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Highlights

• A Bayesian Network is proposed to forecast the São Paulo Exchange main

index’s closing direction

• Network designed to reflect some intuitive dependencies amongst inter-

continental markets

• Simple and intuitive model with results comparable to those of the related

literature
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Abstract

In this work, we investigate the feasibility of Bayesian Networks as a way to

verify the extent to which stock market indices from around the globe influence

iBOVESPA – the main index at the São Paulo Stock Exchange, Brazil. To do

so, index directions were input to a network designed to reflect some intuitive

dependencies amongst continental markets, moving through 24 and 48 hour

cycles, and outputting iBOVESPA’s next day closing direction. Two different

network topologies were tested, with different numbers of stock indices used

in each test. Best results were obtained with the model that accounts for a

single index per continent, up to 24 hours before iBOVESPA’s closing time.

Mean accuracy with this configuration was around 71% (with almost 78% top

accuracy). With results comparable to those of the related literature, our model

has the further advantage of being simpler and more tractable for its users. Also,

along with the fact that it not only gives the next day closing direction, but also

furnishes the set of indices that influence iBovespa the most, the model lends

itself both to academic research purposes and as one of the building blocks in

more robust decision support systems.
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São Paulo-SP, Brazil – 03828-000. Phone: +55 (11) 2648 0130

Email addresses: luciana.malagrino@usp.br (Luciana S. Malagrino), norton@usp.br
(Norton T. Roman), anammont@cc.faccamp.br (Ana M. Monteiro)

Preprint submitted to Expert Systems with Applications March 23, 2018



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2010 MSC: 00-01, 99-00

1. Introduction

Every day, stocks are negotiated in stock markets, where investors decide

whether to buy or sell shares of negotiated assets. As a way to measure the

relative value of a determined group of stocks, be they all stocks in the market

or only a portion of them, market indices are created (Lee & Lee, 2006). As the

value of the stocks in this group changes over time, so does its corresponding

index. Within this scenario, the ability to predict the closing direction of some

stock market index allows investors to devise strategies for trading the stocks

comprising that index, thereby increasing their potential for future profit.

In this research, we take an index closing direction to be the direction of the

change in the index closing value at a specific day, when compared to its closing

value in the day before. Hence, we take the direction to be positive (or high) if

the index’s closing value in the day before was lower than (or the same as) its

current value, indicating that the stocks that build up the index have increased

their average closing price. Similarly, a negative (or low) direction would imply

a previous closing value higher than the current one, signalling some average

loss in the index stock prices.

To date, there is a good number of computational strategies applied to both

closing direction and value prediction of stocks and indices. These include the

use of Artificial Neural Networks (e.g. Guresen et al. (2011)), Fuzzy Systems

(e.g. Huarng & Yu (2005)), Support Vector Machines (e.g. Yeh et al. (2011))

and Decision Trees (e.g. Nair et al. (2010)), amongst others. In addition to the

use of a specific machine learning technique, current approaches also include

models that mix one or more of these techniques with sets of more classical

technical indicators (e.g. Ticknor (2013); Patel et al. (2015)), such as Moving

Average and Relative Strength Index, for example.

Despite the broad coverage in the use of different machine learning tech-

niques, it is noticeable the scarceness of studies reporting the application of
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Bayesian Networks in stock market prediction (e.g. Zuo & Kita (2012b,a)), even

though this approach has already been applied to the modelling of portfolio re-

turns (e.g. Shenoy & Shenoy (1999)) and for bankruptcy prediction (e.g. Sun &

Shenoy (2007)). Moreover, there seems to be a preference, amongst those rely-

ing on machine learning approaches, for using training data only from the stock

market about which predictions are to be made (e.g. Hadavandi et al. (2010);

Kara et al. (2011)), thereby ignoring influences from outside sources, with only

a few examples of studies being carried out across different markets (e.g. Hsieh

et al. (2011)).

As a market forecasting methodology, Bayesian Networks have the advantage

of not relying on Normal error distributions (Zuo & Kita, 2012a), as do other

time-series algorithms used to this end (such as the Auto Regressive and Moving

Average models, for example) and which may not accurately describe stock price

behaviour. Additionally, they can deal both with continuous and discrete data,

which makes them suitable for both price value and direction forecasting. As

a learning methodology, such networks have the advantage of giving a human-

readable account of dependencies amongst stock markets (when compared to

other more complex models, such as Neural Networks, for example), whereby one

can readily understand how strong dependencies are by verifying the probability

of one market changing given that some other has changed.

This dependency across markets, in turn, and which seems to be out of the

scope of much of the extant work on the use of machine learning techniques

for stock price forecasting, has been subject of study in the field of Economics,

where it has been noticed that some markets present time-varying dependen-

cies (Tam & Tam, 2012; Urquhart & Hudson, 2013; Coronado et al., 2016),

which might grow stronger after crisis periods (Puah et al., 2015; Tangpornpai-

boon & Puttanapong, 2016). In fact, with the global integration of financial

markets, via international trades, common currencies and cross-border invest-

ments (Jithendranathan, 2013), capital flows to where it will generate the high-

est return (Puah et al., 2015; Tangpornpaiboon & Puttanapong, 2016), making

these markets more vulnerable to domestic shocks that could spread over the
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entire dependency network. Even though we are still far from ultimate full inte-

gration (Tam & Tam, 2012), to ignore existing dependencies could pose a threat

to any forecasting system.

In this article, we seek to help fulfil this gap, by introducing a Bayesian

Network model of the Brazilian Stock Exchange market (BM&FBOVESPA)1,

relating its main index (iBOVESPA) to other indices around the world. Founded

in 2008, from the merging of the São Paulo Stock Exchange (BOVESPA) and

the Brazilian Mercantile and Futures Exchange (BM&F), BM&FBOVESPA has

become the main Brazilian company for the management of organized security

and derivative markets. Its main index, iBOVESPA2, is a weighted average of

a theoretical portfolio comprising roughly the 50 more actively traded stocks,

which was designed to reflect the market’s average performance by tracking

price changes of its more representative participants.

In our analysis, we accounted for market dependencies by taking a “follow

the sun” approach, whereby we hypothesise that, moving along the sequence

of closing times in markets around the globe, every closing market influences

the next one, thereby simulating capital and news flow over time. We have

then experimented two competing models: one which only accounted for closing

directions within a 24-hour period; and another using a 48-hour time window.

Stock markets were grouped up by continent, and tests were made with sets

of one to three market indices per continent. In doing so, our main objective

was to test the feasibility of these Bayesian Networks to (i) identify markets

and, more specifically, market indices, that influence iBOVESPA the most; and

(ii) determine the best time window for this analysis. Also, to the best of our

knowledge, this is the first machine learning based study to account for the

dependency of stock indices around the world.

Given the conceptual clearness brought by Bayesian Networks, where depen-

1http://www.bmfbovespa.com.br/en_us/index.htm
2http://www.bmfbovespa.com.br/en_us/products/indices/broad-indices/

bovespa-index-ibovespa.htm
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dencies are clearly put, and results can be understood in terms of frequencies,

our method lends itself to be used with Decision Support Systems for the stock

market, whereby a human must decide what to do based on the available in-

formation. In this case, a clear account of how the system comes up with its

advices might help its users to take or refuse them with more confidence. Also,

results from our work could be adapted by researchers to studies in other ar-

eas, such as Economics, for instance, furnishing a way to quantify, in terms of

probabilities, which indices have more influence on some specific market. Fi-

nally, another possibility would be to attach our network to some more complex

model, such as a machine learning ensemble for example, or other more classical

approaches to the problem, so as to provide traders with a more complete tool

set for decision making.

The rest of this article is organised as follows. Section 2 describes our ex-

perimental set-up, presenting the network topologies, stock market indices and

data used in our experiments. Next, in Section 3, we present the results, in

terms of accuracy3, of the competing models. In this section, we also make a

comparison between them, pointing out possible reasons for differences in the

models. Section 4, in turn, discusses our results further, giving some possible

applications of this approach, along with a theoretical account of our model’s

strengths and weaknesses. Finally, in Section 5, we compare our results to those

of the related literature, while in Section 6 we present our final remarks on this

research, along with directions for future improvement.

2. Materials and Methods

The stock market indices used in this research comprise 12 indices world-

wide. These are Nasdaq Composite (USA), NYSE Composite (USA), Dow Jones

(USA), Merval (Argentina), Nikkei 225 (Japan), Shangai Composite (China),

Hang Seng (China), BSE 30 Sensex (India), FTSE 100 (UK), Stockholm Gen-

3I.e. the proportion of correctly guessed directions (both positive and negative).
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eral (Sweden), Dax (Germany) and Cac 40 (France). Table 1 shows the trading

period for each market4, along with their overlapping time with iBOVESPA.

Data was collected from 01/06/20055 to 05/04/2012 at Yahoo! Finance’s web-

site6, corresponding to a 2,501-day period. Days in which any of the selected

markets were closed (due to local holidays, for example) were removed from the

data set for all markets, resulting in a total of 1,620 days used in this research

for each of the selected indices.

Table 1: Stock markets opening time, ranked by overlapping time with iBOVESPA.

Index Country Opening Closing Overlapping

Time (UTC) Time (UTC) Time (h)

iBOVESPA Brazil 13:00 20:00 7:00

Merval Argentina 14:00 20:00 6:00

Dax Germany 07:00 19:00 6:00

Nasdac Comp. USA 14:30 21:00 5:30

NYSE Comp. USA 14:30 21:00 5:30

Dow Jones USA 14:30 21:00 5:30

Cac 40 France 08:00 16:30 3:30

FTSE 100 UK 08:00 16:30 3:30

Stockholm Gen. Sweden 08:00 16:30 3:30

Nikkei 225 Japan 00:00 06:00 0:00

Shangai Comp. China 01:30 07:00 0:00

Hang Seng China 01:30 08:00 0:00

BSE 30 Sensex India 03:45 10:00 0:00

The date removal procedure was carried out as follows. First, data from the

entire 2,501 running days period was collected. We then removed all dates in

4https://en.wikipedia.org/wiki/List_of_stock_exchange_trading_hours. For a map

of opening times, we refer the reader to https://www.investing.com/tools/market-hours.
5Date format is dd/mm/yyyy.
6https://finance.yahoo.com/
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which at least one of the markets was closed (i.e. holidays and weekends). Even

though the number of weekends (714 in total, 357 Saturdays and 357 Sundays)

was shared by all markets, the number of holidays varied from market to mar-

ket, reflecting local holiday policies. Hence, we kept the maximum amount of

days where we could obtain data from all markets under consideration, which

amounted to 1,620 days. For the missing days, no correction was made for price

moves, since we did not want to introduce any artificial data into the model.

The implications of this decision will be discussed further in Section 3.

Next, we designed our Bayesian Network (see Section 2.1), which was trained

and evaluated in the data set using 5-fold cross validation. Within this model,

one randomly splits the data in five different subsets (also called folds) of ap-

proximately equal size (Kohavi, 1995), which will be held out one at a time for

validation/testing purposes. Each time, the network is trained in four of the sets

(i.e. 80% of the data) and evaluated in the fifth one (the remaining 20%) for its

accuracy, that is the number of correct classifications, divided by the number

of instances in the test set7. This process is repeated exactly five times, with

a different test set (and, consequently, different training sets) used each time,

in an attempt to reduce variance (Hastie et al., 2009). The network’s overall

accuracy is taken to be the average of its accuracy across the five test subsets.

To better evaluate the model, we experimented with sets of one, two, and

three different indices per continent, along with 24 and 48-hour time windows

(that is, looking at data up to 24 and 48 hours in the past). We tried then to

predict, from the data within these time windows, iBOVESPA’s next day closing

direction. To do so, we fit the 24 and 48-hour sliding windows to the data,

thereby having a training instance to comprise iBOVESPA’s closing direction

at a specific date, along with past closing directions for a subset of different

markets. These markets were selected according to the experimental set-up, by

varying the number of indices per continent, time-window length, and network

7It is important to notice that, in this work, we are focusing on directional (binary – up

and down) prediction only, instead of index quantification.
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topology (which will be made clearer in the next section).

As an example, in the 24-hour model with one index per continent, a training

instance would be {iBOVESPA’s closing direction at day t; American index’s

closing direction at t-1; European index’s closing direction at t-1; Asian index’s

closing direction at t-1}. These training instances were built on a daily basis,

and then input to the network. From our testing results, we identified the

indices with the best and worst performance in predicting iBOVESPA’s closing

direction, as measured by their accuracy. That allowed us to identify the sets

of indices with the highest and lowest influence on iBOVESPA and to evaluate

competing models for their accuracy with the best indices. In what follows, we

will detail the network topologies used in the experiments.

2.1. Network Topologies

To build our Bayesian Network, we hypothesised that, moving through 24

and 48 hour cycles, and starting from the first stock exchange market to close

after BM&FBOVESPA, every closing market influences the next one around

the globe, back to iBOVESPA’s next day closing value. Under this assumption,

each market index closing direction is influenced by those markets that closed

before it. For the sake of simplicity, we grouped up markets according to their

home continent (i.e. Americas, Europe and Asia), since closing time is actually

related to their geographical location on the planet, and carried out experiments

with one, two and three different indices per continent.

In the first phase of our experiment, we observed a 24-hour time lapse be-

fore BM&FBOVESPA’s closing time. Figure 1 illustrates this network topology,

where SP00 means iBOVESPA’s closing direction at a specific date, and Asia24,

Europe24 and America24 stand for the closing directions of market indices in

these continents up to 24 hours before SP00’s closing. Since we account for

indices that close up to 24 hours before iBOVESPA’s closing, that includes

both markets that close before BM&FBOVESPA opened (but still within the

24-hour limit) and those closing within its trading period. In this model, a
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training instance comprises iBOVESPA’s closing direction, along with the clos-

ing directions of all of its parent nodes in the network.

Asia24

Europe24

SP00 America24

Figure 1: 24 hour network topology for the first phase of the experiment.

In the experiments with more than one index per continent, all continent

nodes were replaced by their respective set of indices. In this case, index nodes

within the same continent were taken to be independent of each other, whereas

dependencies were kept amongst intercontinental nodes (i.e. nodes in different

time zones). Hence, a dependency between Europe and Asia now corresponds to

all indices in Europe depending on all indices in Asia. It is important to notice

that we take dependencies to exist in time, and not necessarily on geographical

location. That means nodes in the same continent are held independent of

each other only at a specific time, but not before it. As shown in Figure 1, even

though SP00 lies in the American continent, it is independent of other American

markets only by the time of the prediction (what would be America00). However,

dependencies are taken to exist when we look at these same markets up to 24

hours in the past (i.e. America24).

To mathematically model this network, we followed Bayes’ theorem, accord-

ing to which

P (hi|d) =
P (d|hi)P (hi)

P (d)

where hi is the hypothesis that iBOVESPA belongs to class Ci = {high, low},
that is iBOVESPA’s closing value will be higher (h1) or lower (h2), respectively,

when compared to its closing value the day before, and P (hi|d) is the probability

of hypothesis hi holding given the data set d. In the case of a Bayesian Network,

10
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constructed under the assumption of conditional independence between a node

and its predecessors in the network, given the node’s parents, this equation

reduces to

P (hi|d) = P (hi|iBOVESPA’s parents)

where P (hi|iBOVESPA’s parents) can be estimated by the frequency with which

hi holds true for every combination of values for iBOVESPA’s parents. The

same method can be used for every node in the network, thereby assigning

them probability distributions, according to which one can estimate the proba-

bility of observing a specific direction in one node, given the directions observed

in its parents. Also, as a way to avoid assigning null probabilities to unseen

combinations of parent directions, we have added a Laplace smoothing term to

the equation, whereby one adds 1 to the numerator and 2 to the denominator

when calculating the frequency used to estimate P (hi|iBOVESPA’s parents).

In the second phase of the experiment, we repeated this methodology with a

48 hour time window, as shown in Figure 2. Within this model, new nodes were

added, to represent closing directions for indices both up to 24 and 48 hours

before iBOVESPAS’s closing time, roughly corresponding to two spins around

the globe towards the past. Under this approach, iBOVESPA’s closing direction

is taken to be directly influenced only by stock markets closing up to 24 hours

before it, while indirectly influenced by those closing up to 48 hours in the past.

Asia24

Europe24

SP00

America24

SP24

Asia48

Europe48

America48

Figure 2: 48 hour network topology for the second phase of the experiment.

The mathematical model for this network, in turn, follows the same expres-

sion as that of the 24 hour model, except that, in this case, instead of three
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parent nodes, iBOVESPA has a fourth one – its closing direction in the day

before (SP24 in the figure). As such, all value combinations for these four par-

ents must be taken into account when estimating P (hi|iBOVESPA’s parents).

Another difference between models is that we took iBOV ESPA24 to influence

other American markets that close after its closing time, even though they lie

within iBOV ESPA24’s time frame, thereby breaking the independence assump-

tion only in this case. In this topology, we took iBOVESPA out of its continental

group as a way to reinforce the assumption that its closing direction in the past

plays a major role in its future closing direction, hence accommodating for the

possibility of internal dependencies outweighing external ones. Once again, we

have experimented with up to three indices per continent.

3. Results

Experiments with the 24-hour topology (Figure 1) and a single index per

continent resulted in a mean accuracy of 71.08%. In a total of 64 runs8, where

a different arrangement of indices was tested each run, accuracy ranged from

62.79%, with the Dow Jones, Stockholm General and Nikkei 225 combination,

to 77.78%, with NYSE Composite, Cac 40 and Hang Seng. Figure 3 shows

accuracy distribution within this range. As can be seen, even though median

accuracy was 72.10%, peak values lied around 73%, which was the accuracy

obtained by 21 different arrangements in our tests.

Second best accuracy, 75.49%, was obtained with NYSE Composite, FTSE

100 and Nikkei 225. However close, the difference between best and second

best accuracies was found to be statistically significant, as determined by an

unpaired t-test9 run on the individual folds (tWelch(n = 5) = 2.33, p = 0.05),

indicating that, under this model, NYSE Composite, Cac 40 and Hang Seng

could be the indices that influence iBovespa’s closing direction the most10. Ta-

843 – four different combinations per continent, arranged amongst the three continents.
9All test results are reported at the 95% confidence level.

10Even though a different arrangement of data within folds might lead to a different set of

12
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Figure 3: Accuracy distribution in 64 runs for the single index 24h model.

ble 6 (see the Appendix section) shows mean accuracy across the five folds for

each market combination in our 24-hour single index per continent model, along

with the mean number of hits (i.e., correctly guessed directions11) and misses

(i.e., incorrectly guessed directions12).

Arrangements with two indices per continent led us to a mean accuracy of

70.20% and a 70.32% median value. In a total of 216 runs13, accuracy ranged

from 66.08%, with Dow Jones, Merval, Dax, Cac 40, Nikkei 225 and Shangai

Composite, to 74.01%, with NYSE Composite, Merval, Dax, Stockholm Gen-

eral, Shangai Composite and BSE 30 Sensex. Figure 4 shows accuracy distribu-

tion within this range. Interestingly, the distribution closely resembles that of

a normal curve, with a peak around 70.50%, delivered by 54 arrangements (i.e.

25% of the 216).

Second best accuracy (73.58%) was achieved with NYSE Composite, Mer-

val, FTSE 100, Dax, Shangai Composite and BSE 30 Sensex. The difference

indices, so further research on this topic must be done.
11Alternatively, the sum of true positives and true negatives.
12Alternatively, the sum of false positives and false negatives.
1363 – six different combinations each continent, arranged amongst the three continents.

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 4: Accuracy distribution in 64 runs for the two-index-24h model.

between best and second best accuracies was, however, not found to be of sta-

tistical significance (tWelch(n = 5) = 0.48, p = 0.65). Noticeably, three of the

indices (Merval, Shangai Composite and Dax) can be found in the arrangement

with best, second best and worst accuracy (see Table 2 for a comparison of

indices in best, second best and worst accuracy arrangements across models).

We understand this to be an indication that these indices are being forced into

the model by the two indices per continent demand, thereby introducing noise.

This could also explain why the best accuracy arrangement with two indices per

continent scored lower than its single index counterpart, a difference found to

be of statistical significance (tWelch(n = 5) = −4.08, p < 0.01).

Finally, arrangements with three indices per continent resulted in a mean

and median accuracy of 56.45%. Through 64 different index arrangements14, ac-

curacy ranged from 52.13%, with NYSE Composite, Dow Jones, Merval, FTSE

100, Stockholm General, Cac 40, Nikkei 225, Shangai Composite and Hang

Seng, to 61.17%, with Nasdaq Composite, NYSE Composite, Merval, FTSE

100, Dax, Cac 40, Nikkei 225, Shangai Composite and Hang Seng. Figure 5

1443 – four different combinations each continent, across three continents.

14
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shows accuracy distribution within this range. As with the two indices per

continent model, so this distribution resembles the normal curve. This could

be another indicative that adding more indices did in fact add random noise,

thereby reducing accuracy.

Figure 5: Accuracy distribution in 64 runs for the three-index-24h model.

This argument is further evidenced by the small difference between best

and second best accuracies, which was not found to be statistically significant

(tWelch(n = 5) = 2.10, p = 0.08). In this case, second best accuracy (59.80%)

was reached with Nasdaq Composite, NYSE Composite, Dow Jones, FTSE 100,

Dax, Cac 40, Nikkei 225, Shangai Composite and Hang Seng. Moreover, from

the nine indices in the best accuracy arrangement, six (NYSE Composite, FTSE

100, Cac 40, Nikkei 225, Shangai Composite and Hang Seng) could also be found

in the second best and worst accuracy arrangements, a sign that they are but

noise in this model.

One puzzling result of the three indices per continent model, as shown in

Table 2, is the fact that Nasdaq Composite, which does not occur in best, second

best and worst positions in the single and double index models, suddenly comes

up as part of the best and second best, but not the worst, scoring arrangements.

At first glance, that might indicate an interesting behaviour about that index.

However, in looking at the second worst accuracy arrangement (52.95%, with

15
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Table 2: Best, second best and worst accuracy indices with 1, 2 and 3 indices per continent

in the 24h model.

Ind./Cont. Best 2nd Best Worst

1
NYSE Comp., Cac

40, Hang Seng

NYSE Comp.,

FTSE 100, Nikkei

225

Dow Jones, Stock-

holm Gen., Nikkei

225

2

NYSE Comp.,

Merval, Dax,

Stockholm Gen.,

Shangai Comp.,

BSE 30 Sensex.

NYSE Comp.,

Merval, FTSE

100, Dax, Shangai

Comp., BSE 30

Sensex.

Dow Jones, Mer-

val, Dax, Cac

40, Nikkei 225,

Shangai Comp.

3

Nasdaq Comp.,

NYSE Comp.,

Merval, FTSE

100, Dax, Cac

40, Nikkei 225,

Shangai Comp.,

Hang Seng

Nasdaq Comp.,

NYSE Comp.,

Dow Jones, FTSE

100, Dax, Cac

40, Nikkei 225,

Shangai Comp.,

Hang Seng

NYSE Comp.,

Dow Jones, Mer-

val, FTSE 100,

Stockholm Gen.,

Cac 40, Nikkei 225,

Shangai Comp.,

Hang Seng

Nasdaq Composite, Dow Jones, Merval, FTSE 100, Dax, Stockholm General,

Nikkei 225, Shangai Composite and BSE 30 Sensex) we see Nasdaq there. Since

no difference could be found between worst and second worst arrangements

(tWelch(n = 5) = −0.38, p = 0.71), we understand this index to be noise as well.

Finally, here too we find the difference between best accuracy with three

indices per continent to be statistically relevant, when compared to its counter-

parts in the two indices (tWelch(n = 5) = 24.10, p < 0.01) and single index per

continent (tWelch(n = 5) = −18.74, p < 0.01) models. Also, another interesting

result is that, even though NYSE Composite might be thought of as the most

influential index, given its importance worldwide, it happens both in best and
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worst arrangements in the two last models15. This could be an indicative that,

however important, this index’ influence to iBOVESPA is not strong enough to

make the difference when more indices are added to the model.

Moving on to the 48-hour topology (Figure 2), we rerun the experiments

using combinations with one, two and three indices per continent. Results

with a single index led to a mean accuracy of 68.17%, with a 69,14% median

value. Throughout the 4,096 runs of the experiment16, accuracy ranged from

54.34%, with Dow Jones24, Stockholm General24, BSE 30 Sensex24, Merval48,

FTSE 10048 and Shangai Composite48, to 75.17%, with Merval24, Stockholm

General24, Hang Seng24, Dow Jones48, CAC 4048 and Hang Seng48.17 Figure 6

shows accuracy distribution within this range. As with the single index 24h

model, so this distribution presents pronounced peaks around mean and median

values.

Second best accuracy was 75.12%, with NYSE Composite24, Dax24, Hang

Seng24, Nasdaq Composite48, Dax48 and Hang Seng48. The difference between

best and second best accuracies was once again not found to be of statistical

significance (tWelch(n = 5) = 7.86, p = 0.96). As with the 24 hour model, only

one index could be found in best and worst accuracy arrangements. In this case,

however, it was not Nikkei 225 (second best and worst arrangements in the 24

hour model), but Stockholm General24 instead. Finally, differently from the 24

hour topology, NYSE Composite24, which happens in first and second place in

that model, comes here as part of the second best accuracy arrangement, even

though with no significant difference to the best accuracy setting. We refer the

15In the double-index model it comes in the 32nd worst arrangement, which was not found

to significantly differ from the worst scoring arrangement (tWelch(n = 5) = −1.11, p = 0.31).
1646 – four different combinations per continent, arranged amongst the three continents,

with two spins around the globe.
17To better understand these figures, recall that the “24” subscript refers to an index closing

value up to 24 hours before iBOVESPA’s, while the “48” subscript refers to its value from

24 to 48 hours before iBOVESPA. Also, as shown in Figure 2, iBOVESPA’s closing value the

day before (i.e. SP24) is a constant index in our model, the reason why it is omitted in our

results.
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Figure 6: Accuracy distribution in 4,096 runs for the single index 48h model.

interested reader to Table 3 for a comparison of indices in best, second best and

worst accuracy arrangements with the 48 hour topology.

In comparing the best accuracy value within this model to those obtained

with the 24 hour topology, we see significant differences between this value

and results from the single index 24h (tWelch(n = 5) = −2.39, p = 0.04) and

three indices per continent 24h (tWelch(n = 5) = 17.83, p < 0.01) models.

Nevertheless, no statistically significant difference could be established between

best accuracies in the 48h single index and 24h double index models (tWelch(n =

5) = 1.41, p = 0.21). We understand this to be another evidence of the reduction

in best accuracy value due to the introduction of more indices into the model,

even if they are the same indices, but within a wider time window.

Arrangements with two indices per continent delivered a mean accuracy of

31.04% (30.94% median). In a total of 46,656 runs18, accuracy ranged from

20.19% with Nasdaq Composite24, Merval24, Stockholm General24, Cac 4024,

Nikkei 22524, BSE 30 Sensex24, Nasdaq Composite48, Merval48, FTSE 10048,

1866 – six different combinations each continent, arranged amongst the three continents

twice around the globe.
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Stockholm General48, Nikkei 22548 and Shangai Composite48, to 45.27%, with

NYSE Composite24, Merval24, Stockholm General24, Cac 4024, Nikkei 22524,

Hang Seng24, Nasdaq Composite48, Dow Jones48, Dax48, Stockholm General48,

Hang Seng48, BSE 30 Sensex48. Figure 7 shows accuracy distribution within

this range. Once again, we are close to the normal shape, with a clear peak at

the 0.31 accuracy, registered by 9,680 different index arrangements.

Figure 7: Accuracy distribution in 46,656 runs for the double index 48h model.

Second best accuracy (44.49%) was reached with Nasdaq Composite24, NYSE

Composite24, Dax24, Cac 4024, Shangai Composite24, Hang Seng24, NYSE

Composite48, Dow Jones48, FTSE 10048, Cac 4048, Shangai Composite48 and

Hang Seng48. The difference between best and second best accuracies was also

not found to be of statistical significance (tWelch(n = 5) = 0.70, p = 0.50).

Once more, half the indices in the best accuracy arrangement come also in

the worst accuracy one. These are Merval24, Stockholm General24, Cac 4024,

Nikkei 22524, Nasdaq Composite48 and Stockholm General48. Regarding the

difference between the best accuracy arrangement with two indices per con-

tinent around 48 hours and other models, we found it to significantly astray

from best accuracy arrangements with a single index and the same topol-
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ogy (tWelch(n = 5) = 31.61, p < 0.01), and with the 24h single (tWelch(n =

5) = −31.53, p < 0.01), double (tWelch(n = 5) = −38.34, p < 0.01) and triple

(tWelch(n = 5) = −22.59, p < 0.01) index models.

Arrangements with three indices per continent resulted in a mean accuracy of

8.21%, with an 8.07% median. Across 4,096 runs of the experiment19, accuracy

ranged from 4.73%, with Nasdaq Composite24, Dow Jones24, Merval24, FTSE

10024, Dax24, Stockholm General24, Nikkei 22524, Shangai Composite24, Hang

Seng24, Nasdaq Composite48, NYSE Composite48, Merval48, Dax48, Stockholm

General48, Cac 4048, Nikkei 22548, Shangai Composite48 and BSE 30 Sensex48,

to 14.27%, with Nasdaq Composite24, NYSE Composite24, Dow Jones24, FTSE

10024, Dax24, Cac 4024, Shangai Composite24, Hang Seng24, BSE 30 Sensex24,

Nasdaq Composite48, NYSE Composite48, Dow Jones48, FTSE 10048, Dax48,

Cac 4048, Nikkei 22548, Hang Seng48, BSE 30 Sensex48. Figure 8 shows accuracy

distribution within this range.

Figure 8: Accuracy distribution in 4,096 runs for the three index 48h model.

It is noticeable in the figure the distribution’s skew towards the lower side of

1946 – four different combinations per continent, arranged amongst the three continents,

twice around the globe.
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the accuracy range, making this model useless for our prediction. As it seems, in

adding more indices to the 48 hour topology we not only added more noise, but

had the model systematically fail in its predictions, to the extent that accuracy

would increase considerably if we just negate its output. As can be verified in

Table 3, 12 out of the 18 indices in this model figure both in best and worst

accuracy arrangements. This is exactly the same proportion we found in the 24

hour topology. This great amount of noise being input to the system could be

the reason for its failure: it might be the case that it is actually learning some

hidden pattern in this noise.

Second best accuracy, in turn, was 13.68%, with Nasdaq Composite24, NYSE

Composite24, Dow Jones24, FTSE 10024, Stockholm General24, Cac 4024, Nikkei

22524, Hang Seng24, BSE 30 Sensex24, Nasdaq Composite48, NYSE Composite48,

Dow Jones48, FTSE 10048, Dax48, Cac 4048, Nikkei 22548, Hang Seng48 and

BSE 30 Sensex48. The difference between best and second best accuracies, as

expected, was not statistically significant (tWelch(n = 5) = 0.89, p = 0.41).

When accounting for best accuracy arrangements only, we found accuracies un-

der this model to significantly differ from those with one (tWelch(n = 5) =

64.94, p < 0.01) and two (tWelch(n = 5) = −35.61, p < 0.01) indices, around 48

hours, and with one (tWelch(n = 5) = −62.04, p < 0.01), two (tWelch(n = 5) =

−80.79, p < 0.01) and three (tWelch(n = 5) = −67.69, p < 0.01) indices in the

24 hour topology.

Finally, when comparing mean, worst and best accuracies across all mod-

els (Table 4), we notice a strong correlation between the amount of indices

used in each model and its mean accuracy (pearson = −0.98, t(df = 4) =

−8.98, p < 0.01, at the 95% confidence level20), to the extent that as the

total number of indices increase, mean accuracy decreases, as shown in Fig-

ure 9. Similar correlations were also found between the total amount of in-

dices and worst (pearson = −0.96, t(df = 4) = −6.86, p < 0.01) and best

(pearson = −0.98, t(df = 4) = −9.74, p = 0.01) accuracy values, once again ev-

20All pearson coefficient values reported here were obtained at the 95% confidence level.
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idencing the introduction of noise as market indices are brought into the model.

Table 4: Mean, worst and best accuracies across models, along with the total amount of

indices involved.

Indexes / Total Amount Accuracies (%)

Continent of Indexes Mean Worst Best

1 3 71.08 62.79 77.78

24h 2 6 70.20 66.08 74.01

3 9 56.45 52.13 61.17

1 7 68,17 54.34 75.17

48h 2 13 31.04 20.19 45.27

3 19 8.21 4.73 14.27

Figure 9: Mean, best and worst accuracies across models.

4. Discussion

The fact that the 48-hour topology performed worse than its 24-hour coun-

terpart (cf. Table 4), for each proportion of indices per continent, could be

an indicative of the reduction in the strength of other markets’ influence on
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iBOVESPA over time, making these markets behave more like noise as we move

away from our prediction date towards the past. This is somewhat in line with

current research in Economics (e.g. Tam & Tam (2012); Urquhart & Hudson

(2013); Coronado et al. (2016)), where such influences were noticed, but also

were seem to vary over time. With our model, one can not only identify the

existence of these influences, but also quantify them and verify at what rate

they decrease with time, up to the point where they cannot be told apart from

noise. That could in turn be used to guide investment strategies, with the ad-

vantage of being easy to understand, since one can explain the results in terms

of probabilities and frequencies.

Another possible use for this model, and that comes directly from the iden-

tification of which markets influence iBOVESPA the most, is the reduction of

the possible candidates for market contamination during crises. In this case,

the most influential markets would be rendered more likely to pass the crisis

effects on to the target market (in this case, BM&FBOVESPA). Conditional

probabilities of the network could then be used as estimates of the amplitude of

this contamination. Naturally, given the changing nature of markets around the

world, with economies growing in importance at different paces, one cannot ex-

pect those markets that influence some index today to remain the same to play

this role in the future. Fortunately, training a new network is just a matter of

carrying out a new analysis of frequencies, making this model easily adaptable

to changes.

This adaptability, along with the fact that there is no reason to believe this

model could not be applied to any other stock market index in the world, given

some findings about market dependencies (e.g. Puah et al. (2015); Kim & Song

(2017)), adds to its robustness. Also, and as already pointed out, its visual and

more “human friendly” design has the theoretical advantage of making it more

easily adaptable to other circumstances, when compared to more “black-box”-

like models, such as Artificial Neural Networks (ANNs) and Support Vector

Machines (SVMs), for instance. Like Decision Trees, the underlying structure

of our model’s reasoning is clear to any human inspector. Unlike such trees,
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however, their fundamentals are more readily understood, for they are given in

terms of frequency of co-occurrences.

On the downside, the rigid topology presented by Bayesian Networks makes

them less adaptable to structural changes (e.g. when dependencies raise inside

continents, thereby breaking the independence assumption). One possible solu-

tion to this problem would be to automatically learn the network’s structure.

That, however, not rarely leads to a Näıve Bayes structure (e.g. Zuo & Kita

(2012a); Kita et al. (2012)), whereby all nodes are taken to be independent,

given the value of the output node. Also, the fact that our model was trained

and tested in data comprising part of the sub-prime crisis might have introduced

a positive bias towards it, for it has already been reported that dependencies

between markets tend to raise in periods of crisis (e.g. (Tangpornpaiboon & Put-

tanapong, 2016)), to the extent that some correlations exist only during such

periods. If that is actually the case, it might be that our model was favoured by

the crisis period, which in turn reinforced the dependencies that form the basis

of the model’s structure.

However, when analysing closing values for the indices with best results (i.e.

indices that build the network with higher accuracy, to wit NYSE Composite,

Cac 40 and Hang Seng) in the full dataset period, one sees these dependencies

as something not so obvious at first glance, as shown in Figure 10. More im-

portantly, even though there is a steep decline in iBOVESPA during the second

half of 2008, with a corresponding incline in the next year, which would in turn

make predictions easier, those periods add up to approximately 20% of the en-

tire dataset, something we believe would not turn out as a determinant factor

for our accuracy results, specially when one sees a good deal of fluctuations

along the period, with a clear inflection point about one third of the way.

Finally, another potential drawback of our model lies in our methodological

decision to not compensate for missing days. As pointed out in Section 2, we

removed from the data set all dates where at least one of the markets was closed.

Even though that has no effect in the actually closed markets, it has some effects

on those that remained open. More specifically, for those markets, at those
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Figure 10: Closing value of the indices in the best accuracy network (24h-single index model),

for the full dataset period.

dates, the 24-hour (or 48-hour, depending on the model) window was broken,

and data from the day before the removed date was used instead. Although we

did so to avoid introducing artificial data (such as by repeating the previous day

direction only for the closed markets, for example), we ended up introducing an

artificial one-day period of stability to all markets.

The question, however, is to what extent this decision undermined our model.

To start with, if we remove all 714 weekend days from the 2,501 running days

in the period, we end up with 1,787 days. In total, we removed other 167

holidays (i.e., around 9% of the remaining data set), keeping 1,620 days of data

for training and testing. Considering that not all markets would be open at

those 167 days (specially in holidays such as Christmas, for example, that are

celebrated in many countries), that does not seem to be so high a proportion to

make any real difference. Nevertheless, our decision may have actually created a

negative bias to our model, since we overlook 24-hour dependencies in favour of

their 48-hour counterparts and our results point at the direction of a weakening

of dependencies along the time. In this case, we have exchanged a potentially

stronger dependency for a weaker surrogate, which in turn would be prejudicial
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to the model. Even though we do not think this to be an issue, we understand

that only future tests may reveal its real extent.

5. Comparison to the Related Literature

Current machine learning based initiatives for predicting stock market in-

dices seem to have a preference for data coming from a single market only

(e.g. Nair et al. (2010); Bollen et al. (2011); Shen et al. (2011); Kara et al.

(2011); Lahmiri (2011); Lahmiri et al. (2013); Patel et al. (2015)). Despite this

preference for domestic data, no market is an isolated island in the world econ-

omy ocean, and cross-market dependencies do exist (cf. Tam & Tam (2012);

Urquhart & Hudson (2013); Coronado et al. (2016)). This is the reason why

some researchers have moved across their borders when trying to forecast their

own market directions. These initiatives either focus on a single market, bring-

ing into the model one different foreign index (e.g. Wang (2014)), or try to

integrate multiple markets, assuming some dependency amongst them might

exist (e.g. Zuo & Kita (2012b,a); Kita et al. (2012)).

In our work, we take this later point of view. However, instead of having

the algorithm figure out dependencies from a dataset by itself, as is the case

with Zuo & Kita (2012b), who use a Bayesian Network built with the K2 algo-

rithm (and which resulted in a very counter-intuitive network, where some past

values depend on their future counterparts), we imposed these dependencies,

by defining the network topology and then testing the appropriateness of this

assumption. As it turned out, the 24h single index model performed better

than that of Zuo & Kita (2012b), who report around 61% accuracy (against

a 71% mean accuracy in our model). This difference might be even higher, if

we bear in mind that our model was trained in data collected partly during

the sub-prime crisis (roughly 2007-2008), which would be expected to raise the

variance, whereas Zuo & Kita (2012b) dealt with pre-crisis data.

Other reasons for the difference in these results could come both from the

network topology and the fact that our model works with short and independent
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sliding windows for training and testing, as a result of the cross-validation pro-

cess and the 24-hour time limit (which, in turn, breaks up longer term recurrence

relations). This may have diluted any effect due to some long term seasonal-

ity. Such an effect, however, could not have been mitigated should we follow

the same procedure as many researchers in the related literature (e.g. Kara

et al. (2011); Zuo & Kita (2012b); Patel et al. (2015)), who usually take the

first years of data for training, holding the last years out to test their models.

Also, it might be the case that the crisis itself reinforced market dependencies,

thereby favouring our model only because we took data from this period. These,

however, are hypotheses to be tested in the future.

Moving away from the use of Bayesian Networks, but still trying to accom-

modate cross-border influences into the model, we find the work by Wang & Choi

(2013) and Wang (2014), who add the S&P 500 index as an external factor to

their Principal Component Analysis and Support Vector Machine models. Test-

ing their models with two stock indices, their best mean accuracy was 62,80%,

still lower than ours. Spanning over 2002 to 2012, their dataset also included

the sub-prime crisis, as did ours. The main differences between our research and

theirs lie in the applied machine learning techniques and the four-year sliding

window they used. Instead of separating the whole data set into two different

subsets, one for training and other for testing, they have done so but within

a four-year window, which would then be moved along the dataset, thereby

reducing the influence of long term seasonalities.

Finally, within single market models we find accuracies ranging from 64% (Lah-

miri, 2011), with Support Vector Machines, to slightly over 75% (Kara et al.,

2011), with Neural Networks, to around 93% (Lahmiri et al., 2013), with Prob-

abilistic Neural Networks. As can be seen, results from our 24-hour single index

model, with its 71% mean and almost 78% maximum accuracies, lie within this

range. The main difference between our work and these, however, seems to lie

in the simplicity of our model. In this case, we only accounted for data re-

lated to closing values (and directions) of indices, whereas much of the extant

work (e.g. Nair et al. (2010); Kara et al. (2011); Lahmiri (2011); Lahmiri et al.
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(2013); Patel et al. (2015)) deals both with values and sets of technical indica-

tors, such as Moving Average and Relative Strength Index, for example, with

some of them also relying on the analysis of humour indicators (e.g. Lahmiri

et al. (2013)) and tweeter messages (e.g. Bollen et al. (2011)). It might be the

case that in adding more features other than a simple closing direction we could

reach better accuracies.

In fact, a side-by-side comparison of related initiatives in terms of accu-

racy, taking into account the adopted machine learning method and whether

researchers also relied on other technical indicators (such as Moving Average,

for example) or any other information from outside the market, and which is

summarised in Table 521, seems to point at this direction, with the exception of

the work by Lahmiri et al. (2013) which, despite taking into account technical

indicators (other than plain closing, highest, lowest and other related values),

did not present high accuracies. From this table, we can see that a good number

of machine learning techniques are proposed for market index forecasting. Most

popular are Support Vector Machines (SVM in the table) and Artificial Neural

Networks (ANN), followed by Probabilistic Neural networks (PNN), Decision

Trees (DT), k-Nearest Neighbours (k-NN), Random Forests (RF), Näıve Bayes

(NB), Principal Component Analysis (PCA) and Bayesian Networks (BN), with

different accuracy results.

If we rank Table 5’s results according to their accuracy, we see that our

model outperforms all those that do not use any other information apart from

the market plain technical data. Notably, the model also outperforms one of the

models that rely on external sources or other classical technical indicators (the

one by Lahmiri (2011)), also reaching results comparable to those by another

such model (by Kara et al. (2011)), in its highest accuracy set-up. This, in

turn, is an indication of its suitability for this kind of task, specially when

taking into account its already mentioned simplicity. Nevertheless, questions

21Results that were not given in terms of accuracy were omitted in this table, since they

could not be compared to ours.
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Table 5: Comparison of the related literature on stock index value/direction prediction.

Research ML Method Extra Information Accuracy

Nair et al. (2010) DT 21 Tech. Indicators 90.22%

Bollen et al. (2011) – Tweeter feeds 86.70%

Kara et al. (2011) ANN, SVM 10 Tech. Indicators
75,74% (ANN)

71.52% (SVM)

Lahmiri (2011) PNN, SVM 12 Tech. Indicators
54.00% (PNN)

64.00% (SVM)

Lahmiri et al. (2013) k-NN, PNN

Tech. Indicators

and Sentiment

Measures

93.45% (k-NN)

92.40% (PNN)

Patel et al. (2015)
ANN, SVM,

RF, NB
10 Tech. Indicators

86.69% (ANN)

89.33% (SVM)

89.98% (RF)

90.19% (NB)

Wang & Choi (2013)
PCA, ANN,

SVM
–

62.80% (PCA)

59.25% (ANN)

58.82 (SVM)

Zuo & Kita (2012b) BN – 61.44%

must be raised regarding whether these results are due to the model itself, or

are but a by-product of other features, such as the time lapse of the data (which

might have favoured the model) and the absence, in our model, of other classical

technical indicators (which, in turn, would have limited it).

As it seems, the more information one adds to a model, the better it gets

at its predictions. On the other hand, more potentially irrelevant information

(i.e. noise) will be added. Models that solely rely on raw market data have the

advantage of being more adaptable and computationally simple. However, they

loose information given by other sources. Those that rely on such information

do not suffer from this problem, but at the price of dealing with more noise,
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which in turn might have them astray from their goal, with the additional

disadvantage of being computationally heavier and less adaptable to different

circumstances. Relying on data from a single market may reduce the noise,

but at the price of assuming market independence. In a ever more integrated

world, this does not seem advisable and, even though the best results in Table 5

come from single market models, they also come from those relying on more

elaborate data, leading to a confusion of variables. We leave the answers to

these questions for future investigation.

Finally, and as a way to stablish some baseline to our research, we have

repeated part of our experiment using an Artificial Neural Network (cf. Hattori

et al. (2015)). In this case, we focused in the 24-hour model with one index per

continent, since this was the set-up with best results in this research. We then

used Weka22 to generate a number of Multilayer Perceptron Artificial Neural

Networks (MLP-ANN), by varying some of their default parameters in this

tool. The same dataset used in our research was input to each new network,

whose output should indicate iBOVESPA’s next day closing direction. As in

our Bayesian Network, the MLP-ANNs were trained and tested using 5-fold

cross-validation, and mean accuracy across all folds was measured.

Best results were obtained with two neurons in the hidden layer, 0.2 learning

rate, 0.1 momentum and 400 as the maximum number of epochs. With this

setting, the network reached a 66.40% top accuracy, with NYSE Composite, Cac

40 and Hang Seng – the same set of indices that resulted in the best accuracy

value for our Bayesian Network, in the 24-hour single index per continent model.

Interestingly, even though our network has performed better than its MLP-ANN

counterpart, delivering a 77.78% accuracy with this same set of indices, it is

noticeable that both networks lined up their outputs, agreeing on which indices

influence iBOVESPA the most. This is yet another indicative of the robustness

of the central idea behind both models: that market dependencies can be used

to forecast a specific index closing direction within a 24-hour window.

22Waikato Environment for Knowledge Analysis (http://www.cs.waikato.ac.nz/ml/weka/)
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6. Conclusion

In this work, we set out to identify the applicability of a Bayesian Network

structure in the investigation of the extent to which foreign markets influence

the main index at the São Paulo Stock Exchange (i.e. iBOVESPA), by taking

closing directions of stock market indices around the globe as input to the net-

work, so as to try to forecast iBOVESPA’s next day direction. Being one of

the few to move away from the Neural Network and Support Vector Machine

mainstreams, our research is, to the best of our knowledge, the first machine

learning based effort to take an “around the globe” approach, that is to base its

underlying model on the assumption that markets are interrelated all around the

world. We do so through a Bayesian Network that reflects the potential depen-

dencies amongst indices from all continents while the planet rotates. Moreover,

this is probably the machine learning effort trying to accommodate the highest

number of different markets into a single model.

Since “the central idea to successful stock market prediction is achieving best

results using minimum required input data and the least complex stock market

model” (Atsalakis & Valavanis, 2009), and with results comparable to those of

the related literature, our model moves towards this direction, by presenting the

further advantage of being relatively simple and intuitive, when compared to

other more “closed” models, such as those that deal with Neural Networks, for

example. Also, the model makes no assumptions regarding error distribution,

as do some time-series algorithms, thereby generalising over different datasets.

Nevertheless, some of the more elaborate models, specially those that account

for some traditional technical analysis indicators along with raw technical data,

were found to be more accurate than ours, even though there are exceptions to

this rule. This is a matter left for future investigation: whether by adding such

information we can raise our system’s accuracy.

Regarding its usefulness, in the realm of Expert and Intelligent Systems our

model brings in a different dimension under which we understand data should be

analysed: inter-market dependence. As a rule, current machine learning based
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models avoid bringing together different markets, with some notable exceptions,

as pointed out in Section 5. Related models that deal with market data only,

that is those not relying on other classical techniques for market analysis, were

outperformed by ours, which is an indicative of this idea’s appropriateness.

Our model was, however, outperformed by some of those that make use of such

techniques along with raw market data. Unfortunately, these were also the same

models that did not rely on multiple market information, thereby leading to a

confounding of variables. The reasons why these models were more accurate

than ours is something that must be addressed in future research.

Still in the field of Expert Systems, we understand our model to serve as

one of the building blocks in more elaborate applications. Given its high adapt-

ability, whereby it can be quickly changed to output probabilities instead of

closing directions, it could be used as a “foreign market influence” module

to more sophisticated decision support systems, for example. Also, and since

current research in Economics points towards the actual existence of market

inter-dependencies (e.g. Coronado et al. (2016); Kim & Song (2017); Tangporn-

paiboon & Puttanapong (2016)), which would be stronger after crisis periods,

our model comes up as a computationally cheap, human readable alternative,

during and after crises, to existing models where inter-market dependencies are

ignored.

In the areas of Economics and practical trading, the model could be used

to study and forecast market contaminations during crises, for example, by

determining, from the identification of the set of markets that influence the

target market the most, how likely this target market is to suffer from such

contamination. It could also be used as a tool for determining the effects that

commercial agreements have on a specific market. In this case, a study of which

indices have more influence in that market before and after the agreement and,

more specifically, whether this set does actually change, could give an insight on

which companies gained or lost international importance with the agreement,

indicating how it was perceived by market players and how future agreements

might so be perceived. Finally, our network could be modified to model the
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intuitions market players have on market dependencies. In this case, intuitions

would be codified in the network’s topology, and an analysis of its accuracy

could provide evidence for (or against) them.

Avenues for future improvement, other than those pointed out above, in-

clude testing the model with data coming from non-crisis periods. Since part

of our dataset comprises the sub-prime crisis, it might be the case that the sys-

tem was favoured by it. To run it in different periods might clear this doubt

and help determine if the same set of indices that influence iBOVESPA in one

period would still do so in others. Also, it would be interesting testing this

dependency assumption with other Machine Learning techniques, such as Deep

Neural Networks, for example, perhaps adding them to an ensemble, if different

techniques turn out to be complementary to each other. Another interesting

test to our ideas would be to apply them to specific stocks. Even though one

might think of an individual stock as a single-company index, the model was

tested on general indices only, which comprise dozens of different stocks, and

there is no guarantee that these, as a group, would behave as if they were a

single company index.

Similarly, and since our model is based on the assumption that markets

are interrelated all around the world, it would be interesting testing this same

assumption with different topologies. One might, for example, create intra-

continental dependencies (as it was somewhat done in the 48-hour model, when

we took iBOVESPA out of America in the middle of the network), or account

for dependencies on an index, instead of continent, basis, or even to separate

indices according to whether they are capitalization or price-weighted23. Also,

and as a way to verify the robustness of the model, it could be tested with

different target-indices (i.e. indices whose direction is to be forecast), so as to

determine if it can be generalised to other markets. Observing how the model

would work in practice, by testing it with different trading strategies, would

23I.e., indices whose constituent stocks are weighted according to their market capitalization

or price per share, respectively.
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give us some interesting insights as well.

Finally, another point we find noteworthy for future research is the method-

ology adopted for training and testing forecasting systems. We have taken the

cross-validation approach, in an attempt to reduce any influence seasonality

might have in our results. In that sense, seasonality may pose a problem if the

learning algorithm ends up learning features that work only on that specific

time lapse. Nevertheless, cross-validation comes at the price of breaking any

recurrence relation in the model, which makes it unsuited for most time series

analyses. The extent to which this is a valid concern still remains unclear, and

is worth investigating.

Appendix

Table 6: Mean amount, across all folds, of correctly (hits) and

incorrectly (misses) forecast directions, along with mean accuracy

results for the 24h model, with one index per continent.

Index Arrangements Hits Misses Accuracy

Nasdaq Comp., FTSE 100, Nikkei 225 233.6 90.4 0.7210

Nasdaq Comp., Dax, Nikkei 225 236.8 87.2 0.7309

Nasdaq Comp., Stockholm Gen., Nikkei 225 235.6 88.4 0.7272

Nasdaq Comp., Cac 40, Nikkei 225 229.8 94.2 0.7093

Nasdaq Comp., FTSE 100, Shangai Comp. 239.8 84.2 0.7401

Nasdaq Comp., Dax, Shangai Comp. 235.8 88.2 0.7278

Nasdaq Comp., Stockholm Gen., Shangai Comp. 233.6 90.4 0.7210

Nasdaq Comp., Cac 40, Shangai Comp. 238.8 85.2 0.7370

Nasdaq Comp., FTSE 100, Hang Seng 232.4 91.6 0.7173

Nasdaq Comp., Dax, Hang Seng 236.6 87.4 0.7302

Nasdaq Comp., Stockholm Gen., Hang Seng 232.4 91.6 0.7173

Nasdaq Comp., Cac 40, Hang Seng 237.4 86.6 0.7327

Continued on next page
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Table 6 – Continued from previous page

Index Arrangements Hits Misses Accuracy

Nasdaq Comp., FTSE 100, BSE 30 Sensex 235.0 89.0 0.7253

Nasdaq Comp., Dax, BSE 30 Sensex 236.6 87.4 0.7302

Nasdaq Comp., Stockholm Gen., BSE 30 Sensex 241.2 82.8 0.7444

Nasdaq Comp., Cac 40, BSE 30 Sensex 234.2 89.8 0.7228

NYSE Comp., FTSE 100, Nikkei 225 244.6 79.4 0.7549

NYSE Comp., Dax, Nikkei 225 241.8 82.2 0.7463

NYSE Comp., Stockholm Gen., Nikkei 225 242.6 81.4 0.7488

NYSE Comp., Cac 40, Nikkei 225 237.4 86.6 0.7327

NYSE Comp., FTSE 100, Shangai Comp. 241.0 83.0 0.7438

NYSE Comp., Dax, Shangai Comp. 239.0 85.0 0.7377

NYSE Comp., Stockholm Gen., Shangai Comp. 242.6 81.4 0.7488

NYSE Comp., Cac 40, Shangai Comp. 238.0 86.0 0.7346

NYSE Comp., FTSE 100, Hang Seng 238.0 86.0 0.7346

NYSE Comp., Dax, Hang Seng 241.6 82.4 0.7457

NYSE Comp., Stockholm Gen., Hang Seng 241.2 82.8 0.7444

NYSE Comp., Cac 40, Hang Seng 252.0 72.0 0.7778

NYSE Comp., FTSE 100, BSE 30 Sensex 243.2 80.8 0.7506

NYSE Comp., Dax, BSE 30 Sensex 241.8 82.2 0.7463

NYSE Comp., Stockholm Gen., BSE 30 Sensex 238.0 86.0 0.7346

NYSE Comp., Cac 40, BSE 30 Sensex 240.2 83.8 0.7414

Dow Jones, FTSE 100, Nikkei 225 197.8 116.2 0.6299

Dow Jones, Dax, Nikkei 225 209.8 107.2 0.6618

Dow Jones, Stockholm Gen., Nikkei 225 197.8 117.2 0.6279

Dow Jones, Cac 40, Nikkei 225 208.0 109.0 0.6562

Dow Jones, FTSE 100, Shangai Comp. 214.8 105.2 0.6713

Dow Jones, Dax, Shangai Comp. 210.6 113.4 0.6500

Dow Jones, Stockholm Gen., Shangai Comp. 207.0 115.0 0.6429

Continued on next page
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Table 6 – Continued from previous page

Index Arrangements Hits Misses Accuracy

Dow Jones, Cac 40, Shangai Comp. 213.8 110.2 0.6599

Dow Jones, FTSE 100, Hang Seng 212.6 111.4 0.6562

Dow Jones, Dax, Hang Seng 212.6 111.4 0.6562

Dow Jones, Stockholm Gen., Hang Seng 206.0 118.0 0.6358

Dow Jones, Cac 40, Hang Seng 215.4 108.6 0.6648

Dow Jones, FTSE 100, BSE 30 Sensex 213.6 104.4 0.6717

Dow Jones, Dax, BSE 30 Sensex 209.2 112.8 0.6497

Dow Jones, Stockholm Gen., BSE 30 Sensex 201.8 118.2 0.6306

Dow Jones, Cac 40, BSE 30 Sensex 217.4 104.6 0.6752

Merval, FTSE 100, Nikkei 225 226.4 97.6 0.6988

Merval, Dax, Nikkei 225 231.8 92.2 0.7154

Merval, Stockholm Gen., Nikkei 225 230.8 93.2 0.7123

Merval, Cac 40, Nikkei 225 230.0 94.0 0.7099

Merval, FTSE 100, Shangai Comp. 238.2 85.8 0.7352

Merval, Dax, Shangai Comp. 233.4 90.6 0.7204

Merval, Stockholm Gen., Shangai Comp. 232.6 91.4 0.7179

Merval, Cac 40, Shangai Comp. 233.0 91.0 0.7191

Merval, FTSE 100, Hang Seng 232.0 92.0 0.7160

Merval, Dax, Hang Seng 238.6 85.4 0.7364

Merval, Stockholm Gen., Hang Seng 236.0 88.0 0.7284

Merval, Cac 40, Hang Seng 230.4 93.6 0.7111

Merval, FTSE 100, BSE 30 Sensex 229.4 94.6 0.7080

Merval, Dax, BSE 30 Sensex 232.6 91.4 0.7179

Merval, Stockholm Gen., BSE 30 Sensex 233.2 90.8 0.7198

Merval, Cac 40, BSE 30 Sensex 235.6 88.4 0.7272
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