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a b s t r a c t 

Markov networks and Bayesian networks are two popular models for classification. Vapnik–Chervonenkis 

dimension and Euclidean dimension are two measures of complexity of a class of functions, which can 

be used to measure classification capability of classifiers. One can use Vapnik–Chervonenkis dimension 

of the class of functions associated with a classifier to construct an estimate of its generalization error. 

In this paper, we study Vapnik–Chervonenkis dimension and Euclidean dimension of concept classes in- 

duced by discrete Markov networks and Bayesian networks. We show that these two dimensional values 

of the concept class induced by a discrete Markov network are identical, and the value equals dimension 

of the toric ideal corresponding to this Markov network as long as the toric ideal is nontrivial. Based 

on this result, one can compute the dimensional value in terms of a computer algebra system directly. 

Furthermore, for a general Bayesian network, we show that dimension of the corresponding toric ideal 

offers an upper bound of Euclidean dimension. In addition, we illustrate how to use Vapnik–Chervonenkis 

dimension to estimate generalization error in binary classification. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Markov networks and Bayesian networks, also known as undi-

ected and directed acyclic graphical models respectively, are

idely used in many fields, such as machine learning and bioinfor-

atics [8,12,22,24,25] . We know that a statistical model is a family

f probability distributions, it is a (part of) real algebraic variety

rom the viewpoint of algebraic geometry [26] . In particular, con-

ider discrete data, a statistical model is the set of all solutions

f some polynomials in the probability simplex [15,27] . There are

wo ways to describe Markov networks and Bayesian networks, ei-

her by conditional independence statements or by a factorization

f probability distributions. This corresponds to the computational

lgebraic geometry principle that some varieties can be described

sing either defining equations or parametric equations [see §3.3

f 9 ]. We know that these two representations are inequivalent

or Markov networks without positivity assumptions on probability

istributions [see Proposition 3.8 and Example 3.10 in 22 ], while

hese two ways are equivalent for Bayesian networks [see Theorem

.27 in 22 ]. 

Classification is one of the main problems in machine learning.

o improve classification, there has been a growing body of work
∗ Corresponding author. 
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n Markov networks in the computer vision community [21] , in

ocial and affiliation networks [39] and in classifier learning [30] .

hofrani et al. proposed a new probabilistic classifier based on de-

omposable models and applied it to two real-world internet traf-

c data sets [16] . Bayesian networks are another powerful tool for

lassification due to their simplicity and accuracy [4,6,11,13] . Naive

ayes classifiers, a special case of Bayesian network classifiers, are

 popular classification tool for processing discrete data [4,34,35] .

or more about discrete Bayesian network classifiers, please see

 comprehensive survey published recently [3] . Several research

roups combined kernel method and probabilistic models, for in-

tance, Ben-David et al. [2] , Altun et al. [1] , Taskar et al. [31] ,

hechik et al. [5] . A major advantage of this technique is that one

an construct a wide variety of more flexible classifiers. 

The generalization performance of a learning method is ex-

remely important in practice, because it provides a measure of the

uality of the ultimately chosen model. One can use the Vapnik–

hervonenkis (VC) dimension to construct an estimate of general-

zation error [32] , where the VC dimension is an approach of mea-

uring the complexity of a class of functions by assessing how wig-

ly its members can be [19] . Another measure of complexity of a

lass of functions, called Euclidean dimension, is the minimum di-

ension of the Euclidean space equipped with the standard dot

roduct, into which these functions can be embedded. Given a

arkov network (Bayesian network) N , one can get a concept class

 N induced by it. Since VC dimension and Euclidean dimension 
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Fig. 1. A UG G 1 . 

Fig. 2. A DAG 
→ 

G 2 . 
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are two important indexes to assess the classification ability of a

Markov network (Bayesian network). Three natural questions arise:

(1) Whether the two dimensional values can be obtained from the

dimension of a model as a (smooth) sub-manifold of Euclidean

space? (2) Are the two positive integer numbers always equal?

(3) How to calculate these dimensional values? In this paper, we

study the classification capability induced by a Markov network

(Bayesian network) without considering the training data, the algo-

rithm and the construction of the network graph. We aim to solve

the three questions above. 

Kearns and Schapire [20] studied a formal model of general

concept learning, they focused on learnability and uniform con-

vergence of probabilistic concept classes, and provided many ef-

ficient algorithms. Using tools in algebraic geometry, Geiger et al.

[17] formulated necessary and sufficient conditions for an arbitrary

discrete distribution to factor according to a general exponential

model. Garcia et al. [14] studied the algebraic geometry of dis-

crete Bayesian networks. Nakamura et al. [23] established the up-

per and lower bounds on Euclidean dimension for Bayesian net-

works on binary random variables, and determined the exact val-

ues of Euclidean dimension for some special classes of Bayesian

networks. For Bayesian networks with k -valued vertices, Yang and

Wu [37] studied fully connected Bayesian networks and Bayesian

networks without V-structures. For each Bayesian network be-

longs to these two cases, they showed that the two dimensional

values are identical and offered an explicit formula to compute

this dimension. Varando et al. [33] used linear combinations of

products of Lagrange basis polynomials to evaluate the expressive

power of Bayesian network classifiers. In absence of V-structures,

they showed that the polynomial representation provides complete

characterization for the type of Bayesian network classifier. 

Motivated by the work of Geiger et al. [17] and Garcia et al.

[14] , in this paper, for a general (non-complete) discrete Markov

network, we show that the two dimensional values are identical

and they equal dimension of the toric ideal corresponding to this

Markov network. Since Bayesian networks without V-structures

can be viewed as chordal graphs, we provide two new character-

izations of partial results of Yang and Wu [37] and Varando et al.

[33] . Moreover, we present upper bounds of Euclidean dimension

(and thus upper bounds of VC dimension) for Bayesian network

classifiers. 

In Section 2 , we introduce basic definitions and notations. Our

main result is presented in Section 3 . In Section 4 , we show that

VC dimension, Euclidean dimension and dimension of the toric

ideal corresponding to a general discrete Markov network are the

same number, and present upper bounds of Euclidean dimension

for Bayesian network classifiers. We demonstrate the application

of our results in estimating generalization error of binary classifi-

cation. Section 6 is devoted to discussion. 

2. Preliminaries 

In this section, we give formal definitions for concepts appear in

this article. Discrete Markov networks and Bayesian networks and

related notations are introduced in Section 2.1 and Section 2.2 , re-

spectively. VC dimension and Euclidean dimension of a family of

functions which follow notations in Nakamura et al. [23] are pre-

sented in Section 2.3 . Basic concepts and results in algebraic geom-

etry are reviewed in Section 2.4 . Algebraic geometry characteriza-

tion of discrete Markov networks is provided in Section 2.5 . Alge-

braic geometry of Bayesian networks is summarized in Section 2.6 .

2.1. Discrete Markov networks 

Let G = (V, E ) be an undirected graph (UG), where V is the ver-

tex set and E is the set of undirected edges. We consider simple
Gs. A Markov network N = ( G , P) consists of two components,

here G is a UG and P is a class of probability distributions. Given

 UG G , a clique is a maximal complete subgraph of G , and we use

G 
to denote the set of all cliques of G . G is said to be a chordal

raph if and only if every cycle of length 4 or more has a chord. 

Let X 1 , . . . , X n be discrete random variables where X i take values

n the finite set [ d i ] = { 1 , 2 , . . . , d i } , and X = [ d 1 ] × [ d 2 ] × · · · [ d n ] ,

here d i ≥ 2. An undirected graphical model P is defined as the

ollection of distributions on X of the form 

p x 1 ···x n 
. = P (x 1 , . . . , x n ) = P (x ) ∝ 

∏ 

K∈ κG 

ψ K (x ) , (1)

here x i ∈ [ d i ], x = (x 1 , . . . , x n ) and ψ K (x ) is a potential function

hat depends on x only through the values of variables in K. We

ocus on the collection of positive probability distributions in P,

enoted as P 

+ . 

xample 2.1. Note that G 1 in Fig. 1 is a chordal graph. Suppose

 i ∈ {0, 1}, for i = 1 , 3 , and X 2 ∈ {0, 1, 2}. ∀ P ∈ N 1 = ( G 1 , P 1 ) , p 021 ∝
 { X 1 ,X 2 } (0 , 2) ψ { X 2 ,X 3 } (2 , 1) . 

.2. Discrete Bayesian networks 

A directed acyclic graph (DAG) 
−→ 

G = (V, 
−→ 

E ) is a directed graph

ith no directed cycles. Each vertex X i ∈ V represents a random

ariable and a directed edge (X i , X j ) ∈ 

−→ 

E represents the condi-

ional dependence between X i and X j , where V = { X 1 , . . . , X n } , i, j ∈
 1 , . . . , n } , and i � = j . If (X i , X j ) ∈ 

−→ 

E , X i is called a parent of X j . We

se PA i to denote the set of parents of the vertex X i . 

The class of probability distributions P induced by a DAG 

−→
G 

onsists of all distributions on X of the form 

p x 1 ···x n 
. = P (x 1 , . . . , x n ) = P (x ) = 

n ∏ 

i =1 

P i (x i | x pa (i ) ) , (2)

here x i ∈ [ d i ], x pa (i ) ∈ 

∏ 

X j ∈ PA i 
[ d j ] , and P i ( x i | x pa ( i ) ) is the condi-

ional probability of X i = x i given PA i = x pa (i ) . Given a DAG 

−→ 

G ,

 = ( 
−→ 

G , P) is called a Bayesian network. As the case of a Markov

etwork, we consider P 

+ here. 

xample 2.2. Consider the DAG 

−→ 

G 2 in Fig. 2 , we assume all vari-

bles are binary, that is, X i ∈ {0, 1}. For 
−→ 

G 2 , PA 3 = { X 1 , X 2 } and

 P ∈ N 2 = ( 
−→ 

G 2 , P 2 ) , p 011 = P 1 (0) P 2 (1) P 3 (1 | 0 , 1) . 

.3. Concept classes, VC dimension, and Euclidean dimension 

A concept class C over domain X is a family of functions of

he form f : X → { 1 , −1 } . Each f ∈ C is called a concept, that is, a

oncept over a domain X is a Boolean function over X . A finite set

 = { s 1 , s 2 , . . . , s m 

⊆ X } is said to be shattered by C if for every m -

imensional binary vector b ∈ { 1 , −1 } m , there exists some concept
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this theme in Section 3 and Section 4 . 
f ∈ C such that f (s i ) = b i for i = 1 , 2 , . . . , m . The VC dimension of C
s given by 

Cdim (C) = sup{ m | there is some S ⊆ X shattered by C and 

| S| = m } . 
e use the sign function for mapping a real-valued function g to

 ± 1-valued concept sign ◦g , where ∀ c ∈ R , sign (c) = 1 if c ≥ 0;

therwise, sign (c) = −1 . 

Given a concept class C over domain X and a r -dimensional Eu-

lidean space equipped with standard inner product, if there ex-

st r -dimensional collections of vectors (u f ) f∈C , (v x ) x ∈X in R 

r such

hat 

 f ∈ C, ∀ x ∈ X , f (x ) = sign (u 

T 
f v x ) holds , 

e say that the concept class C can be embedded into a r -

imensional Euclidean space, where u T 
f 

denotes the transpose of

 f . The smallest r such that C can be embedded into R 

r is called

he Euclidean dimension of C, denoted as Edim (C) . For a concept

lass C, if there is no finite-dimensional Euclidean space into which

can be embedded, we say Edim (C) is infinite. For finite concept

lasses, it is easy to see that Edim (C) ≤ min {|C| , |X |} . 
The concept class induced by the network N = (G, P 

+ ) is

he collection of all ± 1-valued functions on X of the form

ign( log ( P ( x )/ Q ( x ))) for P, Q ∈ P 

+ , and we use C N to denote

his set. Note that, sign (log(P (x ) /Q(x ))) = 1 if P ( x ) ≥ Q ( x ) and

ign (log(P (x ) /Q(x ))) = −1 otherwise. 

.4. Basic concepts and results in algebraic geometry 

We review some basic concepts from algebraic geometry, one

an see Cox et al. [9] for more details. All algebraic geometry ter-

inology we use which is not defined in this paper can be found

n [9] . 

We work in the polynomial ring R [ y ] = R [ y 1 , y 2 , . . . , y d ] . A sub-

et I ⊆ R [ y ] is an ideal if it satisfies: (1) 0 ∈ I , (2) if f, g ∈ I , then

f + g ∈ I, and (3) if f ∈ I and h ∈ R [ y ] , then hf ∈ I . Given an ideal

 ⊆ R [ y ] , we can define a set 

 (I) = { y ∈ R 

n : f (y ) = 0 for all f ∈ I} , 
alled real variety of I . Hilbert’s basis theorem shows that every I ⊆
 [ y ] contains a finite set F = { f 1 , . . . , f m 

} , called an ideal basis of

 , such that every g ∈ I can be expressed as g(y ) = 

∑ m 

i =1 h i (y ) f i (y ) ,

here { h 1 , . . . , h m 

} ⊂ R [ y ] . The ideal generated by F is denoted by

 f 1 , . . . , f m 

〉 . 
In this paper, we consider ideals generated by binomials,

amely, a set of polynomials each has precisely two terms. We use

er Z (A ) to denote the integer kernel of A . The toric ideal I A as-

ociated with a q × d integer matrix A is generated by the binomi-

ls y 
u 1 
1 

· · · y 
u d 
d 

− y 
v 1 
1 

· · · y 
v d 
d 

, where u = (u 1 , . . . , u d ) , v = (v 1 , . . . , v d ) ∈
 

d , and u − v ∈ ker Z (A ) . A toric variety is a variety that corre-

ponds to a toric ideal. One can see Sturmfels [29] for more about

oric ideals. 

.5. Algebraic geometry of discrete Markov networks 

We identify X with the set { 1 , 2 , . . . , d} and define a probabil-

ty distribution to be a vector P = (p 1 , p 2 , . . . , p d ) ∈ R 

d 
≥0 

such that

p 1 + p 2 + · · · + p d = 1 , where d = 

∏ 

X i ∈ V d i . For a UG G , by (1), it is

atural to view the corresponding graphical model P as the image

f the monomial mapping φ
A ( G ) [17] : 

A ( G ) : R 

q 
≥0 

→ R 

d 
≥0 , (t 1 , . . . , t q ) �→ 

( ∏ 

j 

t 
a j1 
j 

, 
∏ 

j 

t 
a j2 
j 

, . . . , 
∏ 

j 

t 
a jd 
j 

) 

,

here, A ( G ) = (a jk ) is a q × d matrix of nonnegative integers, q =
K∈ κG 

∏ 

X l ∈K d l , and t 0 = 1 for t ≥ 0. 
For a UG G , the columns of A ( G ) are indexed by 
∏ 

X i ∈ V [ d i ] , and

he rows of A ( G ) are indexed by pairs consisting of a clique K and

n element of 
∏ 

X l ∈K d l . Note that each entry of A ( G ) is 0 or 1, the

ntry is 1 if and only if the element in the row index is equal to

he projection of the column index to the corresponding variables

n the row index, and the number of1 ′ s in each column of A ( G ) is

he constant | κ
G 
| . 

.6. Algebraic geometry of discrete Bayesian networks 

For a DAG 

−→ 

G , the rows of A ( 
−→ 

G ) are indexed by pairs consist-

ng of a variable X i and an element of 
∏ 

X l ∈ X i ∪ PA i 
[ d l ] (a conditional

robability), q = �X i ∈ V 
∏ 

X l ∈ X i ∪ PA i 
d l , and each column sum of A ( 

−→ 

G )

s n . 

xample 2.3. ( Example 2.2 continue). For N 2 , q = 12 . Then

 ( 
−→ 

G 2 ) = 

p 0 0 0 p 001 p 010 p 011 p 100 p 101 p 110 p 111 

 1 = P 1 (0) 
 2 = P 1 (1) 
 3 = P 2 (0) 
 4 = P 2 (1) 
 5 = P 3 (0 | 0 , 0) 
 6 = P 3 (1 | 0 , 0) 
 7 = P 3 (0 | 0 , 1) 
 8 = P 3 (1 | 0 , 1) 
 9 = P 3 (0 | 1 , 0) 
 10 = P 3 (1 | 1 , 0) 
 11 = P 3 (0 | 1 , 1) 
 12 = P 3 (1 | 1 , 1) 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 1 1 0 0 0 0 

0 0 0 0 1 1 1 1 

1 1 0 0 1 1 0 0 

0 0 1 1 0 0 1 1 

1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

 probability distribution P = (p 0 0 0 , p 001 , p 010 , p 011 , p 100 , p 101 , p 110 ,

p 111 ) factors according to 
−→ 

G 2 only if it lies in the image of the

ssociated monomial mapping 

A ( 
−→ 

G 2 ) 
: R 

12 
≥0 → R 

8 
≥0 , (t 1 , . . . , t 12 ) �→ (t 1 t 3 t 5 , t 1 t 3 t 6 , t 1 t 4 t 7 , t 1 t 4 t 8 , 

t 2 t 3 t 9 , t 2 t 3 t 10 , t 2 t 4 t 11 , t 2 t 4 t 12 ) . 

For a Bayesian network N = ( 
−→ 

G , P) , the toric ideal I 
A ( 

−→ 

G ) 
we

efined here along the idea of Geiger et al. [17] is different from

he prime ideal ker( �) given in Garcia et al. [14] , where � is

he ring homomorphism R [ y 1 , y 2 , . . . , y d ] → R [ t 1 , t 2 , . . . , t q ] com-

ined with natural constraints on t 1 , t 2 , . . . , t q , that is, the sum

f conditional probabilities under any condition is 1. For exam-

le, N 2 in Example 2.3, Garcia et al. [14] view t i as 1 − t i +1 for

 = 1 , 3 , 5 , 7 , 9 , 11 . It is obvious that I 
A ( 

−→ 

G ) 
⊆ ker (�) . 

xample 2.4. ( Examples 2.1 and 2.2 continue). The results below

re computed using the computer algebra system Singular [10] . 

I 
A ( G 1 ) 

= 〈 y 1 − t 1 t 7 , y 2 − t 1 t 8 , y 3 − t 2 t 9 , y 4 − t 2 t 10 , y 5 − t 3 t 11 , y 6 −
 3 t 12 , y 7 − t 4 t 7 , y 8 − t 4 t 8 , y 9 − t 5 t 9 , y 10 − t 5 t 10 , y 11 − t 6 t 11 , y 12 −
 6 t 12 〉 ∩ R [ y 1 , y 2 , y 3 , y 4 , y 5 , y 6 , y 7 , y 8 , y 9 , y 10 , y 11 , y 12 ] = 〈 y 1 y 8 −
 2 y 7 , y 3 y 10 − y 4 y 9 , y 5 y 12 − y 6 y 11 〉 . 

I 
A ( 

−→ 

G 2 ) 
= 〈 y 1 − t 1 t 3 t 5 , y 2 − t 1 t 3 t 6 , y 3 − t 1 t 4 t 7 , y 4 − t 1 t 4 t 8 , y 5 −

 2 t 3 t 9 , y 6 − t 2 t 3 t 10 , y 7 − t 2 t 4 t 11 , y 8 − t 2 t 4 t 12 〉 ∩ R [ y 1 , y 2 , y 3 , y 4 , y 5 , y 6 , 

 7 , y 8 ] = { 0 } . 
emark 2.1. For us, the objective of interest is the complexity of

oncept classes induced by discrete Markov networks and Bayesian

etworks. So it is natural to explore the connections between con-

epts in Section 2.3 and algebraic geometry of two kinds of graph-

cal models introduced in the last two subsections. We will pursue
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Fig. 3. A UG G 3 . 
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3. Main result 

We introduce a definition of dimension of I A ( G ) and then present

the main result in this paper. 

Definition 3.1. Let I S 
A (G ) 

be the elimination ideal obtained from

I A ( G ) by eliminating all unknowns in { y 1 , . . . , y d } corresponding to

elements in X \ S. The biggest m such that I S 
A (G ) 

is the zero ideal is

called the algebraic elimination dimension of I A ( G ) , where m = | S| . 
We denote the dimension of I A ( G ) by dim( I A ( G ) ). In algebraic ge-

ometry, there are many ways to reformulate the concept of dimen-

sion of an ideal (or equivalently, dimension of a affine variety), and

Definition 3.1 is one of the interesting approaches [9] . If I S 
A (G ) 

is

the zero ideal, then its variety is full-dimensional. Lemma 4.2 in

Sturmfels [29] states that dim (I A (G ) ) = rank (A (G )) . The following

theorem is our main result in the paper. 

Theorem 3.1. For every Markov network N = ( G , P) with I 
A ( G ) � =

{ 0 } , we have dim (I 
A ( G ) ) = V Cdim (C N ) = Edim (C N ) = rank (A ( G )) . 

Corollary 4.1 and Lemma 4.2 in Section 4 demonstrate that The-

orem 3.1 holds. A special case of Theorem 3.1 is that G is a chordal

graph. From the point of view representing conditional independence

relationships among variables, each chordal graph can be viewed as

a DAG [see Lemma 7.3 in 28] , and every DAG without V-structures is

identical to a chordal graph. The corollary below provides two new

characterizations of the results of Yang and Wu [37] and Varando

et al. [33] . 

Corollary 3.1. Given a Bayesian network N = ( 
−→ 

G , P) with I 
A ( 

−→ 

G ) 
� =

{ 0 } and 
−→ 

G has no V-structure, we have dim (I 
A ( 

−→ 

G ) 
) = V Cdim ( C N ) =

Edim ( C N ) = rank (A ( 
−→ 

G )) . 

As an illustration, consider the following example. 

Example 3.1. ( Example 2.1 continue). G 1 in Fig. 1 is a UG

(a chordal graph), and rank (A ( G 1 )) = VCdim (C N 1 ) = Edim (C N 1 ) =
dim (I 

A ( G 1 ) 
) = 9 . 

Theorem 3.1 in Yang and Wu [37] shows that for a fully

connected Bayesian network with each variable has k levels,

VCdim ( C N ) = Edim ( C N ) = k n − 1 . If I 
A ( 

−→ 

G ) 
= { 0 } and 

−→ 

G has no V-

structure, that is, 
−→ 

G is a fully connected Bayesian network, then−→ 

G can be viewed as a complete UG, we have rank (A ( 
−→ 

G )) =
dim (I 

A ( 
−→ 

G ) 
) = d, and VCdim ( C N ) = Edim ( C N ) = d − 1 . 

4. Proof of Theorem 3.1 and related results 

In this section, we prove Theorem 3.1 and provide some related

results. 

4.1. Bounding VC dimension by dimension of the toric ideal 

corresponding to a discrete Markov network 

In this subsection, we show that dim( I A ( G ) ) yields a lower bound

for VCdim (C N ) of discrete Markov networks. 

For each unknown that corresponds to an element in S , we

set it equal to an arbitrary positive real number, then we get a

partial solution. What is interest is whether the partial solution

can be extended to a complete solution. Based on the fact that

each row of A ( G ) which corresponds to an element in X \ S can

be represented linearly by rows of A ( G ) and the representation is

unique, one can see that for a toric ideal corresponding to a dis-

crete Markov (Bayesian) networks the answer to the question of

real extension of a partial solution is yes in some situations. 

Proposition 4.1. Suppose I A ( G ) � = {0} and S ⊂ X is one of the subsets

with the biggest cardinality such that I S 
A (G ) 

= { 0 } . Let each unknown
orresponding to an element in S be an arbitrary positive real num-

er, then this partial solution can be extended to exactly one complete

olution. 

Note that the complete solution in Proposition 4.1 corresponds

o a strictly positive probability distribution, that is, dividing each

omponent of the complete solution by the sum of all compo-

ents, which is called a normalizing constant. For discrete Markov

etworks, the well-known Hammersley–Clifford theorem states that

 strictly positive probability distribution (y 1 , y 2 , . . . , y d ) ∈ P 

+ if

nd only if (y 1 , y 2 , . . . , y d ) is a solution of all quadratic bino-

ials corresponding to all the saturated conditional independence

tatements (a finite subset of I 
A ( G ) ) [17] . If we fix m − 1 un-

nowns in { y (1) , y (2) , . . . , y (m ) } , that is, y ( j) = y ( j)0 > 0 for j ∈
 1 , 2 , . . . , m } \ { i } , Proposition 4.1 shows that the normalizing con-

tant ( 
∑ m 

j =1 , j � = i y ( j)0 + y (i ) + 

∑ d 
j= m +1 y ( j) ) is a function of y ( i ) , where

 ∈ { 1 , 2 , . . . , m } . 
xample 4.1. Consider G 3 in Fig. 3 , I 

A ( G 3 ) 
= 〈 y 1 y 4 − y 2 y 3 〉 . Suppose

 2 = 3 , y 3 = 2 and y 4 = 1 , the partial solution (3,2,1) can be ex-

ended to the complete solution (6,3,2,1), and then 

(
1 
2 , 

1 
4 , 

1 
6 , 

1 
12 

)
∈

 

+ 
1 

. 

For a Markov network N = ( G , P) with I 
A ( G ) � = { 0 } , the

ammersley–Clifford theorem implies that each y ( j ) is either a

inear function or a hyperbolic function of y ( i ) (that is, be of

he form y ( j) = ay (i ) or y ( j) = 

b 
y (i ) 

, where a > 0, b > 0), then the

ormalizing constant function is either the form g i (y (i ) ) = k 0 +
 1 y (i ) or g i (y (i ) ) = k 0 + k 1 y (i ) + 

k 2 
y (i ) 

, where j ∈ { m + 1 , . . . , d} , i ∈
 1 , 2 , . . . , m } , k l > 0 for l = 0 , 1 , 2 . A basic observation is that there

xists at least one y (i ) ∈ { y (1) , y (2) , . . . , y (m ) } such that the nor-

alizing constant has the form g i (y (i ) ) = k 0 + k 1 y (i ) + 

k 2 
y (i ) 

when

ach unknown in { y (1) , y (2) , . . . , y (m ) } \ { y (i ) } is specified a positive

umber. 

emma 4.1. Given a Markov network N = ( G , P) with I 
A ( G ) � = { 0 } ,

e have dim (I 
A ( G ) ) ≤ V Cdim ( C N ) . 

roof. Suppose dim (I 
A ( G ) ) = m and S = { s 1 , s 2 , . . . , s m 

} ⊂ X satis-

es I S 
A ( G ) 

= { 0 } , we need to show that ∀ b ∈ { 1 , −1 } m , there ex-

st two positive distributions P, Q such that sign ( 
P(s i ) 
Q(s i ) 

) = b i for

 = 1 , 2 , . . . , m . It suffices to consider the following two cases. 

Case 1, b = ±(1 , 1 , . . . , 1) . Without loss of generality, we as-

ume the normalizing constant is a function of y (1) with the

orm g 1 (y (1) ) = k 0 + k 1 y (1) + 

k 2 
y (1) 

when y (2)0 , . . . , y (m )0 are given.

ote that k 0 , k 1 , k 2 are determined by y (2)0 , . . . , y (m )0 , and

ne can choose a y (1)0 ∈ (0 , 

√ 

k 2 
k 1 

) and a small ε > 0 such that

 (1)0 + ε < 

√ 

k 2 
k 1 

. Let P, Q be two distributions corresponding to

 (1)0 , y (2)0 , . . . , y (m )0 and y (1)0 + ε, y (2)0 , . . . , y (m )0 , respectively. We

now that each function y = k 0 + k 1 x + 

k 2 
x is strictly decreasing

n (0 , 

√ 

k 2 
k 1 

) , and strictly increasing on ( 

√ 

k 2 
k 1 

, + ∞ ) , where k 0 > 0,

 1 > 0, k 2 > 0, x ∈ (0 , + ∞ ) . Then, g 1 (y (1)0 ) > g 1 (y (1)0 + ε) > 0 , we

ave sign ( 
P(s i ) 
Q(s i ) 

) = −1 and sign ( 
Q(s i ) 
P(s i ) 

) = 1 for i = 1 , 2 , . . . , m . 

Case 2, b = (1 , 1 , . . . , 1 , −1 , . . . , −1) , that is, if i ∈
 1 , 2 , . . . , m 1 } , b i = 1 ; else b i = −1 , where m 1 < m is a

ositive integer. Let P, Q be two distributions corre-

ponding to y (1)0 , y (2)0 , . . . , y (m )0 , y (m +1)0 , . . . , y (m )0 and
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Fig. 4. Two DAGs with V-structures. 
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s  
 (1)0 , y (2)0 , . . . , y (m 1 )0 , y (m 1 +1)0 + εm 1 +1 , . . . , y (m )0 + εm 

, re-

pectively, where { εm 1 +1 , . . . , εm 

} are m − m 1 small pos-

tive numbers, y (1)0 is a large number belonging to the

trictly increasing interval of the normalizing constant func-

ion of (y (1) , y (2)0 , . . . , y (m 1 )0 , y (m 1 +1)0 + εm 1 +1 , . . . , y (m )0 +
m 

, y (m +1) , . . . , y (d) ) , that is, a function of y (1) denoted by g Q 
1 
(y (1) ) .

If g P 
1 
(y (1)0 ) = g Q 

1 
(y (1)0 ) , then sign ( 

P(s i ) 
Q(s i ) 

) = b i for i = 1 , 2 , . . . , m,

here g P 1 (y (1) ) is the normalizing constant function of

(y (1) , y (2)0 , . . . , y (m 1 )0 , y (m 1 +1)0 , . . . , y (m )0 , y (m +1) , . . . , y (d) ) . 

If g P 
1 
(y (1)0 ) < g Q 

1 
(y (1)0 ) , there exists an ε > 0 such

hat g P 1 (y (1)0 ) = g Q 
1 
(y (1)0 − ε) as long as each element in

 εm 1 +1 , . . . , εm 

} is small enough and y (1)0 is an interior of

he strictly increasing interval of the normalizing constant

unction of y (1) . Denoting the distribution corresponds to

 (1)0 − ε, y (2)0 , . . . , y (m 1 )0 , y (m 1 +1)0 + εm 1 +1 , . . . , y (m )0 + εm 

as Q 1 ,

hen sign ( 
P(s i ) 

Q 1 (s i ) 
) = b i for i = 1 , 2 , . . . , m . 

If g P 1 (y (1)0 ) > g Q 
1 
(y (1)0 ) , the form of strictly increasing in-

erval of the normalizing function g Q m 

(y (m ) ) is ( 

√ 

k 2 
k 1 

, + ∞ ) or

(0 , + ∞ ) , hence there is an ε > 0 such that g P 1 (y (1)0 ) = g P m 

(y (m )0 ) =
 

Q 
m 

(y (m )0 + εm 

+ ε) , where k 1 > 0, k 2 > 0 (In fact, g Q m 

(y (m ) ) can be

eplaced by any g Q 
j 
(y ( j) ) , where j ∈ { m 1 + 1 , . . . , m } ). Denoting

he distribution corresponds to y (1)0 , y (2)0 , . . . , y (m 1 )0 , y (m 1 +1)0 +
m 1 +1 , . . . , y (m )0 + εm 

+ ε as Q 1 , then sign ( 
P(s i ) 

Q 1 (s i ) 
) = b i for i =

 , 2 , . . . , m . 

Case 1 and Case 2 together complete the proof of this conclu-

ion, because all the 2 n − 2 values (except the two values in Case

) of b containing 1 and −1 can be the form of Case 2 through

earranging the order of s i for i = 1 , 2 , . . . , m . �

Lemma 7 of Nakamura et al. [23] states that VCdim (C) ≤
dim (C) holds for every concept class C. Immediately, we have the

ollowing result. 

orollary 4.1. For every Markov network N = ( G , P) satisfying

 

A ( G ) � = { 0 } , we have dim (I 
A ( G ) ) ≤ V Cdim ( C N ) ≤ Edim ( C N ) . 

Consider Markov network and the case that I 
A ( G ) = { 0 } , I 

A ( G ) = { 0 }
f and only if G is a complete graph. If I 

A ( G ) = { 0 } , then dim (I 
A ( G ) ) =

, and P 

+ is the collection of interior points of the probability sim-

lex, we have VCdim ( C N ) = Edim ( C N ) = d − 1 . 

.2. An upper bound of Euclidean dimension 

In this subsection, using dim( I A ( G ) ), we study an upper bound of

uclidean dimension of the concept class induced by a Markov (or

ayesian) network . 

emma 4.2. Given a Markov (or Bayesian) network N = (G, P) , we

ave Edim ( C N ) ≤ dim (I A (G ) ) . 

roof. Edim ( C N ) = m means that there are two matrices U | C N |×m 

nd V m × d such that 

 

 

 

 

f 1 (x 1 ) f 1 (x 2 ) · · · f 1 (x d ) 
f 2 (x 1 ) f 2 (x 2 ) · · · f 2 (x d ) 
. . . 

. . . 
. . . 

. . . 
f | C N | (x 1 ) f | C N | (x 2 ) · · · f | C N | (x d ) 

⎞ 

⎟ ⎟ ⎠ 

= ( sign ((UV ) i j )) , (3)

nd ∀ U | C N |×r , V r × d satisfying r ≤ m − 1 , (3) does not hold, where

f ∈ C N , and 1 ≤ i ≤ | C N | , 1 ≤ j ≤ d . 
i 
∀ P i , Q i ∈ P 

+ ( 1 ≤ i ≤ | C N | ) such that f i (x ) =
ign (log(P i (x ) /Q i (x ))) , consider the | C N | × d matrix 
 

 

 

 

 

 

log ( P 1 (x 1 ) 
Q 1 (x 1 ) 

) log ( P 1 (x 2 ) 
Q 1 (x 2 ) 

) · · · log ( P 1 (x d ) 
Q 1 (x d ) 

) 

log ( P 2 (x 1 ) 
Q 2 (x 1 ) 

) log ( P 2 (x 2 ) 
Q 2 (x 2 ) 

) · · · log ( P 2 (x d ) 
Q 2 (x d ) 

) 

. . . 
. . . 

. . . 
. . . 

log ( 
P | C N | (x 1 ) 

Q | C N | (x 1 ) 
) log ( 

P | C N | (x 2 ) 

Q | C N | (x 2 ) 
) · · · log ( 

P | C N | (x d ) 

Q | C N | (x d ) 
) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. (4) 

f dim (I A (G ) ) ≤ m − 1 , without loss of generality, we assume

im (I A (G ) ) = m − 1 . Then, ∀ y (1) , . . . , y (m ) , there is at least one bi-

omial f ∈ I A (G ) ∩ R [ y (1) , . . . , y (m ) ] such that f (P i (x 1 ) , . . . , P i (x d )) =
 and f (Q i (x 1 ) , . . . , Q i (x d )) = 0 for 1 ≤ i ≤ | C N | . Thus, we know

hat the rank of the matrix in (3) is less than m − 1 . This fact con-

radicts ∀ U | C N |×r , V r × d satisfying r ≤ m − 1 , (3) does not hold. The

onclusion is confirmed. �

Lemma 4.2 provides an upper bound of Euclidean dimension

f concept classes induced by Markov networks and Bayesian net-

orks. Although the upper bounds are larger than real ones for

ome Bayesian networks with V-structures, we note that the up-

er bound is sharp. 

xample 4.2. Consider 
−→ 

G 4 and 

−→ 

G 5 in Fig. 4 . Suppose that | X i | = 2

or i = 1 , 2 , 3 , 4 . Using the computer algebra system Singular [10] ,

e obtain that dim (I 
A ( 

−→ 

G 4 ) 
) = 9 , dim (I 

A ( 
−→ 

G 4 ) 
) = 11 . Yang and Wu

38] showed that VCdim (C N 4 ) = Edim (C N 4 ) = 8 and VCdim (C N 5 ) =
dim (C N 5 ) = 11 . 

emark 4.1. For general Bayesian networks, Yang and Wu

37] provided lower bounds of VC dimension and upper bounds of

uclidean dimension. Examples presented in Yang and Wu [38] in-

icate that both the two bounds are sharp. Classifying the relation-

hip between the upper bounds appeared in Yang and Wu [37] and

he one posed in Lemma 4.2 is an interesting problem. 

In fact, for a general Bayesian network, neither the prime ideal

er( �) presented in Garcia et al. [14] , nor the toric ideal we de-

ned in Section 2.6 is suitable to connect corresponding VC dimen-

ion and Euclidean dimension. 

. Application of VC dimension in estimating classification 

rror 

Hastie et al. [19] told us that the VC dimension can be used to

onstruct an estimate of (extra-sample) prediction error, and there

re different types of results. However, as they pointed out, the

ifficulty is how to calculate the VC dimension of a class of func-

ions. In this section, we introduce a result in binary classification

hrough an example which comes from Han et al. [18] . 

xample 5.1. Table 1 presents a training set of class-labeled tu-

les randomly selected from the AllElectronics customer database.

he data tuples are described by discrete variables age, income,

tudent, credit-rating. Age and income have three levels, student
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Table 1 

Class-labeled training tuples from the AllElectronics customer database. 

RID Age Income Student Credit-rating Class: buy-computer 

1 Youth High No Fair No 

2 Youth High No Excellent No 

3 Middle-aged High No Fair Yes 

4 Senior Medium No Fair Yes 

5 Senior Low Yes Fair Yes 

6 Senior Low Yes Excellent No 

7 Middle-aged Low Yes Excellent Yes 

8 Youth Medium No Fair No 

9 Youth Low Yes Fair Yes 

10 Senior Medium Yes Fair Yes 

11 Youth Medium Yes Excellent Yes 

12 Middle-aged Medium No Excellent Yes 

13 Middle-aged High Yes Fair Yes 

14 Senior Medium No Excellent No 

Fig. 5. Naive Bayes ( 
→ 

G 6 ) and a tree augmented naive Bayes ( 
→ 

G 7 ) classifier structures 

with 4 predictor variables. 
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and credit-rating have two levels. The class label variable, buy-

computer, has two levels. Given the training data, estimation of

prediction error is our goal. 

Generalization error (denoted by Err T ) is the prediction error

over an independent test sample. Consider binary classification, if

we fit N training points using a class of functions { f ( x, α)} having

VC dimension h , then with probability at least 1 − η over training

sets [page 116 in 7 ]: 

Err T ≤ err + 

ε 

2 

( 

1 + 

√ 

1 + 

4 · err 

ε 

) 

, 

where ε = a 1 
h [ l og(a 2 N/h )+1] −l og(η/ 4) 

N , 0 < a 1 ≤ 4, 0 < a 2 ≤ 2; err is the

training error, α is a parameter vector. This bound hold simultane-

ously for all members f ( x, α), with a 1 = 4 and a 2 = 2 corresponding

to the worst-case scenarios. 

Return to Example 5.1, if one predicts the class label of a tuple

using a naive Bayes classifier or a tree augmented naive Bayes clas-

sifier, the values of h are 14 and 28, respectively (see 
−→ 

G 6 and 

−→ 

G 7 

in Fig. 5 , they can be viewed as UGs from the viewpoint of rep-

resenting conditional independence relationships), and meaningful

upper bounds for generalization error can be obtained when the

sample size N is sufficient large. To offer an upper bound for pre-

diction error, our results can be used to UG or DAG augmented

naive Bayes classifiers, that is, the class C is considered as a root

vertex parent of every predictor variables. Meanwhile, we note

that, for a Bayesian network with at least one V-structure, if we

use dim( I A ( G ) ) to estimate generalization error, the upper bound

may be rather loose. 

6. Discussion 

In this paper, we mainly provide three equivalent characteriza-

tions of VC dimension of concept classes induced by Markov net-

works through viewing dimension of a toric ideal as a bridge be-

tween VC dimension and Euclidean dimension, and present up-

per bounds for Euclidean dimension of concept classes induced by

Bayesian networks. This concrete connection between algebraic ge-
metry and machine learning allows one to compute VC dimension

f the concept class induced by a Markov network in terms of a

omputer algebra system directly. We illustrate the utility of our

esults in calculating prediction error in binary classification. For

ayesian networks without V-structures, based on levels of each

ariable, Yang and Wu [37] and Varando et al. [33] offered explicit

ormula to compute Euclidean dimension and thus VC dimension

f induced concept classes. A natural question arises, is there an

xplicit formula for VC dimension of concept classes induced by

arkov networks? 

For a general Bayesian network ( 
−→ 

G , P) (with at least one V-

tructure), as far as we know, no other result illustrates the re-

ationship among dimension of the model, VC dimension and Eu-

lidean dimension of concept class induced by ( 
−→ 

G , P) except Yang

nd Wu [38] for the Bayesian networks with less than four vari-

bles. As mentioned in Remark 4.1, it seems difficult to tackle the

roblem given in Yang and Wu [36] using dimension of ideals, that

s, whether the VC dimension is equal to the Euclidean dimension

emains open. 
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