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Highlights 

 Bayesian network model uses Gaussian mixture model and EM algorithm for approximate 

inference. 

 Incremental calculation of score metric for updating Bayesian network structure. 

 Evolving Bayesian network structure using hill-climbing algorithm 

 Hill-climbing algorithms that explores multiple peaks parallel. 

 Updating score metrics based on changed edges only. 
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1. Introduction  

In the Big Data era users require new technology to process 

data stream with high speed and variety of data type. Besides the 

traditional stream processing technology, it is important to catch 

the relations inside online streaming data. Most of the data 

streams are composed of primitive events that produced by 

sensor networks, internet, social networks, etc. The semantic 

information inside primitive events is quite limited. In real 

application, people usually pay more attention to higher level 

information such as business logic and rules. For example, 

enormous events are generated in a trading system, but a fraud 

detecting system only care about the events that can cause frauds.  

Complex Event Processing (CEP) [1] is the technology that 

interprets and combines streams of primitive events to identify 

higher level composite events. CEP has been used in many areas, 

such as sensor networks for environmental monitoring, 

continuous analyzing of stocks to detect trends, etc. 

Predictive Complex Event Processing is the technology to 

identify events before they have happened, so that they can be 

eliminated or their effects mitigated [2]. For example, a financial 

institution wishes to detect frauds or a financial regulator wishes 

to catch illegal trading patterns in advance. Another example is to 

predict the traffic status in road networks and take some actions 

proactively to mitigate or eliminate undesired future states. 

Simple predictive CEP can be supported by rule-based method 

which means users define some patterns and the system then 

continuously monitor the event streams to predict future events. 

However, for complex cases it is not easy to define predictive 

CEP patterns exactly. In such circumstance, predictive analytics 

technology can be applied to support predictive CEP. Predictive 

analytics applies several statistical and data mining techniques 

such as clustering, classification, regression and so on. Recently, 

neural networks (especially deep neural networks) and Bayesian 

Networks (BN) are commonly used as prediction models. BN 

and it variations, such as Dynamic Bayesian Networks (DBN) [3], 

Adaptive Bayesian Networks (ABN) [4], etc., are widely used in 

predictive analytics because they have the following advantages: 

(i) they allow to express directly the fundamental qualitative 

relationship of direct causation, (ii) there exists mathematical 

methods to estimate the state of certain variables given the state 

of other variables, (iii) there are methods in order to explain to 

the user how the system came to its conclusions [5]. 

Currently predictive CEP with predictive analytics has some 

challenges. First, traditional predictive analytics methods are 

designed for database which means they assume all data is 

available at any time. However, in predictive CEP the system can 

only process data on single-pass and cannot control over the 

order of samples that arrive over time. Stream-based predictive 

analytics methods are needed which is more difficult. Second, the 

distribution of data can change over time. A model learned from 

historical data may not fit the new coming data well. This means 

real time modeling and learning algorithms are needed. In order 

to support predictive CEP with BN, an Evolving Bayesian 

Networks (EBN) model is needed that can adjust itself 

automatically when the distribution of data changes. There are 

some works on learning BN model incrementally but they simply 
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In the Big Data era, large volumes of data are continuously and rapidly generated from sensor networks, social network, the 

Internet, etc. Predicting from online event stream is an important task since users usually need to predict some future states and 

take some actions in advance. Many applications need online prediction models which can evolve automatically with data 
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assume all data is in memory and add new incoming data into 

existing data in each step. Finally, event streams often have high 

incoming rate, especially the event streams produced by wireless 

sensor networks. Predictive CEP is usually used to support online 

decision support system which need high performance even for 

large scale distributed event streams. 

When used to handle the predictive CEP issue, the main 

weakness of the current predictive analytics methods is that they 

cannot get acceptable result due to the distribution drift of 

streaming event data. To address the challenges and overcome 

the weakness of current work, in this paper the authors propose a 

Predictive Complex Event Processing method based on Evolving 

Bayesian Networks (PCEP-EBN). The main contribution of this 

paper includes the following: 

— The authors propose a predictive CEP framework based 
on BN model which uses Gaussian mixture model and EM 
algorithm for approximate inference.  

— When learning and updating the BN structure, the 
authors propose incremental calculation methods for the score 
metric which support single-pass processing of event stream. 

— The authors propose algorithms to support evolving BN 
structure based on hill-climbing method. The hill-climbing 
algorithm of this paper supports exploring multiple peaks on 
parallel and updating the score metric based on changed edges 
only. Evolving BN parameters is also supported using an 
incremental EM algorithm for Gaussian mixture model. 

The authors evaluated the PCEP-EBN method in road traffic 

domain with both real application data and data produced by a 

simulated transportation system. The results show that PCEP-

EBN is an effective method for predictive complex event 

processing and it outperforms other popular methods when 

processing traffic prediction in intelligent transportation systems.  

2. Related work 

2.1. Complex event processing and predictive analytics 

CEP is a technique that recognizes complex events based on a 

set/sequence of occurrences of single events by continuously 

monitoring the event stream. Etzion et al. defined the basic 

concepts and architecture of complex event processing in their 

book [2]. The main component in CEP is Event Processing Agent 

(EPA) which can generate a set of complex events as output from 

a set of input events by applying some logic. Event Processing 

Network (EPN) is composed of a collection of EPAs, event 

producers, and event consumers linked by channels. EPN is used 

to define the event processing flow execution. Luckman 

introduced the event processing network first in the field of 

modeling [1]. Based on this idea, the conceptual model of EPN 

was further elaborated by Sharon and Etzion [6]. The key ideas 

of CEP have four steps: (1) Primitive events are extracted from 

large volume data stream; (2) Event correlation or event 

aggregation is detected to create business logic with event 

operators according to specific rules; (3) Primitive or composite 

events are processed to extract their time, causal, hierarchical and 

other semantic relationships; (4) High level complex events are 

sent to the subscribers which can be used for decision making. 

CEP engine needs to process streams of events with time 

stamp and, therefore, numerous event pattern recognition 

methods are proposed based on Nondeterministic Finite 

Automaton (NFA). SASE [7] is a high performance query-plan 

based complex event processing method that uses NFA. Agrawal 

et al. proposed an improved pattern matching model and a query 

evaluation framework based on NFA to support more powerful 

event processing [8]. In their work a suite of techniques are 

proposed to improve runtime efficiency by exploiting sharing in 

storage and processing. 

The basic CEP method detects event patterns from online 

event stream. Another type of CEP is predictive CEP which can 

predict future events before they have happened [2]. Etzion et al. 

believe predictive CEP and intelligent CEP are main parts of 

future directions in event processing technology. Currently most 

of the work on predictive CEP considers the task as a combine of 

CEP and predictive Analytics. Fülöp et al. proposed a conceptual 

framework of predictive CEP by combining CEP and predictive 

analytics [9]. In their framework, prediction models are trained 

using historical events. Online complex events produced by EPN 

are sent to predictive analytics component to predict future events. 

The predicted future events are then sent back to EPN for further 

step process. Tóth et al. proposed a framework that includes the 

predictive analytics technologies into CEP applications [10]. 

They extended a CEP solution with predictive capabilities, 

defined the key aspects of the combination of these techniques, 

and summarized how CEP and PA could gain from the joint 

solution. 

Predictive analytics has been studied for many years and a 

series of models and algorithms are proposed. Some work [35,36] 

used optimized values/methods to improve the results which is 

related to this paper. Recently, deep neural networks and BN are 

widely used and be more suitable for predictive CEP. Huang et al. 

proposed a predictive analytics method based on deep belief 

networks [11]. Their method uses deep belief networks in the 

bottom level and a regression model is used on the top level to 

support the final prediction. Multitask learning is supported in the 

top regression model to improve performance. In the work of Lv 

et al., a stacked autoencoder model is used to learn generic event 

stream features, and it is trained in a greedy layerwise fashion 

[12]. Predictive analytics with deep learning model usually can 

achieve good accuracy, but the training of the model is complex 

and it prone to the problem of over fitting. 

As a valid model for uncertain knowledge representation and 

inference, Bayesian Network is widely used in predictive 

analytics. Castillo et al. proposed a Bayesian network model for 

traffic flow prediction which is able to take into account the 

random character of the level of total mean flow and the 

variability of origin-destinations (OD) pair flows, together with 

the random violation of the balance equations for OD pairs [13]. 

This model provides the joint density of all unobserved variables 

and in particular the corresponding conditional and marginal 

densities, which allow not only joint predictions, but also 

probability intervals. Zhu et al. proposed a Bayesian network 

model for traffic prediction using prior link flows [14]. Their 

model sets link flows as parents of the OD flows. Using prior 

link flows, the prior distribution of all the variables is determined. 

To remove inconsistencies in OD matrices estimation and traffic 

assignment, a combined BN and stochastic user equilibrium 

model is proposed, in which the equilibrium solution is obtained 

through iterations. 

2.2. Evolving systems and evolving Bayesian networks 

Evolving systems are developed to address the distribution 

drifts in data stream. Angelov et al. proposed an evolving 

intelligent system which supports learning and adjusting model 

from data stream [30]. Recently many incremental machine 

learning methods [31,32] are proposed which are suitable for 

learning from data stream with distribution drifts. Another related 

work is evolving neural network which uses evolutionary 

algorithms to optimize the structure and parameters of neural 

networks [33,34].  
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When using BN, predictive analytics for event stream can be 

looked upon as the learning of BN with respect to these inherent 

characteristics of the sample data. Learning BN from data is the 

key technique for modeling uncertain knowledge, the basis of 

uncertainty inferences, and corresponding applications. Learning 

the BN structure from data is an NP-hard problem as the number 

of possible structures grows super-exponentially by the number 

of nodes. Approximate structure learning algorithms are usually 

categorized into two groups of constraint-based and search-and-

score (S&S) approaches. Constraint-based algorithms rely on a 

number of conditional independency tests to determine whether 

two variables are independent given a set of conditioned 

variables. Constraint-based approaches are generally 

asymptotically correct and have a well-defined stopping criterion 

[15]. Being a more popular method, S&S approach involves a 

strategy for searching through the space of possible structures 

and a scoring function measuring the fitness of each structure to 

the data. The commonly used score metrics include Minimum 

Description Length (MDL) [16], Bayesian Information Criterion 

(BIC) [17], Bayesian Dirichlet equivalent (BDe) [18], etc.  In 

order to address the problem of huge search space, most of the 

S&S methods use heuristic-based optimization or approximate 

searching algorithms. Some recently examples include hill 

climbing [19], simulated annealing [20] and Genetic algorithms 

[15]. 

The issue of distribution drift reflects a situation in which the 

event stream does not follow a fixed and predictable data 

distribution. In order to address the distribution drift in event 

stream, EBN is needed. EBN offers a flexible working 

framework which adapts to any variation in data trends or 

expansion of system states by incremental structure and 

parameter adaption. For abrupt drifts, a common idea for EBN is 

to learn different BN models and switch among models when 

data distribution is changed. Pascale et al. proposed an adaptive 

BN model for traffic flow prediction [4]. In their work, two 

major stationary areas are recognized as principal phases of 

traffic flows. BN models are learned for each phase and the 

adaptive method select BN model based on mutual information 

learning. 

Incremental drifts are more difficult to be handled, because it 

cannot be detected by global drift detection approaches in the 

structural learning scenario and cannot be addressed by the 

parameter learning scenario either. These drifts gradually 

interfere with current data distribution, which undermines the 

predictive accuracy more severely. Some researchers use 

sampling-based method for EBN. For example, Robinson et al. 

proposed a Markov chain Monte Carlo (MCMC) sampling 

algorithm for learning the structure of the model from time-series 

data under different assumptions [21]. Sampling methods allow 

the probability or importance of individual edges to be evaluated 

over all possible networks. However, since only the best network 

structure is needed in predictive CEP, heuristic search-based 

methods will typically find them more quickly. Yasin et al. 

proposed an incremental algorithm for BN structure learning 

which can deal with high dimensional domains [22]. Their 

algorithm learns local models by limiting search space and 

performs a constrained greedy hill-climbing search to obtain a 

global model. Yue et al. proposed a parallel and incremental 

approach for data-intensive learning of BNs from massive, 

distributed, and dynamically changing data by extending the 

classical scoring and search algorithm and using MapReduce [23]. 

They used MDL scoring metric and proposed a two-pass 

MapReduce-based algorithms for computing the required 

marginal probabilities and scoring the candidate graphical model 

from sample data. An extended hill-climbing algorithm is then 

used to obtain the optimal structure. Li et al. proposed a 

framework of incremental BN structure learning and a new 

evaluation criterion “ABIC” (Adopt Bayesian Information 

Criterion) based on the BIC metric [24]. Then a three phase 

algorithm is used to learn the BN structure. Compared to this 

paper, their methods are not designed for data stream and cannot 

process data in single-pass manner.  Acharya et al. studied the 

issue of modeling causal relationships over event streams where 

data are unbounded. Their method infers causality by learning the 

temporal precedence relationships using an incremental temporal 

network construction algorithm called Incremental Hill-Climbing 

Monte Carlo [25]. Compared to this paper, the work of Acharya 

et al. did not considered how to calculate the score metric 

incrementally. Furthermore, their incremental hill-climbing 

algorithm that starts from only the highest local peak is prone to 

miss best result near other local peaks. 

3. Predictive CEP with Bayesian Networks 

3.1. System architecture and basic CEP 

The system architecture is shown in Fig. 1. Primitive event 

streams generated by various event sources are processed by CEP 

engine. The BEPA means basic event processing agent which 

recognize complex event based on patterns from event stream. 

Multiple EPAs are connected by event channels (ECs) to create 

an EPN. The skeleton in PEPA is a statistical summary of the 

dataset which contains all information necessary to calculate the 

scores of the Bayesian network. The predictive complex events 

generated by PEPA are sent to the event consumer, which is 

usually decision support system, to make some decisions. Based 

on the decisions some actions can be executed to affect the event 

sources proactively to eliminate some unwanted states. The 

decision support system is beyond the scope of this paper. 

 
Fig. 1. The system architecture. 

Definition 1 (primitive event). A primitive event is an atomic 

occurrence of interest in time. A primitive event is represented as 

 TA,  where A is the set of attributes and T is the timestamp that 

the event occurs. 

Definition 2 (complex event). A complex event is a 

combination of primitive events or complex events by some rule. 

A complex event is represented as  sTRE ,,  where E represents 

the elements that compose the complex event, R represents the 

rule of the combination, Ts represents the time span of the 

complex event. 

For example, each read operation of RFID reader generates a 

primitive event. Event type is a specification for a set of events 

that have the same semantic intent and the same structure. An 
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event context is a named specification of conditions that groups 

event instances so that they can be processed in a related way. 

The main complex event patterns include ALL, ANY, COUNT, 

SEQ, etc. The detailed information about the concepts and 

patterns of CEP is described in [2].  The authors have developed 

a high-performance Distributed Probabilistic Complex Event 

Processing method (DPCEP) [26]. Based on NFA, parallel 

algorithm is designed to improve the performance for both single 

and distributed streams. A query plan based method is used to 

process hierarchical complex event from distributed event 

streams. Query plan optimization is proposed based on query 

optimization technology of probabilistic databases. 

3.2. Bayesian network model for predictive CEP 

Definition 3 (predictive complex event). A predictive 

complex event is a future event that can be predicted from 

historical event stream. A predictive complex event is 

represented as et+1=h(et, et-1,…; Θ) where t is time stamp, h() is 

the prediction function and Θ is the set of parameters. 

Definition 4 (Bayesian network, BN). A Bayesian network is 

represented as  ,GB  where G is a directed acyclic graph 

(DAG) that represent the BN structure and Θ is the set of 

parameters. The DAG can be represented by  EVG ,  where V 

is the set of random variables which makes up the nodes of the 

network, and E is the set of directed edges connecting pairs of 

nodes. 

An arrow from node X to node Y means that X has a direct 

influence on Y (X, Y   V and X ≠ Y). The parameters represent 

the probabilities of each random variable given its set of parents: 

θi = P(xi|Xpa(i)), where xi is a random variable and Xpa(i) is the set of 

parents of xi. 

 
Fig. 2. The Bayesian network structure. Only the links related to node 

(i,t) are displayed. The horizontal coordinate is abstract and it can be 

instantiated as attributes of objects, states of the system, etc. 

The BN model in this paper is shown in fig. 2 which has two 

dimensions: event type and time. The event type is related to 

some attributes of objects, e.g., the position of objects, or some 

states of the system, e.g., the traffic flow of roads. Assume the 

event type number is N, in a prediction task the state of node (i,t) 

is related to a set of states before time t (parent nodes). Let xi,t 

represent the state variable of node (i,t) and pa(i,t) represent the 

set of parent nodes of (i,t). NP denotes the number of nodes in 

pa(i,t). NTΔt is the time window which means only nodes from 

time t-NTΔt to t-Δt are considered as the parents of nodes in time 

t. The set of state variables for pa(i,t) is Xpa(i,t)={xj,s | (j,s)  

pa(i,t)}. According to the BN theory, the joint distribution of all 

nodes in the network can be represented as: 


ti

tipati XxpXp
,

),(, )|()(  (1) 

The conditional probability )|( ),(, tipati Xxp can be calculates 

as: 

),(),(,),(, /),()|( tipatipatitipati XXxpXxp   (2) 

Since it is not easy to calculate the joint distribution p(xi,t,Xpa(i,t)), 

the authors use Gaussian Mixture Model (GMM) [27] to 

approximate it like the following: 

 




M

m

mmtipatimm

tipati

Xxg

Xxp

1

),|(

),(

),(,,

),(,


 (3) 

where M is the number of Gaussian models and gm(·|μm,Σm) is the 

m-th Gaussian distribution with (NP + 1) × 1 vector of mean 

values μm and (NP + 1) × (NP + 1) covariance matrix Σm. Using 

EM algorithm, the parameters M
mmmm 1},,{   can be inferred from 

historical data [27]. Then the conditional distribution p(xi,t| Xpa(i,t)) 

can be derived from p(xi,t, Xpa(i,t)) and the prediction tix ,ˆ can be 

calculated from Xpa(i,t) with minimum mean square error (MMSE) 

method. 

4. Evolving Bayesian Network 

4.1. Bayesian network structure learning 

Definition 5 (evolving Bayesian network, EBN). An 

evolving Bayesian network is a Bayesian network whose 

structure and parameters are changed according to the drift of 

data distribution. An EBN is represented by  )(),( ttG  where 

G(t) and Θ(t) are the structure and parameters at time t 

respectively. 

The EBN includes evolving of BN structure and parameters. 

For structure evolving, since search-and-score method is more 

suitable for evolving than constraint-based method, the authors 

use a search-and-score method with BDe metric [18] score 

function. The BDe metric is defined as following: 


  








ii r

k ijk

ijkijk
n

i

q

j ijij

ij N

N
GDP

11 1 )(

)(

)(

)(
)|(








 (4) 

Where D is data set, qi is the number of configurations of the 

parent set pai, ri is the number of discrete states of variable xi, Nijk 

is the number of times xi took on the value k given the parent 

configuration j,  


ir

k
ijkij N

1
N , αij and αijk are Dirichlet hyper-

parameters on various entries in the BN parameters, and Γ(v) is 

the Gamma function which for v N  is given by Γ(v) = (v-1)!. 

In the BDe metric, αijk is set to α/(qiri) which means parameter 

priors are all controlled by a single hyper-parameter α. 

BN structure learning is the task of selecting a BN structure G 

that explains a given data set D. It has been shown that searching 

the huge space of DAGs for the optimal structure is a NP-hard 

problem. The BN model designed in this paper shown in Fig. 2 is 

a constrained DAG. When a directed edge from node (j,t1) to 

node (i,t2) is drawn, it must satisfies t1 < t2. Even the maximum 

value of the Δt = t2 - t1 is set, it is still a NP-hard problem. 

Therefore greedy local search method is used in this paper. 

In order to calculate the BDe metric incrementally, an 

algorithm is proposed as shown in algorithm 1. In this algorithm  

the BN structure is assumed to be static. The idea behind this 

algorithm is that, when new data comes the metric is not needed 

to be calculated from scratch but “replace” the part that affected 

by new data, as shown in fig. 3. 
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X X X XX  X XBDe_old=

affected by new data

 ΔBDe_old: calculate with old value

 ΔBDe_new: calculate with new value

 BDe_new=BDe_old⸱ΔBDe_new/ΔBDe_old  

Fig. 3. The idea of calculating BDe metric incrementally (algorithm 1). 

From equation (4) it can be found that the BDe metric is the 

multiplication of many factors. Algorithm 1 tries to find the 

factors that affected by the new data and replace the old values of 

these factors with new values. The sufficient statistics in the 

skeleton, including the values of Nijk, Nij, etc., are stored in 

memory and are updated when new data is inputted. In lines 2 – 5 

of algorithm 1, if the proportion of edges affected by new data 

accounted for the total edge number is larger than a threshold 

value θ, the BDe metric can be calculated directly without using 

the incremental method. The reason is that in such circumstance a 

large part of factors in the BDe metric need to be replaced. For 

each edge (i,j) that affected by new data, the new value of Nij is 

calculated (lines 10 – 12). Then the old value and new value of 

the factors affected by new data are calculated (lines 13 – 19). 

Finally the old value is replaced by new value (line 21). From 

equation (4) and algorithm 1, the authors concluded that if p 

percent of the BN structure is affected by new data, the running 

time of algorithm 1 is almost p percent of the running time of 

calculating equation (4) directly. 

Algorithm 1: Incremental calculation of BDe metric with new 

data (BN structure is not changed) 

Input: Bayesian network structure G, old data set D, old metric 

BDe_old, new data get ΔD 

Output: new metric BDe_new 
1 Δedge ←{e | edge e is affected by ΔD} 
2 if |Δedge|/EdgeNumber(G) > θ) then 
3 |    calculate BDe_new directly from skeleton 
4 |    Return BDe_new 
5 end if 
6 Δp ← {i,j,k | Nijk is changed by ΔD} 
7 ΔBDe_old ← 1, ΔBDe_new ← 1 
8 for each pair (i,j) in Δp 
9 |    Nij_new ←Nij 
10 |    for each k in (i,j,k) triple of Δp 
11 |    |    Nij_new ←Nij_new + Nijk_new 
12 |    end for 
13 |    for each k in (i,j,k) triple of Δp 

14 |    |    ΔBDe_old ←ΔBDe_old ∙ )(/)( ijkijkijk N    

15 |    |    ΔBDe_new ←ΔBDe_new ∙  

|    |                             )(/)( _ ijknewijkijk N    

16 |    end for 

17 |    ΔBDe_old ←ΔBDe_old ∙ )(/)( ijijij N   

18 |    ΔBDe_new ←ΔBDe_new ∙ )(/)( _newijijij N   

19 |    update Nij  with Nij_new 
20 end for 
21 BDe_new ← BDe_old∙ΔBDe_new/ΔBDe_old 
22 return BDe_new 

The hill-climbing search algorithm (HCS) works in a step-by-

step fashion to generate a model. At each step it makes the 

maximum possible improvement in an objective quality function. 

In this paper the objective quality function is the BDe metric. It is 

also needed to define a set of traverse operators OP = {op
1
 ,…, 

op
k
} that can be executed at each step. Based on the property of 

the BN model in fig. 2, the authors define a simple but effective 

one edge neighborhood (OEN). 

Definition 6 (one edge neighborhood, OEN). An one edge 

neighborhood of a given model M is the set of all the alternative 

models that can be built from M through adding or removing one 

edge, OEN(M)={M’|M’=op(M) ˄ op{add an edge, remove an 

edge}}. 

In algorithm 1 the BN structure is assumed to be static. In 

order to calculate the BDe metric incrementally with new edge 

when data is not changed, the authors use the following equation: 


 








vr

k vuk

vukvuk

vuvu

vu N

N
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1 )(
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)(
),(BD








 (5a) 

added is v)(u, edge ifv),ΔBDe(u,BDe =BDe _old_new   (5b) 

removed is v)(u, edge ifv),BDe(u,/ BDe =BDe _old_new   (5c) 

where (u,v) is the edge that changed. 

Now the problem is how to generate a BN structure from data 

D without considering new incoming data. The authors modified 

the max-min hill-climbing (MMHC) algorithm [28] as shown in 

algorithm 2. A list (localMaxList) is used to keep the structures 

that maximum the score function locally. The algorithm repeats 

the step of changing an edge and finding the structure that 

maximum the score function. After MAXTRIALS changes 

without any increase in score function, the algorithm will be 

terminated. The graph is set to be edgeless at the beginning. In 

each step, the OEN of the current graph is generated by adding an 

edge randomly, and a structure Gmax is selected if it is not in 

localMaxList and it maximums the BDe metric (line 4). The 

calculation of BDe metric when adding an edge is described in 

equation (5a-5c). 

Algorithm 2: MMHC 

input: data set D, a constant MAXTRIALS 

output: BN structure G 
1 Gfinal ← empty graph, G ← edgeless graph 
2 localMaxList ← empty list 
3 repeat  
4 |  choose Gmax from OEN(G) where Gmax is not in  

|       localMaxList and it maximums the BDe metric 
5 |    add Gmax into localMaxList 
6 |    G ← Gmax 
7 |    ΔS ← BDe(G,D) - BDe(Gfinal,D) 
8 |    if (ΔS > 0) then 
9 |        Gfinal ← G 
10 |    end if 
11 until Gfinal has not changed last MAXTRIALS times 
12 return Gfinal 

4.2. Evolve Bayesian network structure 

The authors use an evolving MMHC algorithm (EMMHC) to 

evolve BN structure as shown in algorithm 3. The current BN 

structure Gcur has been learnt by the MMHC algorithm. Existing 

methods usually merge the new data into existing data which 

makes the system has bad scalability. The BDe value of the BN 

structure is updated using equation 5, and the skeleton is also 

updated. The EMMHC algorithm tries to find the optimized BN 

structure give an incremental data set ΔD. If the change of score 

when applying ΔD is smaller than a threshold value δ, then the 

current BN structure need not be changed (lines 4 – 6). The 

BDe(Gnew, ΔD) is calculated using algorithm 1. The EMMHC 
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algorithm creates k subtasks to incrementally search for 

optimized BN structure starting from the structures with top-k 

score in the localMaxList (lines 7 – 9). The subtasks are executed 

parallel and the result with highest score is selected. 

Algorithm 3: EMMHC 

input: current BN structure Gcur, statistic information in skeleton 

Istat, incremental data set ΔD, localMaxList 

output: new BN structure Gnew 
1 currentScore ←BDe(Gcur) 
2 Gnew ← Gcur 
3 if (|BDe(Gnew, ΔD) - currentScore |/currentScore < δ) then 
4     return Gnew 
5 end if 
6 for each G in top-k of localMaxList 
7     create a new subtask by calling LocalSearch with 

      parameters G, Istat, ΔD, currentScore 
8 end for 
9 run all sub tasks parallel and wait the result from all sub 

tasks 
10 Gmax ← the BN structure with the highest score in the sub 

tasks 
11 if (BDe(Gmax) > BDe(Gnew)) then 
12     Gnew ← Gmax 
13 end if 
14 return Gnew 

The subtask LocalSearch is shown in algorithm 4. The idea 

behind this algorithm is that, since only part of the graph is 

affected by the new data, the algorithm only need to add or 

remove edges inside the affected part to maximum the score. This 

algorithm has two stages: expansion stage and contraction stage. 

During the expansion stage, an edge is repeatedly added that can 

maximum the score function until the score cannot be increased. 

During the contraction stage, an edge is repeatedly removed that 

can maximum the score function until the score begin to decrease. 

In line 2, the getCandidateEdgesToAdd function gets the node 

pairs that in affectedNodes but have no edge between them (edge 

can be added according to the structure of fig. 2). In line 3, the 

getCandidateEdgesToRemove function gets the edges that are in 

current BN structure and affected by incremental data set ΔD. 

Algorithm 4: LocalSearch 

input: current BN structure Gcur, statistic information in skeleton 

Istat, incremental data set ΔD, current score value currentScore 

output: new BN structure Gnew 
1 affectedNodes ← getAffectedNodes(ΔD) 
2 candidateEdgesToAdd ← getCandidateEdgesToAdd  

   (affectedNodes, Gcur) 
3 candidateEdgesToRemove ←  

   getCandidateEdgesToRemove (affectedNodes, Gcur) 
4 expansionStage, contractionStage ← true 
5 while(expansionStage) 
6 |    maxScore ← the max score of the BN by adding an edge  

|         in candidateEdgesToAdd 
7 |    if (maxScore > currentScore) 
8 |        Gnew ← the BN structure that get max score 
9 |    else 
10 |        expansionStage ← false 
11 |    end if 
12 end while 
13 while(contractionStage) 
14 |    maxScore ← the max score of the BN by removinging an  

|        edge in candidateEdgesToRemove 
15 |    if  maxScore !< currentScore then 
16 |        Gnew ← the BN structure that get max score 
17 |    else 
18 |        contractionStage ← false 
19 |    end if 

20 end while 
21 return Gnew 

The total learning process is divided into phases p0, p1, …, pn. 

Phases p0 is a static phase in which the BN structure is learned 

using algorithm 2 from existing data. Phases p1, …, pn are 

dynamic phase in which BN structure is updated using algorithm 

3 based on new incoming data. 

4.3. Evolve Bayesian network parameters 

Finally, the parameter evolving method is proposed. Since  

GMM is used to approximate the BN inference, the key problem 

is to update the GMM parameters. Based on the EM algorithm 

for GMM [27], the BN parameters updating algorithm is shown 

in algorithm 5. When using EM algorithm to learn the BN 

parameters, the final values of parameters and intermediate 

results are stored in memory. In order to update the parameters of 

GMM, the current values of πm, μm and Σm are used to calculate 

the distribution of latent variables from the updated data (line 4). 

Then new πm, μm and Σm can be calculated using maximum 

likelihood based on the distribution of latent variables and 

parameters are updated (lines 5 – 6). If the parameters are not 

changed obviously, the algorithm will terminate (line 7 – 9). The 

algorithm repeats the steps for many times until the log 

likelihood converges. 

Algorithm 5: update BN parameters 

input: current data set D, incremental data set ΔD, current BN 

parameters 

output: new BN parameters 
1 D ← removeExpiredData(D) 
2 D ← D +ΔD 
3 noChange ← true 
4 use current parameters πm, μm and Σm to calculate the 

distribution of latent variables based on D 
5 calculate new πm, μm and Σm using maximum likelihood 

based on the distribution of latent variables 
6 update πm, μm and Σm 
7 if ( pm{πm, μm , Σm}  |Δpm|/pm<λ ˄ noChange) then 
8     return {πm, μm , Σm} 
9 noChange ← false 
10 if (the log likelihood does not converges) then 
11     goto 3 
12 return {πm, μm , Σm} 

5. Experimental Evaluations 

5.1. Evaluations of EBN 

The authors evaluated the EBN method separately since it is 

the key part of this paper. The BN structure in Fig.2 is a special 

structure and the authors can’t find real data with corresponding 

result BN structures for accuracy evaluation. Therefore it is 

reasonable to draw samples from a known BN, apply structure 

learning on the synthetic data, and compare the learned structure 

with the original one. The original BN structure contains 783 

event types (nodes) and 1752 edges. Since the authors want to 

evaluate an evolving BN model, sampling data from all phases is 

needed. In the first step, data set are sampled from the original 

BN structure. The BN structure is changed randomly at each 

dynamic phase and an incremental data set (a data window) is 

sampled based on the changes of BN structure. The time window 

NT is set to 15. In order to evaluate the accuracy of BN structure 

learning and updating, the authors use the Structural Hamming 

Distance (SHD) [28]. The SHD is defined as the number of the 

following operators required to make the BNs match: add or 

delete an edge. This distance compares the learned and original 

BN equivalence class structure without penalizing an algorithm 
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for structural differences that cannot be statistically distinguished. 

Since the real BN structures of each phase are known, the SHD 

value can be calculated for each phase and the average value is 

used to evaluate the evolving model accuracy. In order to 

evaluate the running performance the mean of total learning time 

is used.  A server with Xeon E3 processor and 16GB memory is 

used in the experiments for EBN. 

In the first experiment, the parameters δ and θ are evaluated. 

The sample number for phase p0 is 50,000 and the data window 

for each dynamic phase contains 2,000 samples. The phase 

number n is set to 30. The average SHD values and total running 

time values for different δ and θ are shown in table 1. It can be 

found that when δ increases, the accuracy is decreased but the 

running time is also decreased. The reason is that when δ 

becomes larger, more small changes of BDe metric are ignored. 

From table 1, it can also be found that the accuracy is almost not 

affected by θ. The performance is increased when θ is increased 

from 0.1 to 0.4 but decreased when θ is changed from 0.4 to 0.8. 

Since θ is a threshold value that controls when the BDe metric 

should be calculated directly from skeleton, it has an optimized 

value. In the following experiments the authors set δ = 0.03 and θ 

= 0.4 (because this setting can get acceptable compromise 

between accuracy and running time). 

Table 1.  Average SHD values and total running time values for different 

δ and θ. The values inside the parenthesis are total running time values 

(seconds) 

δ 

θ 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

0.1 
155 

(83.5) 
162 

(79.1) 
168 

(77.5) 

179 

(75.2) 

194 

(72.3) 

211 

(68.8) 

227 

(64.6) 

245 

(52.5) 

0.2 
159 

(80.9) 

157 

(77.5) 

174 

(76.2) 

186 

(74.8) 

192 

(70.2) 

205 

(66.6) 

229 

(63.2) 

239 

(49.7) 

0.3 
162 

(78.3) 

154 

(74.8) 

178 

(73.3) 

188 

(72.4) 

188 

(69.1) 

214 

(63.9) 

232 

(61.2) 

238 

(47.2) 

0.4 
148 

(77.3) 
169 

(72.2) 
162 

(71.9) 
172 

(70.0) 
205 

(67.7) 
218 

(62.8) 
219 

(61.8) 
244 

(46.3) 

0.5 
151 

(77.5) 

155 

(75.7) 

169 

(74.6) 

171 

(72.2) 

192 

(68.4) 

203 

(64.4) 

218 

(63.9) 

251 

(48.8) 

0.6 
161 

(81.2) 

170 

(79.9) 

158 

(77.7) 

168 

(72.8) 

206 

(69.9) 

209 

(67.0) 

223 

(66.1) 

248 

(52.2) 

0.7 
149 

(86.1) 

164 

(84.8) 

155 

(82.4) 

182 

(78.4) 

191 

(73.2) 

212 

(69.6) 

225 

(67.4) 

239 

(54.9) 

0.8 
153 

(89.2) 

158 

(87.6) 

163 

(84.3) 

175 

(80.3) 

187 

(75.3) 

215 

(73.3) 

231 

(69.9) 

244 

(58.8) 

In the next experiment the authors compare the accuracy and 

performance of the EBN method of this paper with a typical 

sampling-based method nsDBN [21] and a recent search-based 

method iHCMC [25]. Constraints are added to the other two 

methods to make sure directed edges can only be added 

according to the structure of fig. 2. For nsDBN, the “Unknown 

Number and Unknown Times of Transitions (UNUT)” setting is 

used and the parameters are set as λs=5, λm=1. The dynamic 

phrases number n is set to 30.  The accuracy and performance of 

the three methods are evaluated for different window size and 

total data size. The window size value w is set to 1000, 2000, 

3000, 4000 and 5000 at each time. The sample number in static 

phase p0 is set to 50w. The sampling number of nsDBN is set 

to the same as total data size and 20% of the samples are used for 

burn-in. In iHCMC, the parameter K is set to 8. 

 

Fig. 4. The accuracy of 3 methods with different window size and data 

size. Dynamic phase number n is fixed at 30. 

The accuracy evaluation result of the 3 methods with different 

window size and data size is shown in Fig. 4. The accuracy of all 

methods is increased when data size and windows size become 

larger. However, the increment of accuracy becomes unobvious 

when w > 3000. The accuracy of EBN outperforms iHCMC for 

about 4%. The authors believe the main reason is that EBN 

searches from top-k local results instead of the maximum result 

only. Although the accuracy of EBN outperforms nsDBN when 

window size is relatively small, when the data size (and the 

sampling size of nsDBN) is large enough, the accuracy of 

nsDBN and EBN has slight difference. 

 

Fig. 5. The performance of 3 methods with different window size and 

data size 

The performance of the 3 methods are evaluated with different 

window size and the result is shown in Fig. 5. It can be found that 

the performance of sampling method nsDBN is obviously worse 

than the other two methods. The running time of nsDBN 

increases almost linearly since the sampling increases linearly 

when the window size increases.  If only best BN structure is 

needed (but not distribution of structures), search-based methods 

have better performance than sampling-based methods. However, 

sampling-based methods allow the probability or importance of 

individual edges to be evaluated over all possible networks. The 

running time of EBN and iHCMC also increases with window 

size since more calculations are needed to calculate the scores. 

However another important factor that affects the performance is 

how many times the score function is called. That factor is 

related to the BN structure and data set. It can also be found that 

the total performance of EBN outperforms iHCMC. The main 

reason is that EBN uses an incremental score calculation method. 

Although the structure updating algorithm of EBN searches from 

multiple local peaks, it searches parallel to improve the 

performance.  From fig. 4 and fig. 5 the authors concluded that 

EBN outperforms the other methods in both accuracy and 

performance. 

5.2. Evaluations of predictive CEP 
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In this section the experimental evaluation of the complete 

PCEP-EBN method using both real and simulated data is 

reported. The real application data comes from the PEMS traffic 

monitoring network in the area of the Highway 101 to Los 

Angeles
1
. The real data is stored in files and a player is used to 

produce event stream from the files. The distribution of this data 

set is relatively simple. In order to evaluate more complex data 

distribution, the authors developed a traffic simulation system 

based on the road traffic simulation package SUMO [29]. The 

simulation system supports getting event data from the traffic 

network and executing actions. SUMO supports "induction 

loops" which can detect vehicles that pass corresponding areas. 

Getting the location of every vehicle at any time is also supported 

(this can be used to simulate GPS). The event manager is 

connected to SUMO through the TraCI (Traffic Control Interface) 

to get primitive events such as induction loop information and 

vehicle location information.  In the simulation system, the 

authors set a road network of 15  15 intersections and 80 

thousand vehicles. Every road has 2 lanes and every intersection 

has traffic lights. In order to simulate real traffic system, a set of 

rules are defined. Every vehicle has a home location and an 

office location. A vehicle vi runs between home and office with 

probability pi. The vehicles also go to other places such as 

supermarket, hospital, etc., with corresponding probabilities. The 

data distribution is changed in different phases. A separate server 

is used to run the simulation system. 

In the experiments, method of this paper is compared with 

Adaptive Dynamic Bayesian Network (ADBN) [4] and Deep 

Belief Network (DBN) [11] using both real data and simulated 

data. The performance is evaluated based on Mean Absolute 

Percentage Error (MAPE) which is defined by: 







N

i i

ii

y

yy

N
yyMAPE

1

'
' ||1
),(  (6) 

where N is the data size, y is the real value of traffic flow and y’ 

is the predicted value. Mean accuracy is calculate by 1 – MAPE. 

In PCEP-EBN, the parameter λ is evaluated and λ=0.03 is 

selected for the following experiments. The total time span of 

PEMS data is 24 hours. The time window Δt is set to 10 minutes 

and the predicting phase time span is set to 0.5 hour. In SUMO, 2 

days traffic is simulated with a time span of 480 minutes. The 

time window Δt is set to 2 minutes and the predicting phase time 

span is set to 10 minutes. 

 

Fig. 6. Accuracy of  PCEP-EBN with different time window number TN 

In order to decide the time window number TN of the model in 

fig. 2, different TN values are evaluated and the result is shown in 

fig. 6. The accuracy increases with the increment of TN until a 

threshold is reached. The reason is that, when TN is too small, 

some nodes that should affect the current node are missed in the 

model. When TN is too large, nodes that are too old will not 

                                                 
1 PeMS project, https://pems.eecs.berkeley.edu/ 

affect the current node and they will be ignored in the learning 

process. In the following experiments, the authors set TN = 8 for 

PEMS data and TN = 12 for SUMO data. 

The accuracy evaluation result for real data and simulated data 

is shown in fig.7 and fig. 8. The curve of traffic flow change with 

time and it can roughly be found that PCEP-EBN outperforms 

other methods. In order to display the result more clearly, the 

MAPE of the 3 methods for real data and simulated data is shown 

in fig. 9 and fig. 10. The total percentage error is shown in table 2. 

Table 2.  Total percentage error for 3 methods on 2 types of data 

 ADBN DBN PCEP-EBN 

PEMS data 15.95% 11.79% 8.12% 

SUMO data 18.95% 14.59% 7.78% 

Based on the total MAPE value and MAPE curve it can be 

found PCEP-EBN outperforms other methods obviously. The 

reason is that PCEP-EBN uses an evolving BN model which can 

adjust itself according to the change of data distribution. The 

ADBN model is an adaptive model which can cluster historical 

data, learn models from data clusters, and select appropriate 

model at run time. But this model cannot adjust it structure and 

parameters according to new data distribution. That is why the 

ADBN get worse accuracy than PCEP-EBN. Although the deep 

belief network method uses deep architecture to get better 

accuracy, it still cannot address the problem of distribution drift 

well. It can also be found that the advantage of PCEP-EBN is 

more obvious in SUMO data than in PEMS data. The reason is 

that more data distribution drift is simulated in SUMO data. 

From all experiments it can be found that PCEP-EBN is an 

effective method and it outperforms other popular methods when 

processing data with distribution drift. The percentage error is 

high at the begin of experiment for all methods because the 

denominator of MAPE is small at the begin. 

 

Fig. 7. The accuracy result for PEMS data 

 

Fig. 8. The accuracy result for SUMO data 
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Fig. 9. Percentage error of the three methods on PEMS data 

 

Fig. 10. Percentage error of the three methods on SUMO data 

6. Conclusion and Future Work 

In this paper the authors propose a predictive complex event 

processing method based on evolving Bayesian networks. The 

Bayesian model has two dimensions: event type and time. The 

Gaussian mixture model and EM algorithm are used as 

approximate method to infer the Bayesian model. This method 

supports calculating score metric incrementally. Bayesian 

network structure and parameters evolving algorithms are 

proposed. The evaluation results in road traffic domain with both 

real application data and simulated data shows that this method is 

effective for predictive complex event processing and it 

outperforms other popular methods when processing traffic 

prediction in intelligent transportation systems. This method can 

also be used in many other areas, especially in proactive event 

processing systems which support executing some actions to 

avoid unwanted states. 

The performance of the BN structure evolving method still 

needs to be improved. In the future, the authors will try to use 

some heuristic methods in the search algorithm. The authors will 

also consider using parallel searching to improve the 

performance. The performance of the parameter updating 

algorithm is also need to be improved. 
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