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Abstract—Although the conventional Bayesian network 
classifier (BNC) has been widely reported in the field of fault 
diagnosis, sometimes, it may not always work well to separate all 
faults with a single network. Besides, BNC only considers static 
distribution information but ignores the dynamic information. 
The dynamic nature in fault data, which is reflected in temporal 
behaviors of process data, can describe some meaningful 
underlying fault characteristics. Here, a novel distributed 
Bayesian network based on slow feature analysis (SFA-DBN) is 
proposed for fault diagnosis of complex process. The purpose of 
this work is to improve the performance of BNC for inseparable 
faults. The first step of this model is to build a global Bayesian 
network (GBN) to distinguish the inseparable faults from the 
separable faults. Second, the inseparable faults are divided into 
several fault subsets on basis of slow feature analysis (SFA) in 
which, dynamic variations are similar within the same subset 
while they are significantly different for different subsets. Third, 
a set of parallel Bayesian networks (PBNs) are designed to 
construct the distributed BN for fault diagnosis with different 
BNs for different fault subsets. Two credible criteria are also 
presented for offline reasonable partition and online correct 
identification. Finally, Tennessee Eastman (TE) Process verifies 
the validity of this proposed model.

Keywords—Fault diagnosis, Bayesian networks classifiers, SFA, 
Feature extraction, Industrial process

I. INTRODUCTION

With the increase of complexity in industrial processes, it is 
necessary to ensure process safety and efficiency so that fault 
detection and diagnosis (FDD) plays an important role in 
process system. However, the characteristics of process data 
(high dimension and significant correlations) bring a lot of 
difficulties in FDD, because fault information is buried in the 
huge historical data. Hence, data-driven methods [1] [2] [3] are 
developed rapidly in this field.

Generally, data-driven methods [4] such as principal 
component analysis (PCA) [5], partial least squares (PLS) [6]
and fisher discriminant analysis (FDA) [7] can transform the 
highly correlated data into a low-dimensional subspace. With 
the evolution of data-driven methods, more and more machine 
learning algorithms have been introduced in FDD research area. 
Indeed, those algorithms exhibit improved performance in 
dealing with a large scale industrial process data. Among 

machine learning algorithms, Bayesian network classifier 
(BNC) [8] is famous for its capacity of causal analysis under 
system uncertainty. The Bayesian network (BN) [9] is a type of 
graphical model and able to model probabilistic influence, 
which based on a strong mathematical theory, named Bayesian 
Theorem. The application of BNC for FDD achieves some 
successes. Parteepasen [10] demonstrates the ability to 
combine signals from acoustic emission and vibration sensors 
for tool wear monitoring. Sylvain Verron [11] applied the 
Bayesian network in multivariate process for fault diagnosis.

However, classical BNC only takes static distribution of 
fault data into consideration to complete the classification task 
in fault diagnosis, while ignores the importance of dynamic 
nature in fault data. The dynamic nature in fault data is
reflected in temporal behaviors of process data. Therefore, the 
information extracted from this aspect is called dynamic 
information, which explicitly depicts some meaningful 
underlying fault characteristics [12]. More deeply, dynamic 
information and static information carry the different fault 
information, analogous to the concepts of position and velocity 
in physics, respectively. In terms of complex industrial process, 
there is usually a phenomenon where some faults are unable to 
be well classified by classifiers when they are put together. 
These faults are termed as inseparable faults. The reason of this 
phenomenon is various, such as co-linearity and the similar 
position distribution. Fortunately, extracting the dynamic 
information, as an alternative method, can tackle this problem. 
Because each fault has its own dynamic nature, the dynamic 
information can be used to divide the inseparable faults into 
different classifiers in order to achieve a better classification 
accuracy. 

One of the methods to extract dynamic information is slow 
feature analysis (SFA). The SFA [13] is a promising dimension 
reduction methodology that extracts slow varying features from 
temporal data. From 2002, SFA has received increasing 
attention in image recognition [14] and human action 
recognition [15]. Until 2015, it was found to be used in fault 
detection by Shang [16]. He has defined two new indices to 
detect anomalies in process dynamics through the SFA. It is 
notable that, in his work, slow features are be partitioned into 
two groups, i.e., T

1...
M

d Ms s s R and T
1... eM

e M ms s s R ,
where the M slowest features in ds represent dominant slowly-
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varying trends that underlie processes, and the eM fastest ones 
in es  contain short-term fluctuations. Thus, it can be seen that 
SFA is a good tool to divide faults into different groups by 
extracting dynamic varying information.  

In a complex process system, there are two types of faults: 
separable faults and inseparable faults. In order to improve the 
performance of BNC for inseparable faults, this article 
proposes a novel distributed Bayesian network based on SFA 
(SFA-DBN) for fault diagnosis. In this algorithm, the first step 
is to construct a global Bayesian network (GBN) to distinguish 
the separable faults, which are denoted as SF  and the 
inseparable faults, which are denoted as IF . Secondly, for the 
fault-set IF , they are divided into several fault subsets based on 
the difference of fault varying rate. In this step, we design a 
partition criterion based on SFA (SFA-PC) to divide faults 
reasonably. Then, after the partition, parallel Bayesian 
networks (PBN) for different fault subsets will be established. 
As for now, the entire model including a GBN and a set of 
PBNs is ready for online diagnosis. Whenever an observation 
is available, the first step is to put it into the GBN. Next, if it is 
classified to IF  set, an online discriminant criterion based on 
SFA (SFA-DC) presented in this paper starts to work, which 
provides a fast and effective method to precisely discriminate 
the right fault subset for the observation. Finally, the PBN 
developed for the chosen subset is used to classify this 
observation and output the classification result. In this way, 
both separable faults and inseparable faults can be well 
classified. Meanwhile, besides the improved performance of 
BNC, the situation of fault dynamic varying in IF  is also 
acquired for further analysis of the fault characteristics. 

The major contribution is summarized as below: 

 Besides the global Bayesian network, a set of parallel 
Bayesian networks (PBNs) are designed by further 
separating inseparable faults into different subsets so 
that the local fault information can be elaborated for 
fault diagnosis. 

 Dynamic features in fault data are effectively 
extracted with SFA, which reveal some significant 
underlying fault characteristics and are thus beneficial 
to distinguish different faults. 

The reminder of this paper is organized as follows. Section 
2 presents the proposed algorithm. Then, the proposed 
algorithm is verified on Tennessee Eastman process in Section 
3 and a conclusion is drawn in Section 4. 

II. METHODOLOGY

Aiming to promoting the performance of Bayesian 
network classifier for inseparable faults, a distributed 
Bayesian network model based on slow feature analysis (SFA-
DBN) is presented. The dynamic nature in fault data plays a 
significant role on describing the underlying fault 
characteristics, which is reflected in temporal behaviors of 
process data. Because each fault has its own dynamic nature, 
extracting the dynamic information by SFA is a reasonable 
fashion to divide the inseparable faults into different 

classifiers for achieving a better result of classification. Hence, 
besides the proposed model containing a GBN and a set of 
PBNs, two useful criteria are provided: one is the partition 
criterion based on SFA (SFA-PC) for dividing faults 
reasonably; another is the online discriminant criterion based 
on SFA (SFA-DC) for making sure that online data is 
identified into the right fault subset efficiently.  one is training 
the conditional probability tables (CPTs) as parameters for a 
GBN.  

A. The Construction of Global Bayesian Network 
Considering the performance and simple applicability of 

the classifier, we choose the Naive Bayesian classifier as the 
classification network. In fact, the global Bayesian network 
(GBN) is a global Naïve Bayesian network. To construct a 
GBN, it has two steps. The first one is building the 
architecture, which relies on the number of nodes. The second 
one is training the conditional probability tables (CPTs) as 
parameters for a GBN.  

1) Variables selection for architecture building
Before putting variables into the network, an input 

sequence of variables is needed because the input way is one 
by one. Here, a variable sorting algorithm [17] based on mutual 
information is used to deal with the input variables. Then, a 
sequence in order from the most informative variables to the 
noisiest variables is attained. Thirdly, start to pick up the 
variables into the network by sequence order and test 
classification performance to select optimized variables, 
yielding the optimal NBN model followed.  

The class node of GBN contains all of types of faults to be 
classified and the number of child nodes is determined by the 
result of optimal model selection in Fig.1. 

Fig. 1. The Construction of GBN. 

2) Training of the conditional probability tables
After building the architecture, training data, which for 

obtaining the CPTs, should be pre-processed by Independent 
Component Analysis (ICA) [18] and Entropy Minimum 
Discretization (EMD) [19]. The former step is to satisfy the 
special assumption of Naive Bayesian classifier that all the 
variables are conditionally independent. And the second step 
can well catch the distribution of each feature. 

In the second step, the CPTs are acquired via computing the 
likelihood function with pre-processed training data. let P  be a 
joint probability distribution over the variables in our network 
and let 1 2{c , ,..., }kC c c  be the class node coding r different faults 
(classes) of the system The child nodes are indicated by 

1 2 nX , ,...,X X , representing there are n variables or n features in 
the system, and all the possible child nodes constitute the 
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evidence X . We view the fault with the maximum posterior 
probability as the right fault type for this new observation X . 

The objective function is indicated as follows: 

( | ) ( )arg max ( | )
( )i

i i
ic

P X C c P C cP C c X
P X  (1) 

where ( | )iP C c X  is the posterior probability, | )iP X C c  
is likelihood function, extracted from history data, and 

( c )iP C  is the prior probability. To simplify, the prior 

probability of each fault is fixed to 1
r

 (having r different fault 

types). 

3) Setting the threthholds
When the training of GBN is finished, the training data of 

all faults is divided into SF  portion and IF  portion by a 
threshold . The outputs of this construction are the GBN 
model and two fault-sets ( SF  and IF ). 

Furthermore, the threshold  is defined on the basis of 
accurate classification rate (ACR) of training data, which 
depends on individual demand. The detailed discriminant 
standard is as below: 

Firstly, the definition of ACR is, 

ACR p
H

(2)

where p is the count of this state samples that are classified 
to this state and H is the total count of this state samples. 

Secondly, the discriminant standard is, 

i

i I

if ACR     
if ACR <     

SF F
F F (3)

where iF  represents the type of fault. 

Specially, there is a misclassification index , derived 
from the average of maximum posterior probability of the right 
samples to be classified in each SF  type. For online data, if an 
online sample is determined to a separable fault but its value of 
maximum posterior probability is lower than , this sample 
will be turned back to the inseparable fault types; otherwise, 
diagnosis result of this observation in GBN will be output. 

B. The Partition Criterion Based on SFA 
For IF  set, this article proposes a partition criterion based 

on SFA (SFA-PC) in order to divide the faults into different 
fault subsets. In this part, the input is IF  set and the outputs are 
several fault subsets 1 2{ , ,..., }

iV mF F F F . 

The approach of SFA-PC is as follows. 

1) The computation of the average-slow-varying index

Let T
1t { ,..., }X nx t x t  is the input data. Utilize SFA to 

process all inseparable fault data at once and an average slow 
varying matrix _

n
sf avew  will be gained.  

Then choose the slowest feature, meaning that pick up the 
slowest vector _

n
sf avev  as the projection vector to extract the 

average-slowest-varying curve. Thirdly, to calculate the 
variance s _

n
f ave  under the slowest projective vector as the 

average-slow-varying index, which represents the varying 
trend of all fault class. 

2

_ _ _
1 1, 2

C M
n n n

sf ave sf ave k sf ave l
n k l

k l

v x t v x t  (4) 

1

1=
1C

n R (5)

where ,k lx t x t  are input data from time series tx  and 
have strict sequential order ( k l ),  is a normalization 
constant. R depends on the quantity of samples in the fault data, 
so if the number of fault types change, R will change too. 

2) The computation of single-fault-slow-varying index
Choose the same slowest feature _

n
sf avev  as the projection 

vector for each type of fault. Then, calculate the variance _ i

n
sf f

under the slowest projective vector as single-fault-slow-varying 
index, which represents the varying trend of each fault class. 

2

_ _ _
1, 2

i

M
n n n

sf f sf ave k sf ave l
k l
k l

v x t v x t  (6) 

1=
1R

(7)

where ,k lx t x t  are input data from time series tx  and 
have strict sequential order ( k l ),  is a normalization 
constant, R depends on the quantity of samples in the fault data. 

It is notable that detection system generally begins to 
produce alarming signal from the sixth point, so fault-slow-
varying variance can also be computed in an early time for 
online stage. 

3) Define a discriminant index
Define a discriminant index _

n
DP fi  to distinguish the 

relative fast varying faults and the relative slow varying faults. 

_ _ _i

n n n
DP fi sf f sf ave (8)

Where i denotes fault class, n denotes the number of 
iterations, _

n
sf ave  is the average-slow-varying index of all faults 

to be divided, _ i

n
sf f  is the single-fault-slow-varying index. If 

_ 0n
DP fi , the fault iF  is a relative fast varying fault; otherwise, 

if 0n
DP fi , the fault iF  is a relative slow varying fault. 
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4) Divide IF  set into several FVR subsets  
Considering the accuracy of classification, a hypothesis is 

made that the proper quantity of fault class equals z in one 
FVR subset. When it comes to real-time application, parameter 
z depends on the performance of classifier under the training 
data. 

Each discriminant index _
n

DP fi  cut the faults set into two 
portions, the relative fast varying portion 1{ ,..., }F M mP F F  and the 
relative slow varying portion 1{ ,..., }S MP F F . If 1m M z

or M z , repeat to calculate _
n

DP fi and _
n

sf ave  in FP  or SP  until 
fulfilling the cut-off condition: 

( ) or ( 1 )M z m M z  (9)

Save each _
n

sf ave  in every iteration as discriminant index 
for online application. 

Fig. 2. Framework of fault diagnosis model offline building. 
Part (A) is the pre-processing of input data for NBNs. 

Fig. 3. Framework of online fault diagnosis model.  

C. The Construction of Parallel Bayesian Networks 
Parallel Bayesian networks (PBNs) are constructed 

corresponding to the fault subsets. In other words, different 
BNs are developed for different fault subsets. It is noted that 
the procedures of the construction of PBNs is the same with the 
construction of GBN. The outputs of this part are several PBNs. 
The whole offline modelling process is show in Fig. 2. 

In summary, the step-by-step procedure of the proposed 
approach is given below: 

1) Determine the GBN structure based on the optimal
model selection result. 

2) Set the thresholds { , } of GBN for online
application. 

3) Based on , distinguish IF  set and SF  set. 

4) Then, divide IF  set into different fault subsets 
1 2{ , ,..., }

iV mF F F F  by SFA-PC. 

5) Construct PBNs by developing a BN for a subset.

D. Online Fault Diagnosis 
Firstly, whenever a new observation T

1{ ,..., }nx t x tx t  is 
available, GBN is firstly implemented to detect whether the 
data belongs to inseparable faults or not. If the data can be well 
classified in the GBN and the value of posterior probability 
exceeds the threshold  (indicated in Section A), the 
classification result is output as diagnosis result of this 
observation. However, if this observation is classified in an 
inseparable fault, it will be put into the next step. 

The second step is to determine which fault subset 
1 2{ , ,..., }

iV mF F F F  is the right one for the observation by SFA-DC. 
The inference of SFA-DC is as follow: 

1) Calculate the index '
_ i

n
sf f  for online data. 

2) Compare '
_ i

n
sf f  with each _

n
sf ave  saved from offline 

modelling to get 
'

_
n

DP fi , then laid this observation 

into its belonging iVF
 according to the 

'
_

n
DP fi . 

Finally, this observation is classified by the PBN related to 
the chosen iVF  and output the result of this classification of the 
observation. The framework of online fault diagnosis is shown 
in Fig. 3. 

III. ILLUSTRATION

In this section the proposed SFA-DBN model is applied to 
the well-known Tennessee Eastman (TE) process to test the 
practicability in a chemical industrial system. 

A. Process Description 
The TE process is further used to evaluate the effectiveness 

of methods of FDD. The article of Downs [20] entirely 
describes this process. The process consists of five major units: 
an exothermic two-phase reactor, a flash separator, a recycle 
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compressor, a re-boiled stripper, and a product condenser. 
There are total 41 measurement variables and 12 manipulated 
variables in TE process. Moreover, dataset is sampled with an 
interval of 3 minutes. 

On the purpose to objectively evaluating our SFA-DBN 
model, the input data of each type of fault includes 600 training 
samples, 480 validate samples, and 120 test samples. In this 
article, we use 10 types of faults F {#1, #2, #3, #4, #6, #7, #10, 
#11, #12, #18} and 52 variables for simulation. 
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Fig. 4. The optimal model selection of the global Bayesian 
network. 
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Fig. 5. The diagnosis result of the global Bayesian network. 
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Fig. 6. The values of discriminant index. 

B. SFA-DBN for Fault Diagnosis 
1) The construction of SFA-DBN
The first step is to design the structure of the global 

Bayesian network (GBN) based on result of optimal model 
selection shown in Fig. 4. The designed GBN consist of a 
parent node with ten fault states and eight child nodes referring 
to the selected informative variables. The CPT of GBN is 
estimated from the pre-processed training data. Furthermore, 
other parameters such as  and  are set to 0.9 and 0.85, 
respectively. The diagnosis result of GBN is depicted in Fig. 5. 
Based on , faults in SF  are selected, that are F {#1, #2, #4, 
#7}. And the rest of faults belong to IF  set. 

TABLE I.  THE DISCRIMINANT RESULT OF SFA-DC 

Fault PBN1 PBN2 PBN3 ACR 

PBN1 
#6 120 0 0 1.00  

#18 101 13 6 0.84  

PBN2 
#03 0 100 12 0.83  
#10 8 112 0 0.93  

PBN3 
#11 0 0 120 1.00  
#12 0 0 120 1.00  

Average ACR 0.93  

TABLE II.  THE DIAGNOSIS RESULT FOR TEP EVALUATED BY FDR 
USING (A) THE OPTIMIZED VARIABLE SELECTION METHOD BASED PCA 

(GHOSH ET AL., 2014); (B) THE BAYESIAN METHOD (JIANG ET AL., 2016, AND
(C) THE PROPOSED METHOD. 

Fault No. (a) (b) (c) 
#1 99.87 100.00  99 
#2 97.87 99.00  98 
#4 100.00 100.00  90 
#7 100.00 100.00  100 
#3 2.37  6.00  80 
#6 99.50 100.00  100 
#10 82.25 84.00  93 
#11 64.75 82.00  95 
#12 99.00 100.00  100 
#18 89.50 90.00  84 

Within the identified IF  periods, the partition based on 
SFA is further carried out. Firstly, the scale of each fault subset 
is set to holding 3 fault states for a more correct classification, 
meaning z is 3. Then, use training data in IF  to extract the 
average slowest feature vector _sf avev . According to the _sf avev , 
the values of discriminant index _ iDP f  for each type of fault are 
computed. In Fig. 6(a), the x-axis is Fault #3, Fault #6, Fault 
#10, Fault #11, Fault #12, Fault #18 from the left to right. It is 
obvious that 

6_DP f  and 
18_DP f  are significantly lower than zero, 

which means Fault #6 and Fault #18 have a relative slower 
varying rate among these six faults.  

Subsequently, {#3 #10 #11 #12}FP is the relative fast varying 
portion, partitioned in the same way. As shown in Fig. 6(b), 

3

2
_DP f and 

10

2
_DP f are lower than zero, so the relative slow 

varying portion is '
SP {#3, #10} and the relative fast varying 

portion is '
FP {#11, #12}. Now we have three fault subsets: 
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1VF {#6, #18}, 
2VF {#3, #10}, and 

3VF {#11, #12} for the next 
step. 

Three fault subsets correspond to three PBNs, respectively. 
The construction of PBNs is in the same way with GBN. 

2) SFA-DBN for online fault diagnosis
When the online input observation is a fault data in IF , the 

SFA-DC is used to discriminate which fault subset should be 
applied to. As shown in Table , the accuracy of SFA-DC is 
reliable because its average correct classification rate is 0.93. 
Finally, use the corresponding PBN to output the classification 
result. 

Compared with other diagnosis models, the performance of 
our model has much improvement, especially for Fault #3, 
Fault #10 and Fault #11. The improved results are shown in 
Table . 

The accurate classification rate (ACR, mentioned in Section 
A) of Fault #3 reaches 83%, the ACR of Fault #10 reaches
93%, and the ACR of Fault #11 reaches 100%. Moreover, the 
order of varying rate in IF  can also be acquired, which is {#6, 
#18, #3, #10, #12, #11}, revealing the lowest varying fault to 
fastest varying fault. 

IV. CONCLUSION 

To improve the accuracy of Bayesian network classifier for 
complex processes, an effective SFA-DBN algorithm is 
proposed in this paper. By dividing inseparable faults into 
different subsets and analyzing the dynamic features, the 
inseparable faults can be well classified by development of 
PBNs. Furthermore, future work may focus on how to extend 
the proposed method to trace the fault root variables. 
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