0.230)

0.547
(0.150)

1.450*
(0.091)

1.450*
(0.091)

Telcm −0.544
(0.524)

−0.272
(0.412)

0.217
(0.239)

0.562*
(0.080)

0.667
(0.100)

0.832*
(0.061)

1.898**
(0.043)

1.898**
(0.043)

Utils −0.410
(0.256)

−0.183
(0.194)

−0.026
(0.305)

0.202
(0.202)

1.032
(0.119)

0.417
(0.183)

1.871
(0.102)

1.871
(0.102)

Shops 0.584
(0.108)

0.696*
(0.088)

1.029*
(0.079)

1.161*
(0.059)

1.595*
(0.053)

1.520*
(0.059)

2.568*
(0.068)

2.568*
(0.068)

Hlth −0.211
(0.411)

−0.046
(0.357)

−0.079
(0.399)

0.292
(0.265)

0.386
(0.269)

0.399
(0.265)

1.361
(0.124)

1.361
(0.124)

Money −0.015
(0.340)

0.004
(0.338)

0.548
(0.124)

0.689*
(0.080)

0.952*
(0.071)

0.894*
(0.080)

2.028*
(0.054)

2.028*
(0.054)

Other 0.366
(0.143)

0.639*
(0.073)

1.149*
(0.055)

1.511**
(0.020)

1.999**
(0.021)

2.046**
(0.019)

2.822**
(0.041)

2.822**
(0.041)

forecasting performance of oil during the recent three subsample periods is more encouraging. For example, the restricted model
with oil volatility reveals significant stock volatility for 8 out of 12 industry portfolios. Consistent with the results for stock index
volatility, the 𝛥𝑅2

𝑂𝑂𝑆 values become large during more recent periods. That is, the predictive ability of oil volatility for industry
portfolio volatility becomes stronger over time.

Why does predictability disappear for some industries? Oil price shocks could be a systematic risk because they affect many
industries and may not be diversifiable. Indeed, this may be the reason it can forecast market volatility, which is a measure of
systematic risk. However, many firms may have used derivatives, like oil futures contracts, to hedge away the oil price risk. For these
industries, using oil volatility fails to obtain more accurate forecasts of industry volatility. In addition, Hong et al. (2007) point out
that the information of a significant number of industry portfolios leads the stock market by one or two months. Nevertheless, our
subsample analysis suggests that oil volatility has significant predictive power that is stronger for the portfolio volatilities of most
industries during more recent periods.

9. Conclusions

This paper examines the evidence for short-term predictability of U.S. stock volatility using crude oil volatility as predictor. We
establish several findings. First, the slope coefficients in predictive regressions of stock volatility on the oil volatility are significantly
positive via an in-sample analysis. Second, adding oil volatility to the benchmark of autoregressive model can significantly improve
out-of-sample forecasting performance. Third, we establish the economic significance of the stock volatility predictability by showing
that the portfolio constructed on oil-based forecasts of stock volatility displays a higher certainty equivalent return than the benchmark
forecasts.

We examine the robustness of predictability by considering a wide range of alternative benchmark models with macro variables.
Our results suggest that the predictability is not affected by the change of benchmark models to a large extent. Our finding gives a
new factor explaining and forecasting stock return volatility.

We further extend the forecasting exercise in three dimensions. First, we use nonlinear models to capture the relationship between
oil and stock volatility. However, we find little evidence supporting the superiority of nonlinear models over the simple linear models.
Second, we do forecasting analysis for longer horizons. Our evidence indicates that oil cannot predict stock volatility for longer
horizons of 9 months. Finally, we forecast industry portfolio return volatilities using oil volatility. The results show the existence of
significant predictability for a significant number of portfolios during recent periods.
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