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A B S T R A C T

Moth-Flame Optimization (MFO) technique has recently been explored to develop a novel algorithm for dis-
tributed optimization and control. In this paper, the MFO-based design of blade pitch controllers (BPCs) is
proposed for wind energy conversion system (WECS) to enhance the damping of oscillations in the output power
and voltage. The simple Proportional-Integral-Differential (PID) is used to realize the advantage of the proposed
hybrid referential integrity MFO technique. The proposed blade pitch controllers are termed as BPC-PID (MFO).
Single wind turbine system, equipped with BPC-PID (MFO), is considered to accomplish this study. The sug-
gested WECS model considers small as well as large scale uncertainties. MFO is utilized to search for optimal
controller parameters by minimizing a candidate time-domain based objective function. The performance of the
proposed controller has been compared to those of the conventional PID controller based on Zeigler Nichols and
simplex algorithm and the PID controller optimized by genetic algorithms (GA), to demonstrate the superior
efficiency of the MFO-based BPC-PID. Simulation results emphasis on the better performance of the proposed
BPC-PID (MFO) compared to conventional and GA-based BPC-PID controllers over a wide range of operating
conditions and control system parameters uncertainties.

Introduction

Wind energy source (WES) is one of the most prominent sources of
electrical energy in years to come. WES, as a renewable source, has no
impacts on the climate issues and greenhouse gases (GHG) emissions.
The increasing concerns about environmental problems demand green,
renewable, and sustainable ideas. Wind turbines along with solar en-
ergy and fuel cells are possible innovative solutions for this dilemma.
WES is a non-depleting, site-dependent, non-polluting, and a potential
source of the alternative energy option.

Wind energy has already reached a penetration level in many
countries, which raises some technical problems concerning grid in-
tegration [1–3]. WE has to overcome some technical as well as eco-
nomic barriers if it should produce a substantial part of electricity [4].
In power systems, the principal objective of the control strategy is
providing economical and reliable power as possible while improving
the power quality [5,6]. The wind energy conversion system (WECS) is
not just be used for generating electricity from the wind, but also about
using this energy efficiently. Wind turbine (WT) is often equipped with
a blade pitch control (BPC) for high-quality power generation from

wind source and decreasing mechanical fatigue. To improve the dy-
namic performance of the WECS, a BPC system is used. WECSs typically
use BPCs to fulfill two primary functions are assigned to the BPC, which
are; (i) it monitors, adjusts, and controls the speed of the turbine rotor
to maintain the turbine's energy production at its rated value, and (ii) it
turns the blade out of the wind in cases of high wind speeds or emer-
gency command to avoid any damages on the WT and ensure safe op-
eration.

Over the past five decades, several approaches have been presented
for BPC system modeling. Modeling of the appropriate BPC system is
the prerequisite of WECS for maintaining the power extracted from WT
at its rated value and enhancing aerodynamic performance [7,8]. The
complete dynamical model of WECS is very complicated because it is an
under-actuated, highly coupled and nonlinear system [9]. Such dyna-
mical system is usually decomposed into a generator system and wind
turbine system during controller design phase [10]. In [11], the BPC
had been developed based on a simplified blade pitch model which is
derived out by neglecting blade torsional dynamics. In this case, the
simplified blade pitch model has a relatively significant difference in
the actual design. A new simplified blade pitch model was firstly
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presented in [10] by taking the pitch servo motor, actuator, and blade
torsional dynamics into consideration. The proposed model is more
reasonable. The proposed BPC model is constructed and built using
Matlab Simulink as demonstrated in Fig. 1.

The preliminary results on control designs of BPC were firstly pre-
sented in [7,8]. The challenge of BPC, to achieve good performance, is
the complex nonlinear mathematical equations in large-scale systems.

A robust dynamic output feedback designs of BPC have been ad-
dressed in [12,13]. However, such robust-based design does not ac-
count for system nonlinearities and results in a controller with the same
plant order, which in turn makes the design very complex especially for
large WECSs. Various conventional control strategies are being used for
BPCs. Methodologies for a conventional design of sliding mode and
proportional–integral (PI) controllers are limited by slow, lack of effi-
ciency and poor handling of system nonlinearities [11]. Artificial In-
telligence (AI) techniques like fuzzy logic control (FLC), artificial neural
networks (ANNs), genetic algorithms (GAs), particle swarm optimiza-
tion (PSO), ant colony optimization (ACO) and artificial bee colony
(ABC) have been applied for BPC to overcome the limitations of con-
ventional methods [14–18]. Among various types of BPCs, proportio-
nal–integral–derivative (PID) controllers have commonly used thanks
to its structural simplicity and its better dynamic response. On the
contrary, the performance of PID controllers is degraded significantly
when the controller parameters change.

Genetic algorithms (GAs) have been extensively considered for the
design of BPC. The parameters of optimal BPC-based PID controller
have been optimized via GAs for WECS [18]. The application of PSO for
optimizing an integral controller and a PI controller is reported in [19].
The authors of [19] tuned the PI controllers via PSO using a new cost
function. The design of a fuzzy logic controller based BPCs is presented
in [20]. In [18], a robust PID design based on the grey wolf algorithm
(GWA) has been considered for BPC application. Ant bee colony opti-
mization algorithm (ABCOA) has been suggested by Salah et al. for
optimizing PID-based BPCs for WECS [18].

The classical BPC-PID commonly used in practice is a dynamic
output feedback, a lead type, with a single stage and uses the electrical
power deviation ΔPe as a feedback signal [19]. Conventional fixed-
parameter BPC may fail to maintain system stability over a wide range
of operating conditions or at least leads to performance degradation.
Traditional fixed-parameter BPC is not enough anymore, but it has to
work reliably in any environment because of the dramatically con-
tinuous variation in climate conditions. Moreover, BPC has to effec-
tively cope with mechanical and electrical systems uncertainties im-
posed by the continuous change in operating points. The control of such
systems which have the characteristics of time-varying, structured and
unstructured uncertainty, and neglected dynamics, has been an exciting
challenge to the researchers.

Over the last few decades, the interest in defining resilient and non-
fragile stability limits for PID controllers gains has progressed sig-
nificantly. Progressive interest in resiliency and non-fragility results
from its fast response and stability against nonlinearities, constraints
and parameters uncertainties [21]. These powerful features of resilient
and non-fragile stability limits will enhance the performance of pro-
posed BPC-PID. The author of [21], presented some primary results on
resilient and non-fragile PID controller applications in BPC. In [19],
Mohamed et al. introduced the PID-based BPC of wind energy power
plant where the controller parameters limits were determined arbi-
trarily. However, the design did not account for the system non-
linearities that was only considered while modeling simulation. Re-
markably, such design may lead to a degraded system performance
once the real application of that controller.

Recently, the novel metaheuristic optimization techniques have
been used for adjusting the PID controller parameters. They are fea-
tured by their significant capability for dealing with continuous non-
linear optimization problems, shorter calculation and simulation time
besides their better convergence characteristics compared to other
stochastic techniques [22–30]. Thus, the most recent metaheuristic
optimization techniques are used for designing the BPC-PID controller

Nomenclature

Rtl transmission line resistance (p.u. ohm)
Xtl transmission line reactance (p.u. ohm)
Nr turbine speed (r.p.m)
rb blade radius (m)
VW wind speed (m/s)
PP no. of poles
h inertia constant
ζ damping coefficient
Ra generator armature resistance (p.u. ohm)
Xd D-axis reactance (p.u. ohm)
Xq Q-axis reactance (p.u. ohm)
V∞ infinite bus voltage (p.u. V)
P active power (p.u. MW)

Kth torque factor
Xd′ transient d-axis reactance (p.u. ohm)
Xd″ sub-transient d-axis reactance (p.u. ohm)
Xq″ sub-transient q-axis reactance (p.u. ohm)
τdo′ D-axis transient field time constant (s)
τdo″ Q-axis sub-transient field time constant (s)
τqo″ Q-axis sub-transient field time constant (s)
ωo base angular speed of the generator (rad/s)
ωn nominal angular speed of the generator (rad/s)
τp wind turbine filter time constant (s)
τe exciter time constant (s)
Ke exciter gain
N gear ratio
Q reactive power (p.u. MVAR)

Fig. 1. Wind energy conversion system Simulink Model.
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of the wind energy plant. These metaheuristic optimization techniques
are Simplex Algorithm (SA), Genetic Algorithm (GA) and Moth-Flame
Optimization Algorithm (MFO).

The major contributions of this paper are the optimal BPC system
and the applicable detailed analysis methods such as design procedure,
stability, and dynamic analysis. The optimal BPC is a hybrid control
design based on the referential integrity via MFO technique (RI-MFO).
The hybrid RI-MFO control method results from a combination of both
the most commonly used error estimation indices and the MFO tech-
nique. The RI-MFO based BPC-PID technique holds the advantages of
hybridized complementary approaches while overcoming their well-
known practical performance limitations. To design the BPC-PID that
copes with the WECS, the modeling/parameter uncertainties are tested
upon the controller design. The robust stability of the BPC, determined
by the proposed hybrid RI-MFO approach, is validated via applying
different conventional/meta-heuristic optimization techniques.
Undoubtedly, the proposed RI-MFO technique can be ideally considered
for: (i) guaranteeing robustness of the proposed BPC-PID; and (ii)
providing better dynamic performance and stability through selecting
the optimal gains in comparison with conventionally tuned controllers.
Therefore, such novel technique can be adopted for further engineering
applications.

This paper proposes the application of MFO for optimal tuning of
PID-based BPC in wind power plant to damp out oscillations in the
output power and voltage. The BPC control design is formulated as an
optimization problem where MFO is devoted to search for optimal
controller parameters by minimizing a candidate time-domain based
objective function. Realistic constraints imposed by system non-
linearities, and controller parameters variation, are considered in the
suggested design algorithm. The performance of the proposed MFO-
based BPC-PID is evaluated by comparison with conventional and GA-
based PID controllers. Simulations results on WECS test system are
presented to confirm the superiority of the proposed method compared
with other design methods. Furthermore, the robustness of the pro-
posed MFO-based BPC-PID is tested against system parameters un-
certainties.

Plant dynamic model

The test system comprises a single WT connected to the grid through
a tie lie line as shown in Fig. 2. System dynamics are represented by
seven nonlinear differential equations, data of the system, and the block
diagram for the model of such system is given in [10]. The model

parameters …k k( , , )1 6 are load-dependent at any operating condition re-
garding active and reactive powers P, Q.

The dynamic model of the system can be written as [10]:
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where ω is the generator-angular speed, h is the WECS inertia; Pm is the
mechanical power applied to the generator shaft, Pe is the electrical
power, eq, Vf are the equivalent generator terminal voltage and the field
voltage respectively in the dq reference frame, δ is the rotor angle of the
generator, k2, k4, k6 are power dependent constants, ke, τe are exciter
constants, τ′do is the sub-transient time constant for the synchronous
generator.

Blade torsional dynamics:

=X X4̇ 5 (5)

= − − +X ω X ζω X ω Ẋ 2n n n5
2

4 5
2

6 (6)

where x6 is the actuating signal for the WT blades mechanism, x5 is the
mechanical rotational power on the WT shaft, x4 is arbitrary state de-
termined by x5, the aerodynamic system natural frequency, and
damping coefficient are ωn and ζ respectively.

Pitch servo and actuator:

= − +X
τ

X
τ

u̇ 1 1
p p

6 6
(7)

where τp is the pitch servo and actuator mechanism time constant, u is
the control.

PID controller:

= − + + −u K P P X K s P P( ) ( )P ref e d ref e7 (8)

= −X K P Ṕ ( )i ref e7 (9)

where Kp, Ki and Kd are the PID controller gains, and Pref is the desired
reference power.

With

Fig. 2. Block diagram of the test system.
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= +P K δ K ee q1 2 (10)

Metaheuristic optimization technique based PID controller design

Let the PID controller be implemented as:
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Let J denotes the objective function of the system to be optimized. In
this paper, the proposed design has to cope with the system non-
linearities and control parameters’ variation. Further, incorporating
controller parameters variation results in an interval polynomial rather
than linear characteristic polynomial for the closed loop system.
Consequently, eigenvalue-based objective functions as that described in
[21] are not suitable, and a time domain-based objective function be-
comes a good candidate. Although the specifications of a time-domain
response are various, maximum overshooting (Mp) and the settling
time (Ts) are of greatest interest while designing convenient controllers.
It is required to minimize both peak response and settling time as
possible as we can to enhance the stability margins of WECS. Accord-
ingly, a strong comparative assessment study based on the widely used
performance indices such as the Integration of the Absolute Error (IAE),
Integral of Square Error (ISE), Integral of Time Weighted Absolute Error
(ITAE) and Integral of Time Weighted Square Error (ITSE) is provided.
The following performance indices are proposed to carry out the design.
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In this study, it is aimed to minimize the performance index J to
enhance the dynamic performance of the WECS. The performance index
J is minimized under the following constraints:

⩽ ⩽
⩽ ⩽

⩽ ⩽

K K K
K K K

K K K

pmin p pmax

imin i imax

dmin d dmax (13)

The min-max values of all the gain parameters are determined over
the stability region via the proposed approach presented in [21]. To
accurately verify the theoretical findings of the proposed hybrid RI-
MFO approach, different optimization techniques are considered to
confirm the superiority of the proposed method compared with other
design methods. In this study, the commonly used optimization tech-
niques in engineering optimization applications are considered such as
Zeigler Nicolas (ZN), Simplex Algorithm (SA), Genetic Algorithm (GA)
and Moth-Flame Optimization (MFO) Algorithm.

These different most-used metaheuristic optimization techniques
are considered for reaching the optimal BPC-PID gains. Reaching op-
timal gain values by the hybrid RI-MFO approach explains its effec-
tiveness in providing an optimal stability area. In such area, the BPC-
PID will be robust.

The efficiency of the hybrid RI-MFO approach is confirmed through

the comprehensive comparative study using both conventional and
metaheuristic based control design techniques considering the com-
monly used performance indices.

Moth-Flame Optimization technique

The Moth-Flame Optimization technique is a novel nature-inspired
optimization paradigm. MFO algorithm mimics the navigation method
of the moths in nature. Moths fly in the night by maintaining a fixed
angle on the moon for traveling in a straight line for long distances
[31]. In the proposed MFO technique, it is assumed that the candidate’s
solutions are moths and the BPC-PID parameters are the position of
moths in the search space. Therefore, the moths can fly in 3-D space
representing the three controller parameters Kp, Ki and Kd with chan-
ging their position vectors. The mathematical model of the MFO algo-
rithm can be written as
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where M is the set of moths, n is the number of moths and d is the
number of variables (Kp, Ki, Kd).

The array for storing the objective function values for each moth is

=
⎡

⎣
⎢
⎢

⋮
⎤

⎦
⎥
⎥

SM
SM

SMn

1

(15)

The flames are other key components in the MFO algorithm and can
be represented as
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The array for storing the corresponding fitness function values for
each flame is
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The MFO algorithm approximates the global optimal of the opti-
mization problem as follow

=MFO I P T( , , ) (18)

where I is a random population of moths and corresponding fitness
values, and it can be represented by

∅ →I M SM: { , } (19)

The P function moves the moths around the search space. This
function is responsible for updating the matrix M.

→P M M: updated (20)

The T function returns true or false according to the stopping cri-
terion.

Table 1
A comparative assessment and analysis of different optimization methods for BPC-PID.

SA GA Proposed-MFO

IAE ISE ITAE ITSE IAE ISE ITAE ITSE IAE ISE ITAE ITSE

Kp 0.109 0.087 0.074 0.108 0.321 0.388 0.360 0.360 0.331 0.306 0.353 0.179
Ki 1.612 2.755 1.005 1.802 0.718 0.541 0.527 0.527 0.298 0.385 1.832 0.458
Kd 0.054 0.096 0.034 0.060 0.078 0.091 0.040 0.040 0.106 0.148 0.046 0.033
Obj. fun. 0.094 0.043 0.014 0.020 0.067 0.067 0.067 0.066 0.017 0.014 0.012 0.012
Time (min) 0.457 0.456 0.455 0.450 0.866 0.737 0.773 0.703 0.353 0.356 0.357 0.359
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→T M true false: { , } (21)

Results and discussion

To achieve real and fair comparison between the applied
Metaheuristic Optimization Techniques (MOTs), the following optimi-
zation parameters are considered: population size is set to be 20, search
agents are 20, the number of iteration is 100 and tolerance is 10−9. In
this section, MFO technique is devoted to getting the optimistic para-
meters of the proposed BPC-PID. The resulting controllers are tested
under various disturbance scenarios subject to system nonlinearities.
Mechanical torque perturbations in WECS may be considered to initiate
system disturbance. Comparing the performance of the MFO-based
BPC-PID to that of conventional ZN, SA, and GA-based PID controllers is
carried out to confirm the effectiveness of the first. Both MFO and GAs
are considered to look for the optimal controller's parameters when the
system undergoes 10% simultaneous step increment in mechanical
torque and wind speed while± 30% controller’s parameters variation
is considered. The optimal parameters of conventional ZN, SA, GA-
based PID and MFO-based BPC-PID are listed in Table 1 where the
corresponding objective functions are computed. These parameters are
considered while testing different controllers under different dis-
turbance scenarios. These scenarios are sufficiently characterized by the
magnitude of simultaneous step mechanical torque perturbations
(SMTPs), simultaneous step wind speed perturbations (SWSPs) and the
amount of parameters variations.

The BPC parameters variation over the stability region proposed by
the hybrid RI-MFO approach is shown in Fig. 3. Remarkably, the sug-
gested hybrid RI-MFO approach can account for the predefined stability
region given in [21]. From Fig. 3, the use of SA, GA and MFO techni-
ques allows reaching robust BPC-PID gains inside the stability region.
However, ZN, SA, and GA fail to provide the best rugged BPC. The MFO
technique is better than other proposed methods in attaining the most
robust BPC. Therefore, the MFO is the nearest AI-based MOTs capable

of reaching the optimality zone. Table 1, presents a comparative as-
sessment and analysis of three representative optimization methods for
BPC-PID determination. The optimal gains for BPC-PID system using
classical ZN are Kp=0.083, Ki= 0.341, Kd= 0.08. From Table 1, the
ITSE index has better tuning performance due to its minimum objective
function and less computation time. The SA and GA techniques failed in
finding the most optimal BPC-PID. From Table 1, it is clear that the
BPC-PID (MFO) has the most optimal gains regarding minimum ob-
jective function with minimum estimation time.

Simulation results

Scenario I: The system undergoes 0.1 p.u. SMTPs at t= 0.5 s with
full recovery after 100ms.

Robust stability of exact controllers {Kp
(0), Ki

(0), Kd
(0)}

The generator power, speed, and rotor angle, subject to disturbance
Scenario I, are shown in Fig. 4. Fig. 5 illustrates the WECS voltage
deviation response for the different controllers in case of SMTPs dis-
turbance. All proposed controllers which are labeled BPC-PID (ZN),
BPC-PID (SA), BPC-PID (GA) and BPC-PID (MFO) with the exact gains
are tested. Remarkably, conventional PID controllers result in greater
overshooting, poor settling time and undesirable oscillations. Moreover,
the proposed BPC-PID (MFO) outperforms GA-based PID controller
because it has less settling time and smaller overshooting.

Scenario II: The system undergoes 0.1 p.u. SWSPs and it is subjected
to± 30% parameters variation.

Robust stability of± 30% perturbed controller
Robustness of the proposed design against control system parameter

uncertainties is investigated for further testing. To carry out this test,
the BPC-PID coefficients are assumed to be uncertain and vary around
their nominal values {Kp

(0), Ki
(0), Kd

(0)} by±30%, i.e.
Kp∈ [0.7Kp

(0),1.3 Kp
(0)], Ki∈ [0.7Ki

(0),1.3 Ki
(0)], and Kp∈ [0.7Kd

(0),1.3
Kd

(0)]. This wide range of controller parameters can sufficiently account

Fig. 3. BPC parameters variation over the stability region proposed by the hybrid RI-MFO approach.
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for strong and poor control action. The nonlinear model of the system is
stimulated at the nominal, upper and lower limits of BPC-PID (MFO) to
confirm the robustness of the proposed design as shown in Fig. 6. To
assess the effectiveness of the proposed BPC-PID (MFO) and to verify its
robustness, the dynamic system behavior in the presence of significant
disturbances is studied. Therefore, a realistic stochastic wind profile
(continuous 0.5% step increase) is considered in conjunction with
system parameters uncertainties (± 30% parameters variation). The
wind pattern is chosen to represent large, as well as small wind guests.
From Fig. 6, the system is subjected to a stochastic wind profile. The
proposed BPC-PID (MFO) is noticeably robust under this stochastic
profile condition disturbance.

Conclusions

The parameters of blade pitch controller by MFO algorithm design is
carried out to cope with system nonlinearities comprising the pitch
servo motor, actuator, and blade torsional dynamics. A candidate time-
domain based objective function has been considered to minimize both
maximum overshooting and settling time. Comparing the proposed
MFO-based BPC-PID to conventional BPC-PID (ZN), BPC-PID (SA), and
GA-based PID controllers has proved the superiority of our design in
capturing system nonlinearities and control system parameters

variation. Consequently, the suggested design can guarantee system
stability under increased mechanical torque perturbations and ex-
cessive wind speed with controller parameters uncertainties. The pro-
posed approach (RI-MFO) showed accuracy in defining the most op-
timal BPC-PID. Simulation results have been carried out to reveal the
robustness of the proposed design against system parameters un-
certainties. Thus, the proposed approach succeeded in proving its
capability to select the most robust controller.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.seta.2018.04.012.

Fig. 4. WECS dynamic performance for 0.1pu increment in WT mechanical power at t= 0.5 s with all proposed BPCs.

Fig. 5. Terminal voltage deviation response for 0.1pu increment in WT mechanical power at t= 0.5 s with all proposed BPCs.
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