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Abstract

In this work, we investigate the feasibility of Bayesian Networks as a way to
verify the extent to which stock market indices from around the globe influence
iBOVESPA — the main index at the Sao Paulo Stoek Exchange, Brazil. To do
so, index directions were input to a networksdesigned to reflect some intuitive
dependencies amongst continental markets, moving through 24 and 48 hour
cycles, and outputting iBOVESPA’s next day closing direction. Two different
network topologies were tested, with different numbers of stock indices used
in each test. Best results were obtained with the model that accounts for a
single index per continent; up.to 24 hours before iBOVESPA’s closing time.
Mean accuracy with ghis‘eonfiguration was around 71% (with almost 78% top
accuracy). With results’comparable to those of the related literature, our model
has the further‘advantage of being simpler and more tractable for its users. Also,
along withsthe fact that it not only gives the next day closing direction, but also
furnishes the set of indices that influence iBovespa the most, the model lends
itself both te'academic research purposes and as one of the building blocks in
more robust decision support systems.
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1. Introduction

Every day, stocks are negotiated in stock markets, where investors decide
whether to buy or sell shares of negotiated assets. As a way to measure the
relative value of a determined group of stocks, be they all stocks in theymarket
or only a portion of them, market indices are created (Lee & Lee, 2006). Assthe
value of the stocks in this group changes over time, so does its corresponding
index. Within this scenario, the ability to predict the closing direetion of some
stock market index allows investors to devise strategies for trading the stocks
comprising that index, thereby increasing their potential for future profit.

In this research, we take an index closing direction to be the direction of the
change in the index closing value at a specific day, when compared to its closing
value in the day before. Hence, we take the direetion to be positive (or high) if
the index’s closing value in the day before was lower than (or the same as) its
current value, indicating that the.stecks that build up the index have increased
their average closing price..Similarly,’a negative (or low) direction would imply
a previous closing value higher than the current one, signalling some average
loss in the index stock prices.

To date, there is a good number of computational strategies applied to both
closing dire¢tion and,value prediction of stocks and indices. These include the
use of Artificial Neural Networks (e.g. Guresen et al. (2011)), Fuzzy Systems
(e.g."Huarng & Yu (2005)), Support Vector Machines (e.g. Yeh et al. (2011))
and Degision Trees (e.g. Nair et al. (2010)), amongst others. In addition to the
usenofa specific machine learning technique, current approaches also include
models that mix one or more of these techniques with sets of more classical
technical indicators (e.g. Ticknor (2013); Patel et al. (2015)), such as Moving
Average and Relative Strength Index, for example.

Despite the broad coverage in the use of different machine learning tech-

niques, it is noticeable the scarceness of studies reporting the application of



Bayesian Networks in stock market prediction (e.g. Zuo & Kita (2012b,a)), even
though this approach has already been applied to the modelling of portfolio re-
turns (e.g. Shenoy & Shenoy (1999)) and for bankruptcy prediction (e.g. Sun &
Shenoy (2007)). Moreover, there seems to be a preference, amongst those rely-
ing on machine learning approaches, for using training data only from the stock
market about which predictions are to be made (e.g. Hadavandi et al.4(2010);
Kara et al. (2011)), thereby ignoring influences from outside sources, with only
a few examples of studies being carried out across different markets (e.g. Hsieh
et al. (2011)).

As a market forecasting methodology, Bayesian Networkshave the advantage
of not relying on Normal error distributions (Zuo & Kita, 2012a), as do other
time-series algorithms used to this end (such as the Auto Regressive and Moving
Average models, for example) and which may@m6taccurately describe stock price
behaviour. Additionally, they can deal both with'continuous and discrete data,
which makes them suitable for bothyprice walue and direction forecasting. As
a learning methodology, such networks have the advantage of giving a human-
readable account of dependencies‘amongst stock markets (when compared to
other more complex models, such as Neural Networks, for example), whereby one
can readily understand howistrong dependencies are by verifying the probability
of one market changing givén that some other has changed.

This dependency across markets, in turn, and which seems to be out of the
scope of much/of the extant work on the use of machine learning techniques
for stock priceforecasting, has been subject of study in the field of Economics,
where i, has been noticed that some markets present time-varying dependen-
cies (Tam & Tam, 2012; Urquhart & Hudson, 2013; Coronado et al., 2016),
which might grow stronger after crisis periods (Puah et al., 2015; Tangpornpai-
boon & Puttanapong, 2016). In fact, with the global integration of financial
markets, via international trades, common currencies and cross-border invest-
ments (Jithendranathan, 2013), capital flows to where it will generate the high-
est return (Puah et al., 2015; Tangpornpaiboon & Puttanapong, 2016), making

these markets more vulnerable to domestic shocks that could spread over the



entire dependency network. Even though we are still far from ultimate full inte-
gration (Tam & Tam, 2012), to ignore existing dependencies could pose a threat
to any forecasting system.

In this article, we seek to help fulfil this gap, by introducing a Bayesian
Network model of the Brazilian Stock Exchange market (BM&FBOVESPA)!,
relating its main index (iBOVESPA) to other indices around the world. Founded
in 2008, from the merging of the Sao Paulo Stock Exchange (BOVESPA) and
the Brazilian Mercantile and Futures Exchange (BM&F), BM&EBOVESPA has
become the main Brazilian company for the management of organized security
and derivative markets. Its main index, iBOVESPA?, isla wéighted average of
a theoretical portfolio comprising roughly the 50 more actively traded stocks,
which was designed to reflect the market’s averageyperformance by tracking
price changes of its more representative participants.

In our analysis, we accounted for market dependencies by taking a “follow
the sun” approach, whereby we hypothesise that, moving along the sequence
of closing times in markets around the globe, every closing market influences
the next one, thereby simulating ‘capital and news flow over time. We have
then experimented two competing models: one which only accounted for closing
directions within a 24-hour,period; and another using a 48-hour time window.
Stock markets were grouped up by continent, and tests were made with sets
of one to three market indices per continent. In doing so, our main objective
was to test the feasibility of these Bayesian Networks to (i) identify markets
and, moresspegifically, market indices, that influence iBOVESPA the most; and
(ii)"determine the best time window for this analysis. Also, to the best of our
knowledge, this is the first machine learning based study to account for the
dependency of stock indices around the world.

Given the conceptual clearness brought by Bayesian Networks, where depen-

lhttp://wuw.bmfbovespa.com.br/en_us/index.htm
2http://wuw.bmfbovespa.com.br/en_us/products/indices/broad-indices/

bovespa-index-ibovespa.htm



dencies are clearly put, and results can be understood in terms of frequencies,
our method lends itself to be used with Decision Support Systems for the stock
market, whereby a human must decide what to do based on the available in-
formation. In this case, a clear account of how the system comes up with its
advices might help its users to take or refuse them with more confidence. Also,
results from our work could be adapted by researchers to studies in other ar-
eas, such as Economics, for instance, furnishing a way to quantify/in termsiof
probabilities, which indices have more influence on some specifi¢’ market. Fi-
nally, another possibility would be to attach our network to_some more complex
model, such as a machine learning ensemble for example, or oether more classical
approaches to the problem, so as to provide traders withya mere complete tool
set for decision making.

The rest of this article is organised as followsw,Section 2 describes our ex-
perimental set-up, presenting the networkstopologies, stock market indices and
data used in our experiments. Next, in Séction 3, we present the results, in
terms of accuracy®, of the competingimodels. In this section, we also make a
comparison between them, pointing out possible reasons for differences in the
models. Section 4, in turn, discusses our results further, giving some possible
applications of this approach, along with a theoretical account of our model’s
strengths and weaknesses. Finally, in Section 5, we compare our results to those
of the relatedditerature, while in Section 6 we present our final remarks on this

research, along with directions for future improvement.

2+ 'Materials and Methods

The stock market indices used in this research comprise 12 indices world-
wide. These are Nasdaq Composite (USA), NYSE Composite (USA), Dow Jones
(USA), Merval (Argentina), Nikkei 225 (Japan), Shangai Composite (China),
Hang Seng (China), BSE 30 Sensex (India), FTSE 100 (UK), Stockholm Gen-

31e. the proportion of correctly guessed directions (both positive and negative).



eral (Sweden), Dax (Germany) and Cac 40 (France). Table 1 shows the trading

period for each market?, along with their overlapping time with iBOVESPA.
Data was collected from 01/06/2005° to 05/04/2012 at Yahoo! Finance’s web-

site®, corresponding to a 2,501-day period. Days in which any of the selected

markets were closed (due to local holidays, for example) were removed fromfthe

data set for all markets, resulting in a total of 1,620 days used in this research

for each of the selected indices.

Table 1: Stock markets opening time, ranked by overlapping time with iBOVESPA.

Index Country Opening Closing Overlapping
Time (UTC) | TimeoUTC) Time (h)

iBOVESPA Brazil 13:00 20:00 7:00
Merval Argentina 14:00 20:00 6:00
Dax Germany 07:00 19:00 6:00
Nasdac Comp. USA 14:30 21:00 5:30
NYSE Comp. USA 14:30 21:00 5:30
Dow Jones USA 14:30 21:00 5:30
Cac 40 France 08:00 16:30 3:30
FTSE 100 UK 08:00 16:30 3:30
Stockholm Gen. Sweden 08:00 16:30 3:30
Nikkei 225 Japan 00:00 06:00 0:00
Shangai Gomp. China 01:30 07:00 0:00
Hang Seng China 01:30 08:00 0:00
BSE\30 Sensex India 03:45 10:00 0:00

The date removal procedure was carried out as follows. First, data from the

entire 2,501 running days period was collected. We then removed all dates in

‘https://en.wikipedia.org/wiki/List_of_stock_exchange_trading hours. For a map

of opening times, we refer the reader to https://www.investing.com/tools/market-hours.

5Date format is dd/mm/yyyy.

Shttps://finance.yahoo.com/



which at least one of the markets was closed (i.e. holidays and weekends). Even
though the number of weekends (714 in total, 357 Saturdays and 357 Sundays)
was shared by all markets, the number of holidays varied from market to mar-
ket, reflecting local holiday policies. Hence, we kept the maximum amount of
days where we could obtain data from all markets under consideration, which
amounted to 1,620 days. For the missing days, no correction was made for price
moves, since we did not want to introduce any artificial data intofthe model.
The implications of this decision will be discussed further in Section 3.

Next, we designed our Bayesian Network (see Section 2.1), which was trained
and evaluated in the data set using 5-fold cross validation. Within this model,
one randomly splits the data in five different subsets (also éalled folds) of ap-
proximately equal size (Kohavi, 1995), which will,be‘held out one at a time for
validation/testing purposes. Each time, the network.istrained in four of the sets
(i.e. 80% of the data) and evaluated in thefifth one (the remaining 20%) for its
accuracy, that is the number of correct classifications, divided by the number
of instances in the test set”. This process is repeated exactly five times, with
a different test set (and, consequently, different training sets) used each time,
in an attempt to reducesvariance (Hastie et al., 2009). The network’s overall
accuracy is taken to be theyaverage of its accuracy across the five test subsets.

To better evaluate/the model, we experimented with sets of one, two, and
three different indices per continent, along with 24 and 48-hour time windows
(that is, looking at data up to 24 and 48 hours in the past). We tried then to
predigt, from the data within these time windows, iBOVESPA’s next day closing
direction. To do so, we fit the 24 and 48-hour sliding windows to the data,
thereby having a training instance to comprise iBOVESPA’s closing direction
atpa specific date, along with past closing directions for a subset of different
markets. These markets were selected according to the experimental set-up, by

varying the number of indices per continent, time-window length, and network

"It is important to notice that, in this work, we are focusing on directional (binary — up

and down) prediction only, instead of index quantification.



topology (which will be made clearer in the next section).

As an example, in the 24-hour model with one index per continent, a training
instance would be {iBOVESPA’s closing direction at day t; American index’s
closing direction at t-1; European index’s closing direction at t-1; Asian index’s
closing direction at t-1}. These training instances were built on a daily basis,
and then input to the network. From our testing results, we identified the
indices with the best and worst performance in predicting iBOVESPA’sclosing
direction, as measured by their accuracy. That allowed us to identify the sets
of indices with the highest and lowest influence on iBOVESPA and to evaluate
competing models for their accuracy with the best indices. In what follows, we

will detail the network topologies used in the experiments.

2.1. Network Topologies

To build our Bayesian Network, we hypothesised that, moving through 24
and 48 hour cycles, and starting from the\first stock exchange market to close
after BM&FBOVESPA, every closing market influences the next one around
the globe, back to iBOVESPA’s next day closing value. Under this assumption,
each market index closing’direction is influenced by those markets that closed
before it. For the sake of simplicity, we grouped up markets according to their
home continent (4.e:Americas, Europe and Asia), since closing time is actually
related to their geographical location on the planet, and carried out experiments
with one, two and three different indices per continent.

In_the first phase of our experiment, we observed a 24-hour time lapse be-
foresBM&FBOVESPA’s closing time. Figure 1 illustrates this network topology,
where SPyg means iBOVESPA’s closing direction at a specific date, and Asiagy,
Europesy and Americagy stand for the closing directions of market indices in
these continents up to 24 hours before SPgy’s closing. Since we account for
indices that close up to 24 hours before iBOVESPA’s closing, that includes
both markets that close before BM&FBOVESPA opened (but still within the

24-hour limit) and those closing within its trading period. In this model, a



training instance comprises iBOVESPA’s closing direction, along with the clos-

ing directions of all of its parent nodes in the network.

Americagy

Europeaq

Figure 1: 24 hour network topology for the first phase of the.experiment.

In the experiments with more than one index per continent, all continent
nodes were replaced by their respective set of indices. In this case, index nodes
within the same continent were taken to be independent of each other, whereas
dependencies were kept amongst intercontinental,nodes (i.e. nodes in different
time zones). Hence, a dependency between Europe and Asia now corresponds to
all indices in Europe depending on all indices in Asia. It is important to notice
that we take dependencies to exist,in“time, and not necessarily on geographical
location. That means nedesiin the same continent are held independent of
each other only at a specific time, but not before it. As shown in Figure 1, even
though SPq lies in‘the American continent, it is independent of other American
markets only by the time/of the prediction (what would be Americagy). However,
dependencies are taken to exist when we look at these same markets up to 24
hours in the'past (i.e. Americasy).

Tomathematically model this network, we followed Bayes’ theorem, accord-
ing to which

P(d|h;)P(h;
Py = PRI
where h; is the hypothesis that iBOVESPA belongs to class C; = {high,low},
that is iBOVESPA’s closing value will be higher (hy) or lower (hs), respectively,
when compared to its closing value the day before, and P(h;|d) is the probability

of hypothesis h; holding given the data set d. In the case of a Bayesian Network,
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constructed under the assumption of conditional independence between a node
and its predecessors in the network, given the node’s parents, this equation

reduces to
P(h;|d) = P(h;|iBOVESPA’s parents)

where P(h;|iBOVESPA’s parents) can be estimated by the frequency withywhich
h; holds true for every combination of values for iBOVESPA’s parents. The
same method can be used for every node in the network, thereby assigning
them probability distributions, according to which one can.estimate the proba-
bility of observing a specific direction in one node, given the«directions observed
in its parents. Also, as a way to avoid assigning null probabilities to unseen
combinations of parent directions, we have addedya Laplace smoothing term to
the equation, whereby one adds 1 to the numerator-and 2 to the denominator
when calculating the frequency used to éstimate P(h;|iBOVESPA’s parents).
In the second phase of the experiment, we repeated this methodology with a
48 hour time window, as shown in Figure'2. Within this model, new nodes were
added, to represent closing directions for indices both up to 24 and 48 hours
before iBOVESPAS’s clesing time, roughly corresponding to two spins around
the globe towards the'past.“Under this approach, iBOVESPA’s closing direction
is taken to be directly’influenced only by stock markets closing up to 24 hours

before it, while indirectly influenced by those closing up to 48 hours in the past.

Europeas Europess

Figure 2: 48 hour network topology for the second phase of the experiment.

The mathematical model for this network, in turn, follows the same expres-

sion as that of the 24 hour model, except that, in this case, instead of three

11



parent nodes, iBOVESPA has a fourth one — its closing direction in the day
before (SPs4 in the figure). As such, all value combinations for these four par-
ents must be taken into account when estimating P(h;|iBOVESPA’s parents).
Another difference between models is that we took :BOV ESP Ay to influence
other American markets that close after its closing time, even though they lie
within iBOV ES P As,’s time frame, thereby breaking the independence assump-
tion only in this case. In this topology, we took iBOVESPA out of its/continental
group as a way to reinforce the assumption that its closing direetion in the past
plays a major role in its future closing direction, hence accommodating for the
possibility of internal dependencies outweighing external ones. Once again, we

have experimented with up to three indices per continent,

3. Results

Experiments with the 24-hour topology (Figure 1) and a single index per
continent resulted in a mean accuracywof 71.08%. In a total of 64 runs®, where
a different arrangement of indices*was tested each run, accuracy ranged from
62.79%, with the Dow Jones;. Stockhelm General and Nikkei 225 combination,
to 77.78%, with NYSE“Composite, Cac 40 and Hang Seng. Figure 3 shows
accuracy distribution within'this range. As can be seen, even though median
accuracy was 72.10%, ‘peak values lied around 73%, which was the accuracy
obtained by 2T different arrangements in our tests.

Second best accuracy, 75.49%, was obtained with NYSE Composite, FTSE
100 and/Nikkei 225. However close, the difference between best and second
best accuracies was found to be statistically significant, as determined by an
unpairéd t-test’ run on the individual folds (tyeien(n = 5) = 2.33,p = 0.05),
indicating that, under this model, NYSE Composite, Cac 40 and Hang Seng

could be the indices that influence iBovespa’s closing direction the most!'®. Ta-

843 — four different combinations per continent, arranged amongst the three continents.

9All test results are reported at the 95% confidence level.
10Even though a different arrangement of data within folds might lead to a different set of

12
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ble 6 (see the Appendix section) shows mean aecuracy across the five folds for

each market combination in our 24-hour ex per continent model, along

with the mean number of hits (i.e., ectly guessed directions!!) and misses
(i.e., incorrectly guessed directi

Arrangements with twosindices per continent led us to a mean accuracy of
70.20% and a 70.32% e

from 66.08%, withdD

lue. In a total of 216 runs!®

es, Merval, Dax, Cac 40, Nikkei 225 and Shangai

, accuracy ranged

Composite, to74.01%,with NYSE Composite, Merval, Dax, Stockholm Gen-

eral, Shan ite and BSE 30 Sensex. Figure 4 shows accuracy distribu-

tion w Qrange Interestingly, the distribution closely resembles that of

a no with a peak around 70.50%, delivered by 54 arrangements (i.e.
216).

FTSE 100, Dax, Shangai Composite and BSE 30 Sensex. The difference

Q nd best accuracy (73.58%) was achieved with NYSE Composite, Mer-

4

indices, so further research on this topic must be done.
I Alternatively, the sum of true positives and true negatives.
12 Alternatively, the sum of false positives and false negatives.
1363 _ six different combinations each continent, arranged amongst the three continents.
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Figure 4: Accuracy distribution in 64 runs for4he two-index-24h model.

between best and second best accuracies was, however, not found to be of sta-
tistical significance (tweicn(n = 5) = 0.48, pr="0.65). Noticeably, three of the
indices (Merval, Shangai Composite and Dax) can be found in the arrangement
with best, second best and worst, aecuracy (see Table 2 for a comparison of
indices in best, second best"and worst accuracy arrangements across models).
We understand this tosbesan indication that these indices are being forced into
the model by the two indices per continent demand, thereby introducing noise.
This could alsofexplain why the best accuracy arrangement with two indices per
continent géored lower than its single index counterpart, a difference found to
be of statistical significance (tweicn(n = 5) = —4.08,p < 0.01).

Finally, arrangements with three indices per continent resulted in a mean
and median accuracy of 56.45%. Through 64 different index arrangements'?, ac-
curacy ranged from 52.13%, with NYSE Composite, Dow Jones, Merval, FTSE
100, Stockholm General, Cac 40, Nikkei 225, Shangai Composite and Hang
Seng, to 61.17%, with Nasdaq Composite, NYSE Composite, Merval, FTSE
100, Dax, Cac 40, Nikkei 225, Shangai Composite and Hang Seng. Figure 5

1443 _ four different combinations each continent, across three continents.

14



shows accuracy distribution within this range. As with the two indices per
continent model, so this distribution resembles the normal curve. This could
be another indicative that adding more indices did in fact add random noise,

thereby reducing accuracy.

10
|
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1L s

r T T T T T T T T 1
052 053 054 055 056 057 058 059 060 061 0.62

Accuracy

Figure 5: Accuracy distribution in 64 runs for the three-index-24h model.

This argument is further evidenced by the small difference between best
and second best accuraciés, which was not found to be statistically significant
(tweien(n = 5) = 2.10,p =,0.08). In this case, second best accuracy (59.80%)
was reached with/Nasdaq Composite, NYSE Composite, Dow Jones, FTSE 100,
Dax, Cac 40,4Nikkei 225, Shangai Composite and Hang Seng. Moreover, from
the nine indiceg in the best accuracy arrangement, six (NYSE Composite, FTSE
100, Gac 40, Nikkei 225, Shangai Composite and Hang Seng) could also be found
insthe second best and worst accuracy arrangements, a sign that they are but
noise in this model.

One puzzling result of the three indices per continent model, as shown in
Table 2, is the fact that Nasdaq Composite, which does not occur in best, second
best and worst positions in the single and double index models, suddenly comes
up as part of the best and second best, but not the worst, scoring arrangements.
At first glance, that might indicate an interesting behaviour about that index.

However, in looking at the second worst accuracy arrangement (52.95%, with

15



Table 2: Best, second best and worst accuracy indices with 1, 2 and 3 indices per continent

in the 24h model.
Ind./Cont. Best 2nd Best Worst
NYSE Comp., | Dow Jones, Stock-
NYSE Comp., Cac
1 FTSE 100, Nikkei | holm Gen., Nikkei
40, Hang Seng
225 225
NYSE Comp., | NYSE Comp.,
Dow Jonesy Mer-
Merval, Dax, | Merval, FTSE
val,l Dax, » Cac
2 Stockholm  Gen., | 100, Dax, Shangai
40, “Nikkei 225,
Shangai Comp., | Comp., BSE 30
Shangai Comp.
BSE 30 Sensex. Sensex.
Nasdaq Comp., | Nasdaq Comp., | /NYSE Comp.,
NYSE Comp., | NYSE Cemip., | Dow Jones, Mer-
Merval, FTSE | Dowdones, ETSE | val, FTSE 100,
3 100, Dax, Cac | 400, “Dax, Cac | Stockholm Gen.,
40, Nikkei 225, | 40, % Nikkei 225, | Cac 40, Nikkei 225,
Shangai Comp., Shangai Comp., | Shangai Comp.,
Hang Seng Hang Seng Hang Seng

Nasdaq Composite, Dow Jénes, Merval, FTSE 100, Dax, Stockholm General,
Nikkei 225, Shangai Composite and BSE 30 Sensex) we see Nasdaq there. Since
no difference gould be found between worst and second worst arrangements
(tweiéh(n= 5= —0.38,p = 0.71), we understand this index to be noise as well.

Finally, shere too we find the difference between best accuracy with three
indices per continent to be statistically relevant, when compared to its counter-
parts in the two indices (tweien(n = 5) = 24.10,p < 0.01) and single index per
continent (tyweien(n =5) = —18.74,p < 0.01) models. Also, another interesting
result is that, even though NYSE Composite might be thought of as the most

influential index, given its importance worldwide, it happens both in best and

16



worst arrangements in the two last models!®. This could be an indicative that,
however important, this index’ influence to iBOVESPA is not strong enough to
make the difference when more indices are added to the model.

Moving on to the 48-hour topology (Figure 2), we rerun the experiments
using combinations with one, two and three indices per continent. Restlts
with a single index led to a mean accuracy of 68.17%, with a 69,14% median
value. Throughout the 4,096 runs of the experiment'6, accuracy vanged from
54.34%, with Dow Jonessy, Stockholm Generalo,, BSE 30 SenséXso,, Mervalys,
FTSE 1004 and Shangai Compositeys, to 75.17%, with Merwaloy, Stockholm
Generalyy, Hang Sengss, Dow Jonesss, CAC 4045 and HangSengys.!” Figure 6
shows accuracy distribution within this range. As withythe single index 24h
model, so this distribution presents pronounced peaksiaround mean and median
values.

Second best accuracy was 75.12%, with NYSE Compositess, Daxgy, Hang
Sengsy, Nasdaq Compositess, Daxygeand Hang Sengyg. The difference between
best and second best accuracies was'onee again not found to be of statistical
significance (tweien(n = 5) = 7.86;p. = 0.96). As with the 24 hour model, only
one index could be founddn best and worst accuracy arrangements. In this case,
however, it was not Nikkein225/(second best and worst arrangements in the 24
hour model), butsStockholm” Generalsy instead. Finally, differently from the 24
hour topology; NY.SE Compositess, which happens in first and second place in
that model, comes here as part of the second best accuracy arrangement, even

though with ne significant difference to the best accuracy setting. We refer the

1511 the double-index model it comes in the 32"% worst arrangement, which was not found
to significantly differ from the worst scoring arrangement (tweien(n = 5) = —1.11,p = 0.31).
1646 _ four different combinations per continent, arranged amongst the three continents,

with two spins around the globe.
17To better understand these figures, recall that the “24” subscript refers to an index closing

value up to 24 hours before iBOVESPA’s, while the “48” subscript refers to its value from
24 to 48 hours before iBOVESPA. Also, as shown in Figure 2, iBOVESPA’s closing value the
day before (i.e. SP24) is a constant index in our model, the reason why it is omitted in our

results.

17



ACCEPTED MANUSCRIPT

K
&

Figure 6: Accuracy distribution in 4,096 runs fo Qdex 48h model.
interested reader to Table 3 for a comparison o ices in best, second best and
worst accuracy arrangements with the 4%pology.

In comparing the best accuracy ithin this model to those obtained

ificant differences between this value

with the 24 hour topology, we

and results from the sin ex 24h (tweien(n = 5) = —2.39,p = 0.04) and
three indices per contin (tweten(n = 5) = 17.83,p < 0.01) models.
Nevertheless, no statistically significant difference could be established between
best accuraci he single index and 24h double index models (tyw eien(n =
5) =141 21)."We understand this to be another evidence of the reduction
in bestfaccuracy value due to the introduction of more indices into the model,
ev %e the same indices, but within a wider time window.
Arrangements with two indices per continent delivered a mean accuracy of
(30.94% median). In a total of 46,656 runs'®, accuracy ranged from

.19% with Nasdaq Compositegs, Mervalgy, Stockholm Generalyy, Cac 4044,
Nikkei 22594, BSE 30 Sensexos, Nasdaq Compositeys, Mervalyg, FTSE 1004g,

1866 _ six different combinations each continent, arranged amongst the three continents

twice around the globe.
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Stockholm Generalyg, Nikkei 22548 and Shangai Compositeys, to 45.27%, with
NYSE Compositess, Mervalyy, Stockholm Generalyy, Cac 4024, Nikkei 22594,
Hang Sengo4, Nasdaq Compositess, Dow Jones,s, Daxyg, Stockholm Generalysg,
Hang Seng,s, BSE 30 Sensexyg. Figure 7 shows accuracy distribution within
this range. Once again, we are close to the normal shape, with a clear peak at

the 0.31 accuracy, registered by 9,680 different index arrangements.

Figure 7: Accuracygdistribution in 46,656 runs for the double index 48h model.

Second best a@ccuracy (44.49%) was reached with Nasdaq Compositeszs, NYSE
CompositegggaDaxsgy, Cac 4094, Shangai Compositesy, Hang Sengss, NYSE
Compositeys,Dow Jonesys, FTSE 10045, Cac 4045, Shangai Compositess and
Hang Seng,s. The difference between best and second best accuracies was also
not foundsto be of statistical significance (tweicn(n = 5) = 0.70,p = 0.50).
Once more, half the indices in the best accuracy arrangement come also in
the worst accuracy one. These are Mervalay, Stockholm Generaloy, Cac 4024,
Nikkei 22594, Nasdaq Compositess and Stockholm Generalygs. Regarding the
difference between the best accuracy arrangement with two indices per con-
tinent around 48 hours and other models, we found it to significantly astray

from best accuracy arrangements with a single index and the same topol-
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ogy (tweich(n = 5) = 31.61,p < 0.01), and with the 24h single (tweicn(n =
5) = —=31.53,p < 0.01), double (tweien(n = 5) = —38.34,p < 0.01) and triple
(tweten(n =5) = —22.59,p < 0.01) index models.

Arrangements with three indices per continent resulted in a mean accuracy
8.21%, with an 8.07% median. Across 4,096 runs of the experiment!®, acc
ranged from 4.73%, with Nasdaq Compositess, Dow Jonessy, Mervalo WFT
10024, Daxgy, Stockholm Generaloy, Nikkei 22544, Shangai Compos g

Sengsy, Nasdaq Compositess, NYSE Compositess, Mervalyg, D, ockholm
Generalyg, Cac 4045, Nikkei 225,45, Shangai Compositeys a ensexyg,

to 14.27%, with Nasdaq Compositess, NYSE Composites onesyy, FTSE

10024, Daxgy, Cac 4094, Shangai Compositess, Hang Senges #BSE 30 Sensexsy,
Nasdaq Compositess, NYSE Compositess, Dow®Jo TSE 10048, Daxys,
Cac 4045, Nikkei 22545, Hang Seng,g, BSE 3 Figure 8 shows accuracy

distribution within this range.

< ’ Figure 8: Accuracy distribution in 4,096 runs for the three index 48h model.
v It is noticeable in the figure the distribution’s skew towards the lower side of

1946

— four different combinations per continent, arranged amongst the three continents,

twice around the globe.

21



the accuracy range, making this model useless for our prediction. As it seems, in
adding more indices to the 48 hour topology we not only added more noise, but
had the model systematically fail in its predictions, to the extent that accuracy
would increase considerably if we just negate its output. As can be verified in
Table 3, 12 out of the 18 indices in this model figure both in best and worst
accuracy arrangements. This is exactly the same proportion we found inythe 24
hour topology. This great amount of noise being input to the system could be
the reason for its failure: it might be the case that it is actually”learning some
hidden pattern in this noise.

Second best accuracy, in turn, was 13.68%, with Nasdag Compositess, NYSE
Compositesy, Dow Jonesoy, FTSE 10024, Stockholm Generalsyy Cac 4044, Nikkei
22594, Hang Sengs,, BSE 30 Sensexay, Nasdaq Compositess; NYSE Compositeys,
Dow Jonesys, FTSE 10045, Daxys, Cac 4048, Nikkei 225,45, Hang Seng,s and
BSE 30 Sensexys. The difference between,best and second best accuracies, as
expected, was not statistically significant (tweicn(n = 5) = 0.89,p = 0.41).
When accounting for best accuracy arrangements only, we found accuracies un-
der this model to significantly differ from those with one (tweien(n = 5) =
64.94,p < 0.01) and twotweich(n = 5) = —35.61,p < 0.01) indices, around 48
hours, and with one (twcicn(n=5) = —62.04,p < 0.01), two (tweicn(n =5) =
—80.79,p < 0.0Lpanddthree (tweien(n = 5) = —67.69,p < 0.01) indices in the
24 hour topology:

Finally, when comparing mean, worst and best accuracies across all mod-
els (Tablesd)ywe notice a strong correlation between the amount of indices
used in each model and its mean accuracy (pearson = —0.98,t(df = 4) =
=8.98,p < 0.01, at the 95% confidence levelzo)7 to the extent that as the
total number of indices increase, mean accuracy decreases, as shown in Fig-
ure 9. Similar correlations were also found between the total amount of in-
dices and worst (pearson = —0.96,t(df = 4) = —6.86,p < 0.01) and best
(pearson = —0.98,t(df = 4) = —9.74,p = 0.01) accuracy values, once again ev-

20 All pearson coefficient values reported here were obtained at the 95% confidence level.
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idencing the introduction of noise as market indices are brought into the model.

Table 4: Mean, worst and best accuracies across models, along with the total amount of

indices involved.
Indexes / Total Amount Accuracies (%)

Continent of Indexes Mean  Worst  Best

1 3 71.08 6279 7778 \
241 6 70.20  66.08 74
9 56.45 52.13 46117

2
3
1 7 68,17 54,
48h 2 13 31.04
3 19 821 4. 14.27

Figure 9: Mean, best and worst accuracies across models.

. Discussion
E The fact that the 48-hour topology performed worse than its 24-hour coun-

terpart (¢f. Table 4), for each proportion of indices per continent, could be

$
o4

an indicative of the reduction in the strength of other markets’ influence on

23



iBOVESPA over time, making these markets behave more like noise as we move
away from our prediction date towards the past. This is somewhat in line with
current research in Economics (e.g. Tam & Tam (2012); Urquhart & Hudson
(2013); Coronado et al. (2016)), where such influences were noticed, but also
were seem to vary over time. With our model, one can not only identify/the
existence of these influences, but also quantify them and verify at what rate
they decrease with time, up to the point where they cannot be told‘apart from
noise. That could in turn be used to guide investment strategies, with the ad-
vantage of being easy to understand, since one can explain_the results in terms
of probabilities and frequencies.

Another possible use for this model, and that comes direétly from the iden-
tification of which markets influence iBOVESPAytheimost, is the reduction of
the possible candidates for market contamination.during crises. In this case,
the most influential markets would be remdered more likely to pass the crisis
effects on to the target market (in this case, BM&FBOVESPA). Conditional
probabilities of the network could then be used as estimates of the amplitude of
this contamination. Naturally, given the changing nature of markets around the
world, with economies growingin importance at different paces, one cannot ex-
pect those markets that influence some index today to remain the same to play
this role in the futures Fortunately, training a new network is just a matter of
carrying out a new analysis of frequencies, making this model easily adaptable
to changes.

This adaptability, along with the fact that there is no reason to believe this
model couldmot be applied to any other stock market index in the world, given
some findings about market dependencies (e.g. Puah et al. (2015); Kim & Song
(2017)), adds to its robustness. Also, and as already pointed out, its visual and
more “human friendly” design has the theoretical advantage of making it more
easily adaptable to other circumstances, when compared to more “black-box”-
like models, such as Artificial Neural Networks (ANNs) and Support Vector
Machines (SVMs), for instance. Like Decision Trees, the underlying structure

of our model’s reasoning is clear to any human inspector. Unlike such trees,
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however, their fundamentals are more readily understood, for they are given in
terms of frequency of co-occurrences.

On the downside, the rigid topology presented by Bayesian Networks makes
them less adaptable to structural changes (e.g. when dependencies raise inside
continents, thereby breaking the independence assumption). One possible golu-
tion to this problem would be to automatically learn the network’s structure.
That, however, not rarely leads to a Naive Bayes structure (e.g. Zuo & Kita
(2012a); Kita et al. (2012)), whereby all nodes are taken to bé“independent,
given the value of the output node. Also, the fact that our.model was trained
and tested in data comprising part of the sub-prime crisis might have introduced
a positive bias towards it, for it has already been reportedhat dependencies
between markets tend to raise in periods of crisis (e.g. (Tangpornpaiboon & Put-
tanapong, 2016)), to the extent that some correlations exist only during such
periods. If that is actually the case, it might be that our model was favoured by
the crisis period, which in turn reinferced the dependencies that form the basis
of the model’s structure.

However, when analysing closing values for the indices with best results (i.e.
indices that build the network with higher accuracy, to wit NYSE Composite,
Cac 40 and Hang Seng) intthefull dataset period, one sees these dependencies
as something notssotebvious at first glance, as shown in Figure 10. More im-
portantly, even though there is a steep decline in iBOVESPA during the second
half of 2008, with a corresponding incline in the next year, which would in turn
makepredictions easier, those periods add up to approximately 20% of the en-
tire“datasets something we believe would not turn out as a determinant factor
for our/accuracy results, specially when one sees a good deal of fluctuations
aleng the period, with a clear inflection point about one third of the way.

Finally, another potential drawback of our model lies in our methodological
decision to not compensate for missing days. As pointed out in Section 2, we
removed from the data set all dates where at least one of the markets was closed.
Even though that has no effect in the actually closed markets, it has some effects

on those that remained open. More specifically, for those markets, at those

25



ACCEPTED MANUSCRIPT

8000000
7000000
£0000,00
50000,00
40000,00

10000,00 N

T n e
0,00

1/6/2005  1/2/2006 1/10/2006 1/6/2007 1/Z/2008 1/10/2008 1/6/2009 1/2/2010 1/10/2010 1/6/2011  1/2/2012
e [BOWESPA. e HANG SENG s NYSE s CAC 40

o

Figure 10: Closing value of the indices in the best accuragy network (24h-single index model),

for the full dataset period.

dates, the 24-hour (or 48-hour, dependi e model) window was broken,
and data from the day before the removed'date was used instead. Although we

did so to avoid introducing arti

a (such as by repeating the previous day

direction only for the closed market

@ lity to all markets.
, 1840 what extent this decision undermined our model.

all 714 weekend days from the 2,501 running days

or example), we ended up introducing an

artificial one-day period

d up with 1,787 days. In total, we removed other 167

brated in many countries), that does not seem to be so high a proportion to
ke any real difference. Nevertheless, our decision may have actually created a
negative bias to our model, since we overlook 24-hour dependencies in favour of
their 48-hour counterparts and our results point at the direction of a weakening
of dependencies along the time. In this case, we have exchanged a potentially

stronger dependency for a weaker surrogate, which in turn would be prejudicial
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to the model. Even though we do not think this to be an issue, we understand

that only future tests may reveal its real extent.

5. Comparison to the Related Literature

Current machine learning based initiatives for predicting stock marketyin~
dices seem to have a preference for data coming from a single market only
(e.g. Nair et al. (2010); Bollen et al. (2011); Shen et al. (2011); Kara“et-al.
(2011); Lahmiri (2011); Lahmiri et al. (2013); Patel et al. (2015)). Despite this
preference for domestic data, no market is an isolated island in the.world econ-
omy ocean, and cross-market dependencies do exist (¢f. Tam & Tam (2012);
Urquhart & Hudson (2013); Coronado et al. (2016)). This is the reason why
some researchers have moved across their borders whentrying to forecast their
own market directions. These initiatives either'focus on a single market, bring-
ing into the model one different foreignjindexy(e.g. Wang (2014)), or try to
integrate multiple markets, assumingisome dependency amongst them might
exist (e.g. Zuo & Kita (2012b,a); Kita et al. (2012)).

In our work, we take this later point of view. However, instead of having
the algorithm figure outidependencies from a dataset by itself, as is the case
with Zuo & Kita (2012b), who use a Bayesian Network built with the K2 algo-
rithm (and which resulted’in a very counter-intuitive network, where some past
values depefidion their future counterparts), we imposed these dependencies,
by defining'the network topology and then testing the appropriateness of this
assumption. #As it turned out, the 24h single index model performed better
than thatvof Zuo & Kita (2012b), who report around 61% accuracy (against
a 71l% mean accuracy in our model). This difference might be even higher, if
we bear in mind that our model was trained in data collected partly during
the sub-prime crisis (roughly 2007-2008), which would be expected to raise the
variance, whereas Zuo & Kita (2012b) dealt with pre-crisis data.

Other reasons for the difference in these results could come both from the

network topology and the fact that our model works with short and independent
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sliding windows for training and testing, as a result of the cross-validation pro-
cess and the 24-hour time limit (which, in turn, breaks up longer term recurrence
relations). This may have diluted any effect due to some long term seasonal-
ity. Such an effect, however, could not have been mitigated should we follow
the same procedure as many researchers in the related literature (e.g. Kara
et al. (2011); Zuo & Kita (2012b); Patel et al. (2015)), who usually take the
first years of data for training, holding the last years out to test their models.
Also, it might be the case that the crisis itself reinforced market“depéndencies,
thereby favouring our model only because we took data from.this period. These,
however, are hypotheses to be tested in the future.

Moving away from the use of Bayesian Networks, butystill*trying to accom-
modate cross-border influences into the model, werfindithe work by Wang & Choi
(2013) and Wang (2014), who add the S&P 600«index as an external factor to
their Principal Component Analysis and Support Vector Machine models. Test-
ing their models with two stock indiges, their best mean accuracy was 62,80%,
still lower than ours. Spanning.over 2002 to 2012, their dataset also included
the sub-prime crisis, as did ours. The main differences between our research and
theirs lie in the applied machine learning techniques and the four-year sliding
window they used. Imstead,of separating the whole data set into two different
subsets, one for training and other for testing, they have done so but within
a four-year window, which would then be moved along the dataset, thereby
reducing the influence of long term seasonalities.

Finallyy within single market models we find accuracies ranging from 64% (Lah-
miri] 2011)with Support Vector Machines, to slightly over 75% (Kara et al.,
2011), with Neural Networks, to around 93% (Lahmiri et al., 2013), with Prob-
abilistic Neural Networks. As can be seen, results from our 24-hour single index
model, with its 71% mean and almost 78% maximum accuracies, lie within this
range. The main difference between our work and these, however, seems to lie
in the simplicity of our model. In this case, we only accounted for data re-
lated to closing values (and directions) of indices, whereas much of the extant

work (e.g. Nair et al. (2010); Kara et al. (2011); Lahmiri (2011); Lahmiri et al.
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(2013); Patel et al. (2015)) deals both with values and sets of technical indica-
tors, such as Moving Average and Relative Strength Index, for example, with
some of them also relying on the analysis of humour indicators (e.g. Lahmiri
et al. (2013)) and tweeter messages (e.g. Bollen et al. (2011)). It might be the
case that in adding more features other than a simple closing direction we could
reach better accuracies.

In fact, a side-by-side comparison of related initiatives in terms of aceu-
racy, taking into account the adopted machine learning methed“and whether
researchers also relied on other technical indicators (such as Moving Average,
for example) or any other information from outside thelmarket; and which is

521, seems to point at this directionpwith'the exception of

summarised in Table
the work by Lahmiri et al. (2013) which, despitéytaking into account technical
indicators (other than plain closing, highest{lowest.and other related values),
did not present high accuracies. From thisitable, we can see that a good number
of machine learning techniques are proposed for market index forecasting. Most
popular are Support Vector Machines\(SVM in the table) and Artificial Neural
Networks (ANN), followed by Probabilistic Neural networks (PNN), Decision
Trees (DT), k-Nearest Neighbours (k-NN), Random Forests (RF), Naive Bayes
(NB), Principal Component, Analysis (PCA) and Bayesian Networks (BN), with
different accuracy results.

If we rank” Table 5’s results according to their accuracy, we see that our
model outperforms all those that do not use any other information apart from
the markety plain technical data. Notably, the model also outperforms one of the
models that/rely on external sources or other classical technical indicators (the
one by Lahmiri (2011)), also reaching results comparable to those by another
such model (by Kara et al. (2011)), in its highest accuracy set-up. This, in
turn, is an indication of its suitability for this kind of task, specially when

taking into account its already mentioned simplicity. Nevertheless, questions

21Results that were not given in terms of accuracy were omitted in this table, since they

could not be compared to ours.
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Table 5: Comparison of the related literature on stock index value/direction prediction.

Research ML Method Ezxtra Information Accuracy
Nair et al. (2010) DT 21 Tech. Indicators 90.22%
Bollen et al. (2011) - Tweeter feeds 86.70%
75,74% (ANN)
Kara et al. (2011) ANN, SVM | 10 Tech. Indicators
71.52%x(SVM)
- 5400%/(PNN)
Lahmiri (2011) PNN, SVM | 12 Tech. Indicators
64.00%N(SVM)

Tech. Indicators

.. 93.45% (k-NN)
Lahmiri et al. (2013) | k-NN, PNN and Sentirent

92.40% (PNN)

Measures

86.69% (ANN)

ANN, SVM, 89.33% (SVM)

Patel et al. (2015) 10, TechyIndicators

RF, NB 89.98% (RF)

90.19% (NB)

62.80% (PCA)

] PCA, ANN,
Wang & Choi (2013) - 59.25% (ANN)
SVM
58.82 (SVM)
Zuo & Kita (2012b) BN - 61.44%

must be raised regarding whether these results are due to the model itself, or
are but/a by=product of other features, such as the time lapse of the data (which
mighthave favoured the model) and the absence, in our model, of other classical
technical indicators (which, in turn, would have limited it).

As'it seems, the more information one adds to a model, the better it gets
at its predictions. On the other hand, more potentially irrelevant information
(i.e. noise) will be added. Models that solely rely on raw market data have the
advantage of being more adaptable and computationally simple. However, they
loose information given by other sources. Those that rely on such information

do not suffer from this problem, but at the price of dealing with more noise,
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which in turn might have them astray from their goal, with the additional
disadvantage of being computationally heavier and less adaptable to different
circumstances. Relying on data from a single market may reduce the noise,
but at the price of assuming market independence. In a ever more integrated
world, this does not seem advisable and, even though the best results in Table 5
come from single market models, they also come from those relying on, more
elaborate data, leading to a confusion of variables. We leave thefanswers to
these questions for future investigation.

Finally, and as a way to stablish some baseline to our.research, we have
repeated part of our experiment using an Artificial Neural Network (cf. Hattori
et al. (2015)). In this case, we focused in the 24-hour model with one index per
continent, since this was the set-up with best resultsiin this research. We then
used Weka?? to generate a number of Multilayer-Perceptron Artificial Neural
Networks (MLP-ANN), by varying somesof their default parameters in this
tool. The same dataset used in ourresear¢h was input to each new network,
whose output should indicate iBOVESPA’s next day closing direction. As in
our Bayesian Network, the MLP-ANNs were trained and tested using 5-fold
cross-validation, and mean accuracy across all folds was measured.

Best results were obtained with two neurons in the hidden layer, 0.2 learning
rate, 0.1 momentumyand 400 as the maximum number of epochs. With this
setting, the network reached a 66.40% top accuracy, with NYSE Composite, Cac
40 and Hang Seng — the same set of indices that resulted in the best accuracy
value for our Bayesian Network, in the 24-hour single index per continent model.
Interestingly, even though our network has performed better than its MLP-ANN
counterpart, delivering a 77.78% accuracy with this same set of indices, it is
noticeable that both networks lined up their outputs, agreeing on which indices
influence iBOVESPA the most. This is yet another indicative of the robustness
of the central idea behind both models: that market dependencies can be used

to forecast a specific index closing direction within a 24-hour window.

22Waikato Environment for Knowledge Analysis (http://www.cs.waikato.ac.nz/ml/veka/)
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6. Conclusion

In this work, we set out to identify the applicability of a Bayesian Network
structure in the investigation of the extent to which foreign markets influence
the main index at the Sdo Paulo Stock Exchange (i.e. iBOVESPA), by taking
closing directions of stock market indices around the globe as input to the net-
work, so as to try to forecast iBOVESPA’s next day direction. Being, one of
the few to move away from the Neural Network and Support Vector Machine
mainstreams, our research is, to the best of our knowledge, the first machine
learning based effort to take an “around the globe” approach, that.is'to base its
underlying model on the assumption that markets are initerrelated all around the
world. We do so through a Bayesian Network that‘reflects the potential depen-
dencies amongst indices from all continents while the planet rotates. Moreover,
this is probably the machine learning effort trying to accommodate the highest
number of different markets into a single:model:

Since “the central idea to successfulistock market prediction is achieving best
results using minimum required input, data and the least complex stock market
model” (Atsalakis & Valavanis, 2009), and with results comparable to those of
the related literature, ourymodel moves towards this direction, by presenting the
further advantage of being relatively simple and intuitive, when compared to
other more “closed” models, such as those that deal with Neural Networks, for
example. Adsoy the'model makes no assumptions regarding error distribution,
as do seme time-series algorithms, thereby generalising over different datasets.
Nevertheless, ssome of the more elaborate models, specially those that account
for some traditional technical analysis indicators along with raw technical data,
were. found to be more accurate than ours, even though there are exceptions to
this rule. This is a matter left for future investigation: whether by adding such
information we can raise our system’s accuracy.

Regarding its usefulness, in the realm of Expert and Intelligent Systems our
model brings in a different dimension under which we understand data should be

analysed: inter-market dependence. As a rule, current machine learning based
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models avoid bringing together different markets, with some notable exceptions,
as pointed out in Section 5. Related models that deal with market data only,
that is those not relying on other classical techniques for market analysis, were
outperformed by ours, which is an indicative of this idea’s appropriateness:
Our model was, however, outperformed by some of those that make use of such
techniques along with raw market data. Unfortunately, these were also the same
models that did not rely on multiple market information, thereby leading toya
confounding of variables. The reasons why these models were”more accurate
than ours is something that must be addressed in future research.

Still in the field of Expert Systems, we understand oursmodel to serve as
one of the building blocks in more elaborate applications:yGiven its high adapt-
ability, whereby it can be quickly changed to output probabilities instead of
closing directions, it could be used as a “foreign.market influence” module
to more sophisticated decision support systems, for example. Also, and since
current research in Economics points towards the actual existence of market
inter-dependencies (e.g. Coronado et al.(2016); Kim & Song (2017); Tangporn-
paiboon & Puttanapong (2016)), which would be stronger after crisis periods,
our model comes up as a’ computationally cheap, human readable alternative,
during and after crises, to existing models where inter-market dependencies are
ignored.

In the areas of Economics and practical trading, the model could be used
to study @nd forecast market contaminations during crises, for example, by
determining, from the identification of the set of markets that influence the
target market the most, how likely this target market is to suffer from such
contamination. It could also be used as a tool for determining the effects that
commercial agreements have on a specific market. In this case, a study of which
indices have more influence in that market before and after the agreement and,
more specifically, whether this set does actually change, could give an insight on
which companies gained or lost international importance with the agreement,
indicating how it was perceived by market players and how future agreements

might so be perceived. Finally, our network could be modified to model the
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intuitions market players have on market dependencies. In this case, intuitions
would be codified in the network’s topology, and an analysis of its accuracy
could provide evidence for (or against) them.

Avenues for future improvement, other than those pointed out above, in-
clude testing the model with data coming from non-crisis periods. Since part
of our dataset comprises the sub-prime crisis, it might be the case that the sys-
tem was favoured by it. To run it in different periods might clearthis doubt
and help determine if the same set of indices that influence iBOVESPA in one
period would still do so in others. Also, it would be interesting testing this
dependency assumption with other Machine Learning technigues; such as Deep
Neural Networks, for example, perhaps adding them to an.ensemble, if different
techniques turn out to be complementary to eagh other./ Another interesting
test to our ideas would be to apply them to'speeific stocks. Even though one
might think of an individual stock as agsingle-company index, the model was
tested on general indices only, which comprise dozens of different stocks, and
there is no guarantee that these, as ‘a group, would behave as if they were a
single company index.

Similarly, and since our medel is based on the assumption that markets
are interrelated all around'thesworld, it would be interesting testing this same
assumption withedifferent topologies. One might, for example, create intra-
continental dependencies (as it was somewhat done in the 48-hour model, when
we took iIBOVESPA out of America in the middle of the network), or account
for dependencies on an index, instead of continent, basis, or even to separate
indices according to whether they are capitalization or price-weighted?3. Also,
and as a way to verify the robustness of the model, it could be tested with
different target-indices (i.e. indices whose direction is to be forecast), so as to
determine if it can be generalised to other markets. Observing how the model

would work in practice, by testing it with different trading strategies, would

23].e., indices whose constituent stocks are weighted according to their market capitalization

or price per share, respectively.
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give us some interesting insights as well.

Finally, another point we find noteworthy for future research is the method-

ology adopted for training and testing forecasting systems. We have taken the

cross-validation approach, in an attempt to reduce any influence seasonality

might have in our results. In that sense, seasonality may pose a problem if‘the

learning algorithm ends up learning features that work only on that %pecifie

time lapse. Nevertheless, cross-validation comes at the price of breaking amy

recurrence relation in the model, which makes it unsuited for most time series

analyses. The extent to which this is a valid concern still remains unelear, and

is worth investigating.

Appendix

Table 6: Mean amount, across@ll foldsy,of correctly (hits) and

incorrectly (misses) forecast directions, along with mean accuracy

results for the 24h model, with one index per continent.

Index Arrangements Hits | Misses | Accuracy
Nasdaq Comp., FTSE 100, Nikkei 225 233.6 | 904 0.7210
Nasdaq Comp., Dax,Nikkei 225 236.8 87.2 0.7309
Nasdaq Comp.;:Stockholm Gen., Nikkei 225 235.6 88.4 0.7272
Nasdaq Lomp., Cac 40, Nikkei 225 229.8 94.2 0.7093
Nasdaq Comp., FTSE 100, Shangai Comp. 239.8 84.2 0.7401
Nasdag Comp., Dax, Shangai Comp. 235.8 88.2 0.7278
Nasdag Comp., Stockholm Gen., Shangai Comp. | 233.6 90.4 0.7210
Nasdaq Comp., Cac 40, Shangai Comp. 238.8 85.2 0.7370
Nasdaq Comp., FTSE 100, Hang Seng 232.4 91.6 0.7173
Nasdaq Comp., Dax, Hang Seng 236.6 87.4 0.7302
Nasdaq Comp., Stockholm Gen., Hang Seng 232.4 91.6 0.7173
Nasdaq Comp., Cac 40, Hang Seng 237.4 86.6 0.7327

35

Continued on next page




Table 6 — Continued from previous page

Index Arrangements Hits | Misses | Accuracy
Nasdaq Comp., FTSE 100, BSE 30 Sensex 235.0 | 89.0 0.7253
Nasdaq Comp., Dax, BSE 30 Sensex 236.6 87.4 0.7302
Nasdaq Comp., Stockholm Gen., BSE 30 Sensex | 241.2 82.8 0.7444
Nasdaq Comp., Cac 40, BSE 30 Sensex 234.2 89.8 0:7228
NYSE Comp., FTSE 100, Nikkei 225 244.6 79.4 0.7549
NYSE Comp., Dax, Nikkei 225 241.8 | 82.2 0.7463
NYSE Comp., Stockholm Gen., Nikkei 225 242.6 81.4 0.7488
NYSE Comp., Cac 40, Nikkei 225 237.47" 86.6 0.7327
NYSE Comp., FTSE 100, Shangai Comp. 241.0 83.0 0.7438
NYSE Comp., Dax, Shangai Comp. 23910 85.0 0.7377
NYSE Comp., Stockholm Gen., Shangai Comp. 242.6 81.4 0.7488
NYSE Comp., Cac 40, Shangai Comp. 238.0 86.0 0.7346
NYSE Comp., FTSE 100, Hang Seng 238.0 | 86.0 0.7346
NYSE Comp., Dax, Hang Seng 241.6 82.4 0.7457
NYSE Comp., Stockholm.Gen., Hang Seng 241.2 82.8 0.7444
NYSE Comp., Cac 40; Hang Seng 252.0 72.0 0.7778
NYSE Comp., FTSE 100, BSE 30 Sensex 243.2 80.8 0.7506
NYSE Comp4 Dax, BSE 30 Sensex 241.8 82.2 0.7463
NYSE Comp:j Stoeckholm Gen., BSE 30 Sensex 238.0 86.0 0.7346
NYSE Comp., Cac 40, BSE 30 Sensex 240.2 83.8 0.7414
DownJones, FTSE 100, Nikkei 225 197.8 | 116.2 0.6299
Dow Jones, Dax, Nikkei 225 209.8 | 107.2 0.6618
Dow" Jones, Stockholm Gen., Nikkei 225 197.8 | 117.2 0.6279
Dow Jones, Cac 40, Nikkei 225 208.0 | 109.0 0.6562
Dow Jones, FTSE 100, Shangai Comp. 214.8 | 105.2 0.6713
Dow Jones, Dax, Shangai Comp. 210.6 | 113.4 0.6500
Dow Jones, Stockholm Gen., Shangai Comp. 207.0 | 115.0 0.6429
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Table 6 — Continued from previous page

Index Arrangements Hits | Misses | Accuracy
Dow Jones, Cac 40, Shangai Comp. 213.8 | 110.2 0.6599
Dow Jones, FTSE 100, Hang Seng 212.6 | 1114 0.6562
Dow Jones, Dax, Hang Seng 212.6 | 1114 0.6562
Dow Jones, Stockholm Gen., Hang Seng 206.0 | 118.0 0:6358
Dow Jones, Cac 40, Hang Seng 215.4 | 108.6 0.6648
Dow Jones, FTSE 100, BSE 30 Sensex 213.6 | A04.4 0.6717
Dow Jones, Dax, BSE 30 Sensex 209.2717 112.8 0.6497
Dow Jones, Stockholm Gen., BSE 30 Sensex 201.87 118.2 0.6306
Dow Jones, Cac 40, BSE 30 Sensex 2174\ 104.6 0.6752
Merval, FTSE 100, Nikkei 225 2264 | 97.6 0.6988
Merval, Dax, Nikkei 225 231.8 | 92.2 0.7154
Merval, Stockholm Gen., Nikkei 225 230.8 93.2 0.7123
Merval, Cac 40, Nikkei 225 230.0 | 94.0 0.7099
Merval, FTSE 100, Shangai Comp: 238.2 85.8 0.7352
Merval, Dax, Shangai Comp. 233.4 90.6 0.7204
Merval, Stockholm Gen:, Shangai Comp. 232.6 914 0.7179
Merval, Cac 40, Shangai Comp. 233.0 91.0 0.7191
Merval, FTSE 100, Hang Seng 232.0 92.0 0.7160
Merval, Dax, Hang,Seng 238.6 85.4 0.7364
Merval, Stockholm Gen., Hang Seng 236.0 88.0 0.7284
Merval; Cag*40, Hang Seng 230.4 93.6 0.7111
Merval, FTSE 100, BSE 30 Sensex 229.4 94.6 0.7080
Merval, Dax, BSE 30 Sensex 232.6 91.4 0.7179
Merval, Stockholm Gen., BSE 30 Sensex 233.2 90.8 0.7198
Merval, Cac 40, BSE 30 Sensex 235.6 88.4 0.7272
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