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Abstract: The accurate maneuver prediction for dynamic vehicles can enhance driving safety in complex environments.
This paper presents a maneuver prediction method for dynamic vehicles in highway scenarios. The method effectively
combines multi-frame vehicle states, road structures and interactions among vehicles. With a novel extraction algorithm
of environment feature, the method infers the probability of each driving maneuver by using a Dynamic Bayesian Net-
work. The experimental results demonstrate that our method can predict lane-change maneuvers at least 2 seconds before
they occur in real environments with an accuracy of 84.9%.
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1 INTRODUCTION

Many traffic accidents happen in complex traffic environ-
ments. The accurate motion prediction for surrounding ve-
hicles can enhance driving safety in these complex envi-
ronments. As to autonomous driving, the accurate motion
prediction for surrounding vehicles, which are also called
as participant vehicles (PVs), will contribute to make safer
decisions and plan smoother trajectories. Motion predic-
tion in autonomous driving provides a human-like way of
driving that can predict maneuvers of surrounding vehicles.
Similarly, accurate motion prediction for PVs in Advanced
Driver Assistance Systems (ADAS) is also useful for hu-
man drivers.
In recent years, a large number of new techniques have
been proposed to predict the motion of participant ve-
hicles. In [1], the approaches of motion prediction
are classified into three categories, namely physics-based
approaches, maneuver-based approaches and interaction-
aware approaches. However, many researches always com-
bine interaction-aware approaches with the other two ap-
proaches for more accurate motion prediction results [2].
Moreover, the motion prediction approaches are classified
into four categories in [3] according to the prediction num-
ber of future behaviors. Different from these two classifica-
tion methods, we classify the motion prediction approaches
into two categories: 1) trajectory prediction and 2) maneu-
ver prediction. Trajectory prediction deals with the pre-
diction in the short term, whereas the maneuver prediction
predicts the motion in the long term.
Trajectory prediction predicts the trajectories of PVs. Ba-
sically, these approaches use current states of PVs and
the kinematic model of vehicles. For instance, continu-
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ous Bayes filters (e.g., Kalman Filter) are applied in [4, 5].
Besides, probabilistic methods [2] are also used in trajec-
tory prediction to cope with uncertainty and inaccuracy. In
[6, 7], an offline learning trajectory set learned by Gaussian
process and an improved RRT are combined to predict tra-
jectories. However, driving trajectories are related to long-
term maneuvers, mere trajectory prediction is not accurate
in long term.
Maneuver prediction gradually receives more attention in
recent years. The maneuver prediction is usually more re-
liable in the long term. For instance, the approach in [8]
can detect a lane-change maneuver averagely 0.6 s earlier
than an adaptive cruise control (ACC) system. An object-
oriented Bayesian network (OOBN) is proposed to predict
maneuvers of PVs in [8]. The naive Bayesian method is ex-
tended in [9] for lane-change maneuver prediction. Sivara-
man and Trivedi [10] introduce a dynamic probability driv-
ability map (DPDM) for a driver assistant system, which
can predict maneuvers of other vehicles. In [11], a method
that combines the field map and a Bayesian network is pre-
sented, focusing on the interaction-aware maneuver predic-
tion. Recently, a Support Vector Machine (SVM) method
is used to predict lane-change maneuvers in [12] with con-
sideration of traffic interactions.
In order to consider interactions among vehicles, Dynamic
Bayesian Networks (DBNs) are used in the maneuver pre-
diction. Inspired by [13], this paper presents a novel
Dynamic Bayesian Network for the maneuver prediction
(DBMP) in highway scenarios. The advantages of our
DBMP include two aspects. 1) DBMP predicts maneuvers
of PVs based on multi-frame features, the road structure,
and interactions among PVs together in a unified frame-
work. 2) DBMP combines the driving experience of hu-
mans with machine learning algorithm. Note that although
DBMP is focused on the highway scenarios, it can be ex-
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Figure 1: The Dynamic Bayesian Network for maneuver
prediction.

tended to other complex environments.
The rest of the paper is organized as follows. In Sec. 2, the
model structure of DBMP and the inference of maneuver
probabilities are discussed. In Sec. 3, proposed algorithms
for feature extraction are introduced, which are the founda-
tion of the inference. Sec. 4 presents experimental results.
Finally, Sec. 5 draws conclusions and makes suggestions
for future work.

2 MANEUVER PREDICTION USING DY-
NAMIC BAYESIAN NETWORK

Dynamic traffic environments can provide many clues to
predict maneuvers of PVs. These clues, which include the
road structure, detectable vehicle states, and traffic inter-
action, are detected continuously or displayed as multi-
frame features. In order to effectively deal with the con-
tinuous prediction [14], we developed our maneuver pre-
diction method based on a DBN.

2.1 Model Structure

The structure of our DBN is shown in Fig. 1. Each node
represents a detectable clue, which is also called as the fea-
ture. Values of nodes can be obtained by feature extraction
algorithms, which will be introduced in Sec. 3. The acyclic
arrow represents the causal relationship between two fea-
tures. According to the causal relationship between the
lane-change maneuver and other features, we separate all
nodes into three layers: 1) an evidence layer; 2) a maneu-
ver layer; 3) a state layer.
1) In the evidence layer, the environment information is
considered. The features include: i) the existence of a left
lane (LL); ii) the existence of a right lane (RL); iii) the exis-
tence of a neighboring vehicle in the left lane (LV); iv) the
existence of a neighboring vehicle in the right lane (RV);
v) the existence of a neighboring lead vehicle in the same
lane (FV). The neighboring vehicle is judged by a distance
threshold to the predicting PV. The states (also called as
attributes) of the features in this layer are existence or not.
2) In the maneuver layer, the feature only involves the lane
change (LC). The final predicted maneuver is calculated by
choosing the maximal state value. The states contain lane

Figure 2: Block diagram of DBMP.

keeping, changing to the left lane, and changing to the right
lane.
3) In the state layer, two features are involved: i) the de-
viation from the centerline of the driving lane (LO); ii) the
acceleration (LA). As the states of a PV in the time step t
will influence the maneuver in the time step t + 1, there is
a recursive formulation in the temporal plate to display the
dynamic causal relationship. The states of the features in
this layer are continuous and discretized into two reason-
able values.

2.2 Inference

The final results of predicted maneuvers are inferred by (1).
For simplicity, our DBMP can be represented as Fig. 2.
Each node represents one layer of the DBN in a certain
one-time step. For instance, Et represents five nodes (i.e.,
LL, RL, LV, RV, FV) in the time step t.

P(M(t+ 1)|E(t+ 1), S(t)) =

P(M(t+ 1), E(t+ 1), S(t))∑
M P(M(t+ 1), E(t+ 1), S(t))

(1)

The marginal distribution is expressed as (2) because of the
conditional independence.

P(M,E, S) = P(LL)P(RL)P(FV )

P(LV |LL)P(RV |RL)

P(LC|LL,RL,LV,RV, FV )

P(LO|LC)P(LA|LC)

(2)

Although the prior probability can be learned by learning
algorithm, we specify the prior probability by expert expe-
rience [15]. The original number of prior probability that
we need to specify is 383, which is calculated by:

27 ∗ 3− 1 = 383

Thanks to the conditional independence, the setup number
of prior probability decreases to 77, which is calculated by:

1 + 1 + 1 + 2 + 2 + 26 + 3 + 3 = 77

Note that if S(t) is unknown for the inference in the time
step t, the prior distribution is P(M(t+1)|E(t+1)). After
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S(t) determined, the prior distribution is P(M(t+1)|E(t+
1), S(t)). These two distributions comply to (3).

P(M(t+ 1)|E(t+ 1))

=
∑

S(t)

P(M(t+ 1)|E(t+ 1), S(t))P(S(t))

<
∑

S(t)

P(M(t+ 1)|E(t+ 1), S(t))

(3)

3 FEATURE EXTRACTION

This section introduces our algorithms for feature extrac-
tion in real environments. The purpose of feature extrac-
tion is to obtain states of nodes, which are used to infer the
probabilities of the maneuver. Thus feature extraction is
the foundation of the inference which is discussed in Sec.
2.2. Note that features of all PVs are extracted iteratively.
Firstly, we classify all other features except the feature of
the longitudinal acceleration (LA) into two types based on
the different relationship, which are features of point-curve
relationship and features of point-point relationship. The
relationships are shown in Fig. 3. The state of LA can be
calculated by the filtering algorithm after detecting contin-
uous velocities of PVs.
Secondly, features of point-curve relationship are ex-
tracted, which contain the existence of a left lane (LL), the
existence of a right lane (RL), and the lateral deviation from
the centerline of the driving lane (LO). The extraction al-
gorithm is listed in Algorithm 1.
Step 1. All lane points, which are detected by sensing sys-
tems, are classified and approximated as traffic lines (lines
or second-degree polynomial [16]).
Step 2. For each traffic line, the nearest point to the center
point PA of the PV is calculated. Choosing two neighbor
points PN−1 and PN+1 on the traffic line by ΔP . �k1, �k2
are vectors from PA to PN−1 and PN+1 respectively.
Step 3. The relative positional relationship (i.e., PA is on
the left side or right side of the traffic line) is calculated
by cross product of two vectors �k1, �k2, with regard to the
driving direction.
Step 4. Judge the relative positional relationship of all traf-
fic lines and the PV. The state of LL and RL can be gained
by the number of the traffic line on each side. Moreover,
we can also ascertain all lane indexes if the number of lanes
dicussed is changeless.
Step 5. Similar to Step 2, dLmin is gained by calculating
the distance from the centerline of the driving lane to PA.
Step 6. The state of LO can be gained after discretizing
dLmin into reasonable values.
Thirdly, features of point-point relationship are extracted,
which contain the existence of a neighboring vehicle in the
left lane (LV), the existence of a neighboring vehicle in the
right lane (RV), the existence of a neighboring lead vehicle
in the same lane (FV). The extraction algorithm is listed in
Algorithm 2.
Step 1. Before iteration, all PVs are stored according to the
lane index in an index table, which is shown in Fig. 3. The
index table is designed for quicker calculation in the next
step.

Figure 3: The point-curve relationship and point-point re-
lationship.

Algorithm 1 Extraction Algorithm for features of point-
curve relationship
Require: PA(center point of focused participant vehicle),

SL(lane points)
Ensure: LL,RL,LO(states of LL, RL, LO)

1: Lines← ApproximateCurve(SL)
2: for all l in Lines do

3: ( �k1, �k2)← Calculate(l, PA)

4: if �k1 × �k2 < (0, 0, 0) then

5: NLL ← NLL + 1
6: else

7: NRL ← NRL + 1
8: end if

9: end for

10: NLL > 2 : LL = 1?LL = 0
11: NRL > 2 : RL = 1?RL = 0
12: IA ← IndexforPV (NLL, NRL)
13: dLmin ←Mindist(IA, Lines)
14: LO ← Normalize(dLmin)

Step 2. As to the states of LV and RV, we make sure
whether any vehicles exist in the neighbor lane by the index
table. Then, the states of LV and RV are gained if a vehicle
is existed and closer to the predicting PV than a predefined
distance threshold dthre.
Step 3. Similarly, the state of FV is also extracted by the
condition if neighboring vehicles exist in the same lane. In
this step, we consider the driving direction.
Finally, the lane-change feature (LC) is inferred after all
other features are determined.

4 EXPERIMENT

4.1 Setup

To verify the effectiveness of our proposed method, we
conduct two experiments, which are a qualitative experi-
ment and a quantitative experiment. The qualitative ex-
periment is conducted to verify prediction capacity. The
quantitative experiment is to compare our DBMP with a
naive Bayesian network, which does not consider the time-
related lateral deviation and acceleration.
The experiment dataset used is NGSIM-I80 from Ameri-
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Algorithm 2 Extraction Algorithm for features of point-
point relationship
Require: SPV (lane indexes of all PVs), PA(center point of fo-

cused participant vehicle), dthre(predefined distance thresh-
old)

Ensure: LV,RV, FV (states of LV, RV, FV)
1: for all PI in Vehicles do

2: Tl ← LaneIndexTable(SPV )
3: end for

4: if PB ← CarInLeftLane(Tl) then

5: d(PA, PB) < dthre : LV = 1?LV = 0
6: else

7: LV = 0
8: end if

9: if PB ← CarInRightLane(Tl) then

10: d(PA, PB) < dthre : RV = 1?RV = 0
11: else

12: RV = 0
13: end if

14: if PB ← CarInSameLane(Tl) then

15: d(PA, PB) < dthre : FV = 1?FV = 0
16: else

17: FV = 0
18: end if

Figure 4: Screenshot in Dataset I-80.

can Federal Highway Administration [17]. NGSIM-I80 is
collected from the northbound traffic on I80 in California
and used for intelligent transportation systems and valida-
tion of prediction algorithms ([12], [18]). Our experimental
platform is a PC (Intel(R) Core(TM) i5@2.20GHz, 4.0GB
memory). The prediction program has been implemented
in C++. The preparation of the dataset contains two steps.
Firstly, data of all lane-change vehicles are selected. Sec-
ondly, all ground-truth maneuvers are extracted by the rel-
ative distance to the centerline of the driving lane. For sim-
plicity, we classify maneuvers in the dataset into two states,
which are lane keeping and lane change.

Table 1: Parameters of experiment
Parameter Name Meaning Value

dc
deviation distance from centerline
for lane change

0.2m

dthre threshold distance for filed of view 3m

4.2 Qualitative Results

Maneuvers of all lane-change vehicles are predicted using
our DBMP. Parts of qualitative results (i.e., 4 typical pre-

Figure 5: Qualitative Results for Prediction.

dicted results) are shown in Fig. 5. The red curves repre-
sent the predicted results by DBMP. The blue curves repre-
sent the ground-truth maneuvers extracted from the dataset.
When the value of y axis equals to zero, the vehicle is keep-
ing the lane. While the value of y axis equals to one, the
vehicle is executing a lane change.
The results show that a lane change maneuver can be pre-
dicted by DBMP at least 2 s earlier. However, the short-
coming of our method is the prediction delay (about 3 s)
after the lane change. The reason is partly because parame-
ter dc chosen is small. Moreover, the unstable prediction is
also found in the vehicle 162 (i.e., the upper right figure).

4.3 Quantitative Results

The performance of our method is compared to that of
naive Bayesian Network (BN) based on correctness in pre-
dicting maneuvers. Five vehicles, which totally contains
3012 data in dataset are chosen for prediction. These ve-
hicles execute lane-change maneuvers during the driving
process. Besides accuracy measure (4), average precision
P , recall R (5) and F1 score (6) are also used as our per-
formance criteria. Because there are more lane-keeping
data than lane-change data in the dataset, we make true
positive case TP when it predicts a lane-keeping maneu-
ver correctly. Similarly, TN,FP, FN represent true nega-
tive case, false positive case and false negative case respec-
tively.

Accuracy =
TP + TN

TP + TN + FN + FP
(4)

P =
TP

TP + FP
,R =

TP

TP + FN
(5)

F1 = 2 · P ·R
P +R

(6)

The results in Table 2 show a significant, 37.1% increase in
precision, 0.9% increase in recall, 29.2% increase in F1 by
using DBMP than Naive BN. The prediction accuracy by
using DBMP reaches to 84.9%. The performance improves
because vehicle states and traffic interaction are used as
multi-frame features in DBMP.
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Table 2: Comparation of naive BN and DBMP
Approach Accuracy[%] Precision[%] Recall[%] F1[%]

Naive BN 49.1 50.0 96.3 62.6
DBMP 84.9 87.1 97.2 91.8

5 CONCLUSIONS

We have presented a maneuver predictor DBMP for high-
way driving scenarios. The algorithm is based on the Dy-
namic Bayesian Network, which combines structural pre-
diction and dynamic features. The method has been val-
idated using open dataset I-80. The results demonstrate
that the proposed DBMP can effectively predict lane keep-
ing and lane change over a long-term horizon. Moreover,
the prediction criteria will greatly increase using proposed
DBMP than naive BN. For the future work, we will investi-
gate the motion prediction in other complex environments
(e.g., urban intersections). The problem of unstable predic-
tions will be solved in future studies.
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