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Arithmetic Considerations for Isogeny-Based
Cryptography

Joppe W. Bos and Simon J. Friedberger

Abstract—In this paper we investigate various arithmetic techniques which can be used to potentially enhance the performance in the
supersingular isogeny Diffie-Hellman (SIDH) key-exchange protocol which is one of the more recent contenders in the post-quantum
public-key arena. Firstly, we give a systematic overview of techniques to compute efficient arithmetic modulo 2xpy ± 1. Our overview
shows that in the SIDH setting, where arithmetic over a quadratic extension field is required, the approaches based on the Montgomery
reduction for such primes of a special shape are to be preferred. Moreover, the outcome of our investigation reveals that there exist
moduli which allow even faster implementations.
Secondly, we investigate if it is beneficial to use other curve models to speed up the elliptic curve scalar multiplication. The use of
twisted Edwards curves allows one to search for efficient addition-subtraction chains for fixed scalars while this is not possible with the
differential addition law when using Montgomery curves. Our preliminary results show that despite the fact that we found such efficient
chains, using twisted Edwards curves does not result in faster scalar multiplication arithmetic in the setting of SIDH.

F

1 INTRODUCTION

R ECENT significant advances in quantum computing
have accelerated the research into post-quantum cryp-

tography schemes [22], [35], [49]. Such schemes can be used
as drop-in replacements for classical public-key cryptog-
raphy primitives. This demand is driven by interest from
standardization bodies, such as the call for proposals for
new public-key cryptography standards [47] by the National
Institute of Standards and Technology (NIST) [15] and the
European Union’s prestigious PQCrypto research effort [2].

One such recent approach is called Supersingular
Isogeny Diffie-Hellman (SIDH), which was introduced in
2011 and is based on the hardness of constructing a smooth-
degree isogeny, between two supersingular elliptic curves
defined over a finite field [21]. The Supersingular Isogeny
Key Encapsulation (SIKE) protocol [3] submission to NIST
is based on the SIDH approach with optimizations from
recent work such as [19], [25]. The full details of this
protocol are outside the scope of this paper. However, the
arithmetic in supersingular isogeny cryptography is per-
formed in quadratic extension fields of a prime field Fq
with q = 2xpy ± 1; where the extension field is formed as
Fq2 = Fq(i) with i2 = −1. The computationally expensive
operations consist of computing a number of elliptic curve
scalar multiplications by ` and of evaluations of `-isogenies
for ` ∈ {2, p} which in turn translate to a number of
arithmetic operation in Fq2 .

In the proposed SIKE protocol p = 3 and the el-
liptic curve arithmetic is performed using Montgomery
curves [46]. These choices are motivated by performance
arguments. In this paper we investigate alternative ap-
proaches. On the one hand we study, in Section 3, if dif-
ferent choices for p in the modulus q = 2xpy ± 1 can
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result in faster modular reduction. We find that alternative
design choices can indeed lead to practical performance
gains for the modular arithmetic. However, this ignores the
impact on the isogeny computations: as shown by Costello
and Hisil in [18] there is a moderate degradation when
computing arbitrary large- and odd-degree isogenies. The
overall protocol performance might suffer slightly but, as
motivated in [18], the computational effort for one of the
parties computing the key-exchange can be decreased. This
is beneficial in settings where the computational power is
unbalanced.

On the other hand we investigate in Section 4 if the
elliptic curve scalar multiplications can be done more effi-
ciently by using curve arithmetic on different curve models.
Montgomery curves are extremely efficient but require the
differential addition law to gain this performance. We study
if switching to twisted Edwards curves [24], [7], [6], [30]
is beneficial: this setting allows one to more generic use
addition/subtraction chains which can lower the number
of arithmetic operations when multiplying by small powers
of p at-a-time. We note that addition chains in the setting
of SIDH have been studied in [39] before. However, the
focus and goal of [39] is to find addition chains to aid in
the computation of modular inversion and modular square
root computation.

This paper is an extended version of a previous work
which appeared as [11]. The main result presented in [11]
is captured in Section 3. This has been extended with
the addition-subtraction chain investigation as presented
in Section 4. The code which implements the modular
arithmetic presented in Section 3 can be found at https:
//github.com/sidh-arith.

2 PRELIMINARIES

2.1 Modular Multiplication
One well-known approach to enhance the practical perfor-
mance of modular multiplication by a constant factor is

https://github.com/sidh-arith
https://github.com/sidh-arith
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based on precomputing a particular value when the used
modulus m is fixed. We recall two such approaches in this
section.

In the remainder of the paper we use the following
notation. By Zm we denote the finite ring Z/mZ: the ring of
integers modulo m which we might write as Fm when m is
prime. The bit-length ofm is denoted byN = blog2(m)c+1.
We target computer architectures which use a word size w
and which thus can represent unsigned integers less than
r = 2w (typical values are w = 32 or w = 64): this
means that most unsigned arithmetic instructions work with
inputs in [0, r) and the modulus m can be represented
using n = dN/we computer words. We represent integers
(or residues in Zm) in a radix-R representation: given a
positive integer R, a positive integer a < R` for some
positive integer ` can be written as a =

∑`−1
i=0 ai · Ri where

0 ≤ ai < R for 0 ≤ i < `. In order to assess the performance
of various modular multiplication or reduction approaches
we count the number of required multiplication instructions
to implement this in software. This instruction is a map
mul : Zr×Zr → Zr2 where mul(x, y) = x · y. We are aware
that just considering the number of multiplication instruc-
tions is a rather one-dimensional view which ignores the
required additions, loads / stores and cache behavior but
we argue that this metric is the most important characteristic
when implementing modular arithmetic for the medium-
sized residues which are used in the current SIDH schemes.
We verify this assumption by comparing to implementation
results in Section 3.5.

2.1.1 Montgomery reduction
The idea behind the Montgomery reduction [45] is to change
the representation of the integers used and to change the
modular multiplication accordingly. By doing this one can
replace the cost of a division by roughly the cost of a
multiplication which is faster in practice by a constant factor.
Given a modulus m co-prime to r, the Montgomery radix
rn and an integer c (such that 0 ≤ c < m2) the Montgomery
reduction computes

c+ (µ · c mod rn) ·m
rn

≡ c · r−n (mod m),

where µ = −m−1 mod rn is the precomputed value which
depends on the modulus used. After changing the represen-
tation of a, b ∈ Zm to ã = a·rn mod m and b̃ = b·rn mod m,
the Montgomery reduction of ã · b̃ ≡ a · b · r2n (mod m)
becomes a · b · r2n · r−n ≡ a · b · rn (mod m) which is the
Montgomery representation of a · b mod m. Hence, at the
start and end of the computation a transformation is needed
to and from this representation. Therefore, Montgomery
multiplication is best used when a long series of modular
arithmetic is needed; a setting which is common in public-
key cryptography.

It can be shown that when 0 ≤ c < m2 then 0 ≤
c+(µ·c mod rn)·m

rn < 2m and at most one single conditional
subtraction is needed to reduce the result to 0, 1, . . . ,m− 1.
This conditional subtraction can be omitted when the Mont-
gomery radix is selected such that 4m < rn and a redundant
representation is used for the input and output values of
the algorithm. More specifically, whenever a, b ∈ Z2m (the
redundant representation) where 0 ≤ a, b < 2m, then the

output a · b · r−n is also upper-bounded by 2m and can
be reused as input to the Montgomery multiplication again
without the need for a conditional subtraction [52], [55].

As presented the multiplication and the modular re-
duction steps are separated. This has the advantage that
asymptotically fast approaches for the multiplication can
be used. The downside is that the intermediate results in
the reduction parts of the algorithm are stored in up to
2n + 1 computer words. The radix-r interleaved Mont-
gomery multiplication algorithm [23] combines the mul-
tiplication and reduction step digit wise. This means the
precomputed Montgomery constant needs to be adjusted to
µ = −m−1 mod r and the algorithm initializes c to zero and
then updates it according to

c← (c+ ai · b+ (µ · (c+ ai · b) mod r) ·m)/r (1)

for i = 0 to n−1. The intermediate results are now bounded
by rn+1 and occupy at most n + 1 computer words. It is
not hard to see that the cost of computing the reduction
part of the interleaved Montgomery multiplication requires
n2 + n multiplication instructions since the divisions and
multiplications by r in the interleaved algorithm (or rn in
the non-interleaved algorithm) can be computed using shift
operations when r is a power of two.

2.1.2 Barrett Reduction

After the publication of the Montgomery reduction Barrett
proposed a different way of computing modular reductions
using precomputed data which only depends on the mod-
ulus used [5]. The idea behind this method is inspired by a
technique of emulating floating point data types with fixed
precision integers. Let m > 0 be the fixed modulus used
such that rn−1 < m < rn where r = 2w and w is the word-
size of the target architecture (just as in Section 2.1.1). Let
0 ≤ c < m2 be the input which we want to reduce. The
idea is based on the observation that c′ = c mod m can be
computed as

c′ = c−
⌊ c
m

⌋
·m. (2)

Hence, this approach computes not only the remainder c′

but also the quotient

q =
⌊ c
m

⌋
of the division of c by m and does not require any transfor-
mation of the inputs.

In order to compute this efficiently the idea is to use a
precomputed value µ = b r

2n

m c < rn+1 to approximate q by

q1 =
⌊c · µ
r2n

⌋
=

⌊
c

r2n
·
⌊
r2n

m

⌋⌋
.

This is a close approximation since one can show that q−1 ≤
q1 ≤ q and the computation uses cheap divisions by r which
are shifts. The multiplication c · µ can be computed in a
naive fashion with 2n(n+1) multiplication instructions. The
computation of q1 ·m (to compute the remainder c′ in Eq. 2)
can be carried out with (n+ 1)n multiplication instructions
for a total of 3n(n+ 1) multiplications.
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Since m > rn−1 the n − 1 lower computer words
of c contribute at most 1 to q = b cmc. When defining
ĉ = bc/rn−1c < rn+1 one can further approximate q by

q2 =

⌊bc/rn−1c · rn−1 · µ
r2n

⌋
=

⌊
ĉ · rn−1 · µ

r2n

⌋
=

⌊
ĉ · µ
rn+1

⌋
.

This approximation is still close since q − 2 ≤ q2 ≤ q.
A straight-forward optimization is to observe that ĉ · µ

is divided by rn+1 and a computation of the full product is
therefore not needed. It suffices to compute the n + 3 most
significant words of the product ignoring the lower n − 1
computer words. Similarly, the product q2 ·m in Eq. 2 only
requires the n + 1 least significant words of the product.
Hence, these two products can be computed using

(n+ 1)2 −
n−1∑
i=1

i︸ ︷︷ ︸
for ĉ·µ

+
n∑
i=1

i+ n︸ ︷︷ ︸
for q2·m

= (n+ 1)2 + 2n (3)

multiplication instructions. This is larger compared to the
n2 + n multiplication instructions needed for the Mont-
gomery multiplication but no change of representation is
required.

2.1.3 Reducing arbitrary length input.

The Barrett reduction is typically analyzed for an input c
which is bounded above by r2n and a modulus m < rn. We
now consider the more general scenario where c is bounded
by r` and the quotient and remainder are computed for a
divisor m < rn. We derive the number of multiplications
required for the Barrett reduction.

Computing the k least significant words using school-
book multiplication of a times b where 0 ≤ a < r`a and
0 ≤ b < r`b can be done using L(`a, `b, k) multiplication
instructions where

L(`a, `b, k) =

min{k,`a+`b−1}∑
i=1

min{i, `a + `b − i, `a, `b}.

On the other hand, to compute the k most significant
words of a multiplication result with an error of at most 1
we need to compute k+2 words of the result. For a product
of length n this means not computing the least significant
n − k − 2 words. Hence, computing the most significant
k + 2 words of the product of a and b costs H(`a, `b, k)
multiplication instructions where

H(`a, `b, k) = k2 − L(`a, `b, `a + `b − k − 2).

Combining these two we get the total cost CostBarrett(`, n)
expressed in multiplication instructions for computing the
quotient and remainder when dividing c (0 ≤ c < r`)
by m (0 ≤ m < rn) using the Barrett reduction as
CostBarrett(`, n) = H(` − n + 1, ` − n + 1, ` − n + 1) +
L(` − n + 1, n, n + 1). Note that CostBarrett(2n, n) =
(n + 1)2 −

∑n−1
i=1 i + n +

∑n
i=1 i which equals Eq. (3) as

expected.

2.1.4 Folding.
An optimization to the Barrett reduction which needs ad-
ditional precomputation but reduces the number of multi-
plications is called folding [29]. Given an N -bit modulus m
and a D-bit integer c where D > N a partial reduction step
is used first and next regular Barrett is used to reduce this
number further. First, a cut-off point α such thatN < α < D
is selected and a precomputed constant m′ = 2α mod m is
used to compute c′ ≡ c mod m as

c′ = (c mod 2α) +
⌊ c

2α

⌋
·m′.

Now c′ < 2α + 2D−α+N at the cost of multiplying a D − α
bit with an N bit integer. This is a more general description
compared to the one in [29] whereD = 2N and α = 3N/2 is
used such that c is reduced from 2N bits to at most 1.5N+1
bits.

2.2 Efficient Elliptic Curve Arithmetic
For a field K of characteristic larger than three, any a, b ∈ K
with 4a3 + 27b2 6= 0 define an elliptic curve over K (see for
more details e.g. [53]). The group law is written additively.
In practice, different defining equations and coordinate sys-
tems can be used to speed up the curve arithmetic. One such
example is Montgomery curves [46]. Montgomery showed
that it is possible to simplify the computations by dropping
the y-coordinate. This allows very fast doubling operations
and differential additions where P +Q is computed from P ,
Q, and P−Q where P and Q are points on the Montgomery
curve. This type of arithmetic is compatible with SIDH and
is the preferred option used in practice [3]. The cost for the
group law expressed in terms of operations in K is shown
in Table 1. However, the cost for doubling and tripling is
one multiplication by a curve constant higher compared to
the typical usage in elliptic curve cryptography. This is due
to the use of projective curve coefficients to avoid modular
inversion as outlined in [19].

Currently the asymptotically fastest elliptic curves for
random scalars with bit-length going to infinity are due to
Edwards in 2007 [24]. Here, performance is understood as
the cost of a group operation expressed in multiplications
and squarings in K. These Edwards curves have been gen-
eralized in [7], [6] showing their practical use in cryptology.
Moreover, it can be shown that every such twisted Edwards
curve is birationally equivalent to a Montgomery curve
over K [6]. The fastest known approach to perform elliptic
curve point addition and doubling uses extended twisted
Edwards coordinates [30]. See Table 1 for an overview of
the cost to compute the group law expressed in terms of
multiplication and squarings in K. The cost can be reduced
even further when the curve coefficient a used in the defi-
nition of the twisted Edwards curve is set to −1 as shown
in [30]. Unfortunately, it does not seem evident how one
can force the output of an isogeny computation to produce
such a = −1 twisted Edwards curves instead of one with
seemingly random a and d curve coefficients except for
computing this at the cost of a modular inversion. Therefore,
we assume the usage of the general curve shape instead in
the remainder of the paper.

It should be noted that the faster addition formulas
from [30] are due to the usage of the extended coordinate
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TABLE 1
Overview of the cost of elliptic curve (differential) addition, doubling,

and tripling operations expressed as the number of multiplications (M),
squarings (S) or multiplications by a curve constant (D) in the field K
for twisted Edwards curves and Montgomery curves in the setting of
curve arithmetic for SIDH. The costs in brackets are when the output

coordinate T for extended twisted Edwards is not computed.

twisted Edwards curves
Coordinates add double triple [16]
Projective [6] 10M + 1S + 2D 3M + 4S + 1D 9M + 3S + 1D
Extended [30] 9M + 1D 4M + 4S + 1D 11M + 3S + 1D

(8M + 1D) (3M + 4S + 1D) (9M + 3S + 1D)

Montgomery curves
diff. add double triple

XZ [46] 4M + 2S 2M + 2S + 2D 5M + 5S + 2D

system which uses an additional coordinate T . However,
this T coordinate is not used in the doubling formula.
Hence, as explained in [30], when the typical windowed
algorithm is used for scalar multiplication one can reduce
the cost of the addition formula by one multiplication (by
not computing the T coordinate), use the faster projective
doubling formula for all but the last doubling and use the
extended doubling formula for the final doubling. In total
this is equivalent to using both, the faster point addition
from the extended coordinate system and the faster point
doubling from the projective coordinate system. We discuss
the application and impact of this technique to the SIDH
setting in Section 4.2.2.

2.3 Addition Chains

Addition chains [51] are a well known method for speeding-
up modular exponentiation (or, equivalently, scalar multipli-
cation when the group law is additive). An addition chain
is simply a way to construct a specific number by starting at
1 and repeatedly summing up some of the previous terms.

More formally, an addition chain for n is a sequence
of integers 1 = a0, a1, a2, . . . , ar = n such that ai =
aj + ak, for 0 ≤ i ≤ r and 0 ≤ j, k < i (cf. [37]).
Given an addition chain for n ∈ Z one can calculate
the elliptic curve scalar multiplication nP by computing
P = a0P, a1P, a2P, a3P, . . . , arP = nP . Since every term
aiP is computed using a point addition or a point doubling,
finding a shorter addition chain for n provides a speed-up
for the scalar multiplication. (The commonly used window-
ing [12] based elliptic curve scalar multiplication algorithm
can also be seen as an addition chain.) In the setting of
elliptic curve scalar multiplication one can use the so-called
addition-subtraction chains where every element in the chain
can be written as ai = aj + ak, or ai = aj − ak because
elliptic curve point subtraction (or addition of a negated
point) can be computed efficiently [48].

Moreover, to simplify, it is common to restrict the defini-
tion of addition chains to addition chains without obviously
unnecessary steps [26]. However, because we are dealing
with addition-subtraction chains we cannot require that the
a0, . . . , ar be ordered ascendingly and we cannot require
that all ai < n. Hence, we keep the following conditions for
our addition-subtraction chains

• no duplicates: ai 6= aj for 0 ≤ i, j,≤ r where i 6= j,

• all intermediate values must be used: for all aj (0 ≤
j < r) there is a ak and ai such that ai = aj + ak
with j < i ≤ r and 0 ≤ k < i.

In fact, when presenting our cost function for chains it
will become clear that not explicitly stating j, k for ai =
aj + ak leads to ambiguous results. We therefore use the
formal chains introduced by Clift [17] for our cost calculation.
A formal addition chain additionally specifies exactly which
terms have been used to form a specific sum. Clift does so
using two mappings γ and δ with γ(i) = j and δ(i) = k for
our above example. In practice, we can simply store indices
into the previous steps to solve this problem.

To accelerate our search for good addition chains we
restrict it to star chains, also known as Brauer chains [12].
These are chains where each step has to use the result of the
previous step. The formula that must hold for all elements
thus becomes ai = ai−1 ± ak. Star chains are known to be
suboptimal. However, empirically star chains give close to
optimal results in length and because the last value is always
used a certain amount of storage optimization is built-in.

3 FAST ARITHMETIC MODULO 2xpy ± 1

The SIDH key-exchange approach uses isogeny classes of
supersingular elliptic curves with smooth orders so that
isogenies of exponentially large but smooth degree can be
computed efficiently as a composition of low degree isoge-
nies. To instantiate this approach let p and q be two small
prime numbers and let f be an integer cofactor, then the idea
is to find a prime m = f · qx · py ± 1. It is then possible to
construct a supersingular elliptic curve E defined over Fm2

of order (f · qx · py)2 [13] to be used in SIDH. For efficiency
reasons it makes sense to fix q to 2, this will become clear
in this section. In practice, most instantiations use q = 2
and p = 3. Moreover, we assume that the cofactor f = 1 to
simplify the explanation: our methods can be immediately
generalized for other values of f .

In this section we survey different approaches to opti-
mizing arithmetic modulo m = 2xpy±1 where p is an small
odd prime. The common idea is to use the special shape
of the modulus to reduce the number of multiplication
instructions needed in an implementation when computing
arithmetic modulo m. Typically, there are two approaches
to realizing this modular multiplication: the first approach
computes the multiplication and reduction in two separate
steps while the second approach combines these two steps
by interleaving them. We refer to these methods as non-
interleaved or separated and interleaved modular multipli-
cation, respectively.

Both of these approaches have advantages and disad-
vantages. For instance, intermediate results are typically
longer and therefore require more memory or registers in
the non-interleaved approach. In some applications one
approach is clearly to be preferred over the other. One such
setting is when computing arithmetic in Fm2 = F(i) for
i2 = −1 (as used in SIDH). Let a, b ∈ Fm2 and write
a = a0 + a1 · i and b = b0 + b1 · i, then c = a · b = c0 + c1 · i
where c0 = a0b0 − a1b1 and c1 = a0b1 + a1b0. This can be
computed using four interleaved modular multiplications
or four multiplications and two modular reductions. When
using Karatsuba multiplication [33] this can be reduced
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to three multiplications and two modular reductions by
computing c1 as (a0 + a1)(b0 + b1) − a0b0 − a1b1. In the
interleaved setting this requires three modular multiplica-
tions while in the non-interleaved setting computing three
multiplications and two modular reductions suffice. Hence,
when computing modular arithmetic in Fm2 , which is the
setting in SIDH, the non-interleaved modular multiplication
is to be preferred.

In this section we describe techniques to speed up both,
modular reduction and interleaved modular multiplication
plus reduction when using primes of the form 2xpy ± 1.

3.1 Using the Barrett reduction

The first implementation of SIDH [4] uses the Barrett reduc-
tion (see Section 2.1.2) to compute modular reductions and
uses primes of the form 2x3y − 1 to define the finite field.
The special shape of the modulus is not exploited in this
implementation.

As explained in Section 2.1.2 the Barrett reduction re-
quires two multiplications, one with the precomputed con-
stant µ and one with the modulus m. It seems non-trivial to
accelerate the multiplication with

µ =

⌊
r2n

m

⌋
=

⌊
r2n

2xpy ± 1

⌋
since this typically does not have a special shape. The mul-
tiplication with m = 2xpy ± 1, however, can be computed
more efficiently since the product a ·m = a · 2x · py ± a and
this can be computed using shift operations (for the 2x part)
and a shorter multiplication by py followed by an addition
or subtraction depending on the sign of the ±1.

Assuming 2x ≈ py , which is true for the SIDH setting,
the computation of the least significant n + 1 computer
words of q2 · m is sufficient. This results in a total of
CostBarrett( 3

2n,
1
2n) = 5

8n
2+ 13

4 n+1 multiplication instruc-
tions.

3.2 Using the Montgomery reduction

It is well-known, and has been rediscovered multiple times,
that performance of Montgomery multiplication can benefit
from a modulus of a specific form (cf. e.g., [43], [1], [36],
[28], [9], [10]). When m = ±1 mod rn then µ = −m−1 =
∓1 mod rn and the multiplications by µ become negligible.
Such moduli are sometimes referred to as Montgomery-
friendly primes. In the SIDH setting m = 2xpy±1 = ±1 mod
2x, hence one can reduce the number of multiplications
required when multiplying with µ. This is used by the
authors of [19], [42], [31] in their high-performance SIDH
implementation. Their non-interleaved approach for Mont-
gomery multiplication uses the so-called product scanning
technique [38], which was introduced in [23], which elim-
inates all multiplications by µ. We describe this approach
and some variants below in detail. We note that in the
hardware implementations described in [41], [40] a high-
radix variant of the Montgomery multiplication suitable for
hardware architectures [50], [8] is used.

3.2.1 Interleaved Montgomery multiplication.
As described in Section 2.1.1 the interleaved Montgomery
multiplication approach interleaves the computation of the
product and the modular reduction. We now describe an
optimization when computing multiplications modulo m =
2xpy − 1. Every step of the algorithm computes the product
of a single digit from the input ã with all digits from the
other input b̃ and reduces the result after accumulation by
one digit. We write our integers in a radix-R representation.
For a fixed word size w, pick B ∈ Z>0 such that Bw ≤
x and let R = 2Bw. This removes the multiplication with
the precomputed constant µ since µ = −m−1 mod R =
−(2xpy − 1)−1 mod 2Bw = 1. Hence, after initializing c to
zero Eq. (1) simplifies to

c←
n∑
j=1

djR
j−1 + d02x−Bwpy (4)

where d = c + ai · b =
∑n
j=0 djR

j and this computation is
repeated

⌈
N
Bw

⌉
times.

The computation cost expressed in the number of multi-
plication instructions of Eq. (4) is⌈

N

Bw

⌉(
B

⌈
N

w

⌉
+B

(⌈
N

w

⌉
−B

))
. (5)

However, since in practice N ≈ 2x, the N -bit modulus
2xpy±1 has a special shape which ensures that the multipli-
cation by 2xpy in Eq. (4) can be computed more efficiently
for some values of B. We do not consider shifting for multi-
plying with 2x here because this is discussed in Section 3.5.
The authors of [19] used B = 1 in their implementation but
this analysis shows that using a larger radixR = 2Bw results
in the same number of multiplication instructions required.

To summarize, using B = 1 (or any larger B such that
B ≡ 0 mod n, where n =

⌈
N
w

⌉
) and assuming py fits in

n
2 computer words and that n is even, the total cost of the
modular reduction can be reduced from n2+n (for a generic
Montgomery multiplication approach) to 1

2n
2 (when using

the special prime shape) multiplication instructions. This is
a performance increase by more than a factor two.

3.2.2 Non-interleaved Montgomery multiplication
The non-interleaved Montgomery approach, where the mul-
tiplication c = a · b is performed first and the modular
reduction is computed in a separate next step can be done in
exactly the same way as the interleaved approach. The idea
is to use the product c immediately (instead of initializing
this to zero in the first iteration when computing Eq. (4))
and therefore not adding the aib values. This means that the
values of d are not bounded by rn+1 anymore but by r2n+1

instead which requires computing more additions while the
number of multiplications remains unchanged compared to
the interleaved approach at n2

2 (when taking advantage of
the special prime shape).

3.3 Using an unconventional radix
Another idea is to use a function of the prime shape as the
radix of the representation. This is exactly what a recent ap-
proach [34] suggested in the setting of designing a hardware
implementation.
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TABLE 2
Estimates of the number of multiplication instructions required when

using interleaved (I) modular multiplication non-interleaved (NI)
modular reduction approaches for a modulus stored in n computer

words. It is assumed that the size of the input(s) to the modular
multiplication and modular reduction have n and 2n computer words,

respectively and that 2x ≈ py and both fit in n/2 words.

approach method moduli family # muls

Montgomery [45]
{

I generic 2n2 + n

I 2xpy − 1 3
2
n2

radix directly [34] I 2 · 2x · 3y − 1 17
16
n2 + 13

4
n+ 2

Barrett [5]
{

NI generic n2 + 4n+ 1

NI 2xpy ± 1 5
8
n2 + 13

4
n+ 1

Montgomery [45]
{

NI generic n2 + n

NI 2xpy − 1 n2

2

radix directly (new - v1) NI 2xpy − 1 5
8
n2 + 13

4
n+ 1

radix directly (new - v2) NI 2xpy − 1 1
2
n2 + 2n+ 1

radix directly (new - v3) NI 2xpy − 1 1
2
n2 + 5

4
n+ 1

This approach interleaves the modular multiplication
and the reduction and does not compete with the non-
interleaved approaches when arithmetic in quadratic exten-
sion fields is required, as for SIDH. We introduce a non-
interleaved approach inspired by this technique. Let the
radix R = 2xpy > m and assume throughout this section
that r

n
2−1 ≤ 2x < r

n
2 , the multiplication counts can be

trivially adjusted when these bounds are different. Then
after a multiplication step c = a · b (0 ≤ c < m2) write
this integer in the radix-2xpy representation c = c1 · R + c0
and compute c′ ≡ c mod m as c′ ≡ c1 · R + c0 ≡
c1(m + 1) + c0 ≡ c1 + c0 (mod m) where 0 ≤ c′ < 2R.
Hence, the main computational complexity is when com-
puting the Barrett reduction to write c in the radix-2xpy

representation. The naive way of computing this (denoted
version 0) simply does this directly using the Barrett re-
duction at the cost of CostBarrett(2n, n) = n2 + 4n + 1
multiplication instructions. By simplifying and doing the
division by 2x separately we obtain a method which needs
CostBarrett( 3

2n,
1
2n) = 5

8n
2+ 13

4 n+1 multiplication instruc-
tions (since r

n
2−1 ≤ 2x < r

n
2 ) as outlined in the Barrett

discussion. We denote this approach version 1.
However, we can do even better by using the folding

approach (see Section 2.1.4). By choosing α = nw we can
reduce the input c from 3

2n words to n words at the cost
of 1

4n
2 multiplication instructions. Afterwards it suffices to

compute CostBarrett(n, 12n) = n2

4 + 2n + 1 multiplication
instructions: the total number of multiplication instructions
to compute the modular reduction becomes 1

2n
2 + 2n + 1

which is significantly better compared to version 1. We
denote this version 2.

When applying another folding step we can use α =
0.75nw such that we reduce the input from n words to
n − x + 0.5n = 0.75n words at the cost of another 1

8n
2

multiplication instructions. The total cost to compute the
modular reduction is slightly reduced compared to version 2
to 1

4n
2 + 1

8n
2 + CostBarrett(0.75n, 0.5n) = 1

2n
2 + 5

4n + 1.
We denote this version 3. Computing additional folding
steps does not lower the number of required multiplication
instructions.

Table 2 summarizes our findings from this section. Note

that in the interleaved setting the cost for both the multi-
plication and the modular reduction are included while for
the non-interleaved algorithms only the modular reduction
cost is stated. The user can choose any asymptotically fast
multiplication method in this latter setting. From Table 2 it
becomes clear that the approach from [34] is to be preferred
in the interleaved setting while the Montgomery approach
is best in the non-interleaved setting. As mentioned before,
the SIDH setting favors the non-interleaved approach due to
the computation of the arithmetic in a quadratic extension
field. Moreover, assuming the multiplication part is done
with one level of Karatsuba, at the cost of 3

4n
2 multiplication

instructions, the non-interleaved approach has a total cost of
5
4n

2 and is faster compared to the interleaved approach for
all positive n < 18. Hence, independent of the application,
using the non-interleaved Montgomery algorithm is the best
approach for moduli up to 1100 bits.

3.4 Alternative implementation-friendly moduli

The basic requirement for SIDH-friendly moduli of the form
2xpy ± 1 when targeting the 128-bit post-quantum security
level is x ≈ log2(py) ≈ 384. For security considerations the
difference between the bit-sizes of 2x and py can not be too
large.

We fix the word size of the target platform to 64 bits for
the following discussion. This can be adjusted for different
architectures if needed. Hence, we expect a modulus of
(around) n = 2·384

64 = 12 computer words. Table 2 sum-
marizes the effort expressed in the number of multiplication
instructions needed for modular multiplication when using
the interleaved approach or for the modular reduction when
using the non-interleaved approach. The approaches are
outlined in Section 3.1-3.3 and the estimates are given as
a function of n: the number of computer words required
to represent the modulus. We assume that the inputs to
the modular multiplication or reduction are n-words or 2n-
words long, respectively.

Below we discuss the properties of two moduli proposed
in SIDH implementations and constraints to search for other
SIDH-friendly moduli which enhances the practical perfor-
mance of the modular reduction even further. Lower secu-
rity levels like the 80-bit post-quantum security targeted by
Koziel et al. [40] for their FPGA implementation are out of
scope in this work.

3.4.1 The modulus m1 = 2(23863242)− 1.
This modulus was proposed in the first implementation of
SIDH [4] and used in the implementations presented in [4],
[34]. The disadvantage ofm1 is that dlog2(m1)e = 771 > 12·
64 which implies that n = 13 computer words are required
to represent the residues modulo m1. Hence, the arithmetic
is implemented using one additional computer word for the
same target of 128-bit post-quantum security. This increases
the total number of instructions required when implement-
ing the modular arithmetic. This is true for the modular
addition and subtraction but also for the Montgomery mul-
tiplication since it needs, for instance, to compute n = 13
rounds when using a Montgomery radix of 264 instead of
the 12 rounds for slightly smaller moduli. Moreover, when
using the special the Montgomery reduction algorithm a
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TABLE 3
SIDH-friendly prime moduli which target 128-bit post-quantum security.

prime shape bit sizes
2xpy ± 1 (x, dlog2(py)e, dlog2(2xpy ± 1)e)

23853227 − 1 (385, 360, 745)

23945154 + 1 (394, 358, 752)

23945155 − 1 (394, 360, 754)

23967131 + 1 (396, 368, 764)

23931791 + 1 (393, 372, 765)

23911988 − 1 (391, 374, 765)

multiplication with the value 233242 > 26·64 is required
which fits in bn/2c+ 1 computer words. Hence, the number
of required multiplication instructions is n ·

⌈
n
2

⌉
= 91 (see

Table 2) for an odd n.

3.4.2 The modulus m2 = 23723239 − 1.
This modulus is proposed in [19] and used in the implemen-
tations [19], [42]. The modulus m2 was picked to resolve the
main disadvantage when using m1: dlog2(4m2)e = 753 <
12 · 64 implies that the number of computer words required
to represent residues modulo m2 is n = 12 (which signifi-
cantly lowers the number of multiplication instructions re-
quired compared to when implementing arithmetic modulo
m1). However, when dividing out the powers of two (due to
the Montgomery radix, see Eq. (4)) we need to multiply by
2523239 which is larger than 26·64 and is therefore stored in
seven computer words. This implies that the multiplication
with this constant is more expensive than necessary and
explains why the estimate for the modular reduction from
Table 2 of n2/2 = 72 multiplication instructions is too opti-
mistic. When using m2 the correct number of multiplication
instructions required to implement the modular reduction is
n ·
(
n
2 + 1

)
= 84 as reported in [19]. As we point out below

this can be trivially remedied by using shift instructions.

3.4.3 Alternative moduli.
We searched for alternative implementation- and SIDH-
friendly prime moduli using constraints which enhance the
practical performance when using the fastest special mod-
ular reduction techniques from Section 3.1-3.3. Besides the
size requirement to target the 128-bit post-quantum security
(n = 12) we also set additional performance related con-
straints. We outline these requirements below when looking
for moduli of the form 2x · py ± 1.

1) p is small in order to construct curves in
SIDH, hence all the odd primes below 20, p ∈
{3, 5, 7, 11, 13, 17, 19}

2) require 2x to be at least six 64-bit computer words:
384 ≤ x < 450 and 2300 < py < 2450,

3) the size of modulus is n = 12 computer words, the
bit-length is not too small when targeting the 128-bit
post-quantum security: 2740 < 2xpy ± 1 < 2768,

4) the difference between the size of the two prime
powers is not too large (balance security): |x −
y log2(p)| < 40,

5) 2x · py + 1 or 2x · py − 1 is prime.

Table 3 summarizes the results of our search when taking
these constraints into account. The entry which maximizes

min(x, dlog2(py)e) is for the prime m3 = 23911988 − 1
where the size of 1988 is 374 bits. Moreover, dlog2(4m3)e =
767 < 12 · 64 which means one can use n = 12 using the
subtraction-less version of the Montgomery multiplication
algorithm. The input operand used for the multiplication in
the Montgomery reduction is 271988 < 26·64 which lowers
the overall number of multiplication instructions required
to the estimate of n2/2 = 72.

3.5 Benchmarking

Table 2 gives an overview of the cost of multiplication
modulo 2xpy ± 1 in terms of the word length n of a specific
modulus on a target computer platform when working
with the constraints as outlined in Section 3. In practice,
however, one carefully selects one particular modulus for
implementation purposes. The choice of this modulus is
first of all driven by the selected security parameter, which
determines n, and secondly by the practical performance.
This latter requirement selects the parameters p, x, and
y and (up to a certain degree) can have some trade-offs
with the security parameter. In this section we compare
the practical performance of some of the most promising
techniques from Section 3 when using the prime moduli
from the proposed cryptographic implementations of SIDH
presented in [19] (since this is the fastest cryptographic
implementation of SIDH). Such a comparison between the
fastest techniques to achieve the various modular reduction
algorithms allows us to confirm if the analysis based on
the number of required multiplication instructions is sound.
Moreover, this immediately gives an indication of the real
practical performance enhancements the various techniques
or different primes give in practice.

Our benchmark platform is an Intel Xeon CPU E5-2650
v2 (running at 2.60GHz). We have created a benchmarking
framework where we measure the number of cycles using
the time stamp counter using the rdtsc instruction. More
specifically, we measure the time to compute 105 dependent
modular reductions and store the mean for one operation.
This process is repeated 104 times and from this data set
the mean x̄ and standard deviation σ are computed. After
removing outliers (more than 2.5 standard deviations away
from the mean) we report these findings as x̄± σ in Table 4.
This table also summarizes the number of various required
assembly instructions used for the modular reduction im-
plementation.

Our base line comparison is the modular reduction
implementation from the cryptographic software library
presented in [19] which can be found online [20]. This im-
plementation includes the conditional subtraction (computed
in constant-time) although this is not strictly necessary. In
order to make a fair comparison we include this conditional
subtraction in all the other presented modular reduction
algorithms as well. As indicated in Table 4 and discussed
in Section 3.4 the implementation from [19] requires 84
multiplication instructions and uses the optimized non-
interleaved Montgomery multiplication approach (which
corresponds to the B = 1 setting in our generalized de-
scription from Section 3.2).

We experimented with a Montgomery multiplication
version where B = 2 (see Section 3.2). This corresponds to
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TABLE 4
Benchmark summary and implementation details. The mean x̄ and standard deviation σ are stated expressed in the number of cycles together

with the number of assembly instructions used in the implementation.

#cycle x̄± σ) #mul #add #mov #other
23723239 − 1 (B = 1) [19] 254.9± 9.5 84 332 157 41

23723239 − 1 (B = 2) this paper 275.3± 11.2 84 358 202 59

23723239 − 1 (shifted) this paper 240.2± 10.9 72 299 223 85

23911988 − 1 this paper 224.5± 8.8 72 292 145 38

using a radix-2128 representation and although this should
not change the number of multiplications required (since
n = 12 is even) this could potentially lower the number of
other arithmetic instructions. However, due to the limited
number of registers available we had a hard time imple-
menting the radix-2128 arithmetic in such a way that all
intermediate results are kept in register values. This means
we had to move values in- and out of memory which in turn
led to an increase of instructions and cycle count. This can
be observed in Table 4 which shows that the implementation
of this approach is slightly slower to the one used in [19].
When implemented on a platform with sufficient registers
this approach should be at least as efficient as the approach
which uses B = 1.

An immediate optimization is to compute the Mont-
gomery reduction for this particular modulus as

c← c+ (µc mod R)m

R
=
c+ (c mod 264)(23723239 − 1)

264

= 2256252c03239 +

23−j∑
i=1

ci2
64(i−1).

This process is repeated 12 times (for j = 0 to 11) and
the input c is overwritten as the output for the next itera-
tion. The advantage from this approach is that multiplying
with 3239 < 26·64 reduces the number of multiplication
instructions (as explained in Section 3.4). The price to pay is
the additional shift of 52 bits (the multiplication with 252).
This approach lowers the number of required multiplication
instructions by a factor 6/7 and this results in a performance
increase of over five percent (see Table 4).

Finally, we implemented arithmetic modulo 23911988−1:
the prime that is the result of our search for SIDH-friendly
primes. The number of multiplications required is exactly
the same as for the “shifting” approach but it avoids the
computation of the shift operation.

c← c+ (µc mod R)m

R
=
c+ (c mod 264)(23911988 − 1)

264

= 2320c0(271988) +

23−j∑
i=1

ci2
64(i−1).

Since, where the multiplication by 252 is computed using
shifts, the multiplication by 2320 is a straight-forward re-
labeling of the indices of the 64-bit digits. This simplifies
the code and Table 4 summarizes the reduction of the total
number of instructions required for the implementation.
Moreover, this immediately results in an almost 12% speed-
up in the modular reduction routine.

In a follow-up work [25] to [11], fast arithmetic modulo
23723239 − 1 is presented (among other things). They show

how to achieve significantly faster implementation results
using certain newer Intel instructions which are not present
on the benchmark architecture used in this work. These
complementary improvements can also be used in the set-
ting of our newly proposed SIDH-friendly moduli.

4 CURVE ARITHMETIC USING ADDITION-
SUBTRACTION CHAINS

The main computations in SIDH are ellitpic curve scalar
multiplications of powers of 2 and p and evaluations of
isogenies using Vélu’s formula [54]. In this section we inves-
tigate if curve models other than Montgomery curves can be
used to speed up the elliptic curve scalar multiplication.

We are motivated by the fact that asymptotically, when
the bit-length of the scalar goes to infinity, for random
scalars the usage of twisted Edwards curves is faster com-
pared to Montgomery curves. This is the case since one
can use large window sizes when computing the scalar
multiplication with twisted Edwards curves: something
which is not possible with the differential addition law
of Montgomery curves (see Section 2.2 and the counts in
Table 1). We are aware of the y-only efficient differential
formulas for twisted Edwards curves (see [27], [14], [32])
and their potential application to SIDH [44] but since these
are comparatively slower than the differential addition law
of Montgomery curves and since our addition-subtraction
chains do not work with a differential group law this is out
of the scope for our investigation here. More specifically, for
a fixed scalar pz , for some integer z such that 1 ≤ z ≤ y,
we search for the optimal addition-subtraction chain (in
terms of arithmetic in Fq2 see Section 4.2) which can be
computed using the group law on twisted Edwards curves
and check if this outperforms the differential approach on
using Montgomery curves. The impact on the computation
of the isogenies when using this different curve model is
left as future work but as outlined in [18] this computation
is practical.

4.1 Outperforming Montgomery Curves?

Before starting to describe our approach to search for ef-
ficient addition-subtraction chains let us take a step back
and investigate if twisted Edwards curves can outperform
Montgomery curves in the setting of SIDH. The extremely
efficient doubling and tripling formulas for Montgomery
curves, which are used to compute elliptic curve scalar
multiplication of 2x and 3y in practical implementations,
seem hard to outperform with another curve model. In
order to quantify this we ran some experiments with the
optimized implementation of the SIKE protocol [3]: on
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TABLE 5
The cost of different scalar multiplications expressed in multiplications
(M) and squarings (S) in Fq2 as well as the number of multiplications

per bit of the scalar.

operation cost in Fq2 #M/bit
Montgomery tripling (3) 7M + 3S 6.78
Montgomery quintupling (5) 11M + 7S 7.00
Montgomery septupling (7) 15M + 9S 7.75
twisted Edwards doubling (2) 4M + 4S 7.01
twisted Edwards tripling (3) 10M + 3S 7.73
twisted Edwards quintupling (5) 18M + 8S 10.34
twisted Edwards septupling (7) 25M + 7S 10.42

various x86 64 architectures the ratio between the time to
compute a modular squaring and a modular multiplication
in Fq2 is 0.75 (for other ratios the discussion below can
be adjusted accordingly). Table 5 summarizes the cost to
compute certain scalar multiples for Montgomery curves
and twisted Edwards curves when using the counts given
in Table 1. The cost is expressed in multiplications (in Fq2 )
per bit of the scalar.

From Table 5 it becomes clear that there is indeed no
hope for twisted Edwards curves to outperform Mont-
gomery curves when p ∈ {3, 5}. Even if one would only
use twisted Edwards point doublings to compute the re-
quired bit-length the cost would be higher than repeat-
edly applying the triple or quintuple cost for Montgomery
curves. However, motivated by our findings in Section 3,
where we enhance the performance of the arithmetic in
Fq2 by selecting a modulus with p > 5, and the results
from [18], which shows how to compute isogenies with
such modified moduli, we think that a systematic search
for optimal addition-subtraction chains is an interesting
alternative route to look for optimization potential for SIDH.
This approach is outlined below.

4.2 Finding Addition-Subtraction Chains
To optimize the elliptic curve scalar multiplications with
a prime ` > 2 the idea is to search for fast addition-
subtraction chains for powers of `. The expectation is that
for large scalars (e.g. larger powers of `) better chains can
be found; better is measured as lowering the number of
multiplications in Fq2 per bit of the scalar to compute
the various elliptic curve group operations in the addition-
subtraction chain.

4.2.1 Generating Chains
The search for such addition-subtraction chains is done with
a recursive algorithm which iterates over all possible chains.
This approach is outlined in Algorithm 1. However, in order
to speed up this search one can set global parameters which
control the maximum number of steps in the chain as well
as the maximum number of additions/subtractions. The
reasoning here is that most likely shorter chains, i.e. lower
number of elliptic curve group operations, also result in a
lower number of arithmetic operations in Fq2 . The same
is true for the threshold on the number of additions and
subtractions in the chain: overall it is expected that the
majority of the steps are doubling operations and only a
couple of other operations are required. In order to be more
flexible this threshold can be increased with the global c

Algorithm 1 Recursive approach “brute(chain,index)” to
find an addition-subtraction chain with restrictions on the
length and the number of additions / subtractions used.

Input:



Global.
nadd ∈ Z, number of additions used,

initialized to zero,
target ∈ Z, target number,
c ∈ Z, threshold which determines the

maximum number of steps,
maxsteps ∈ Z, maximum number of allowed

steps in the chain
maxnadd ∈ Z, maximum number of allowed

adds/subs in the chains,
Local.
i ∈ Z, current position in the chain,
chain, chain of length i.

Output: Store all chains found.
1: if chaini−1 = target then
2: maxsteps ← (i− 1) + c
3: Output or store chain: {chain0, . . . , chaini−1}
4: return
5: if i ≥ maxsteps or nadd > maxnadd then
6: return
7: chaini ← 2 · chaini−1
8: brute(chain, i+ 1)
9: if nadd ≤ maxnadd then

10: nadd← nadd + 1
11: for j ← 0 until j < i− 1 do
12: chaini ← chaini−1 + chainj
13: brute(chain, i+ 1)
14: if chaini−1 > chainj then
15: chaini ← chaini−1 − chainj
16: brute(chain, i+ 1)
17: nadd← nadd− 1

parameters as outlined in Algorithm 1. We have performed
a search for various powers with the following starting
conditions as outlined in this table.

scalar maxsteps maxnadd

3x 2x+ 3 x
5x 3x+ 4 x
7x 4x+ 5 2x
11x 5x+ 6 2x
13x 5x+ 6 2x
17x 5x+ 6 2x
19x 6x+ 7 2x

For all computations we used c = 1 to increase the threshold
for the maximum number of additions / subtractions by
one.

4.2.2 Arithmetic Cost of Chains
After these chains have been found we have to find the
“optimal” ones. This is done by expressing the cost for the
chain in arithmetic operations in Fq2 according to Table 1
and selecting the one which minimizes this cost. This is not
completely trivial: since efficient triple formulas are known
we have to identify, in a post-processing step, triple steps
in the chains produced by Algorithm 1. This has to be done
carefully since these triple formulas compute 3 · c as 2 · c+ c
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TABLE 6
Overview of the best addition-subtraction chains found for usage with twisted Edwards curves (top part of the table) and the differential addition

chains for usage with Montgomery curves. The cost is expressed in group operation as explained in the text and in multiplications in Fq2 where we
assume that the ratio between the cost of a modular squaring and a modular multiplication is 0.75. #s refers to the amount of storage required for

intemediate values.

scalar chain eAp eAe pDp pDe pTp pTe #s #M #M/bit
3x 3x 0 0 0 0 x 0 1 12.25 · x 7.73
51 22 + 1 1 0 1 1 0 0 2 24 10.34
52 22 · 3 · 2 + 1 1 0 2 1 1 0 2 43.25 9.31
53 (22 + 1) · 22 · 3 · 2 + 5 1 1 3 2 1 0 2 68.25 9.80
54 (2 · 3 · 2 + 1) · 23 · 3 · 2 + 1 2 0 4 2 2 0 2 86.5 9.31
55 ((22 + 1) · 2 · 3 · 2 + 5) · 23 · 3 · 2 + 5 2 1 5 1 2 0 2 111.5 9.60
56 ((25 − 1) · 26 + 31) · 23 + 1 2 1 11 3 0 0 3 129 9.26
71 3 · 2 + 1 1 0 0 1 1 0 2 29.25 10.42
72 23 · 3 · 2 + 1 1 0 3 1 1 0 2 50.25 8.95
73 ((23 · 3 · 2 + 1) · 3 · 2 + 49) 1 1 3 2 2 0 2 80.5 9.56
74 (22 · 3 · 2 + 1) · 24 · 3 · 2 + 1 2 0 6 2 2 0 2 100.5 8.95
111 2 · 3 · 2 + 1 1 0 1 1 1 0 2 36.25 10.48
112 (22 + 1) · 22 · 3 · 2 + 1 2 0 3 2 1 0 2 67.25 9.72
113 (((26 − 1) + 64) · 2 + 63) · 22 + 63 3 1 6 3 0 0 2 103 9.92
131 2 · 3 · 2 + 1 1 0 1 1 1 0 2 36.25 9.80
132 (3 · 2 + 1) · 22 · 3 · 2 + 1 2 0 2 2 2 0 2 72.5 9.80
133 ((24 · 3 · 2− 1) + 96) · 2 · 3 · 2 + 95 2 1 5 2 2 0 2 103.5 9.32
171 24 + 1 1 0 3 1 0 0 2 38 9.30
172 24 · 32 · 2 + 1 1 0 4 1 2 0 2 69.5 8.50
173 (24 + 1) · 24 · 32 · 2 + 17 1 1 7 2 2 0 2 108.5 8.85
191 32 · 2 + 1 1 0 0 1 2 0 2 41.5 9.78
192 (22 + 1) · 22 · 32 · 2 + 1 2 0 3 2 2 0 2 79.5 9.36
193 (27 − 1) · 33 · 2 + 1 2 0 6 2 3 0 2 112.75 8.85

scalar chain Differential addition chains A T #s #M #M/bit
3 (1 · 2 + 1) 0 1 2 10.75 6.78
5 (1 · 2 + 1) + 2 1 1 3 16.25 7.00
7 (1 · 2 + 1) + 1 + 3 2 1 3 21.75 7.75
11 (1 · 2 + 1) + 1 + 3 + 4 3 1 3 27.25 7.88
13 (1 · 2 + 1) + 2 + 3 + 5 3 1 3 27.25 7.36
17 (1 · 2 + 1) + 1 + 3 + 3 + 7 4 1 3 32.75 8.01
19 (1 · 2 + 1) + 2 + 2 + 5 + 7 4 1 3 32.75 7.71

but the intermediate result 2 · c is not directly stored: hence,
if this is used in an addition later in the chain these more
efficient formulas can not be applied.

To accurately compute the cost of an addition-
subtraction chain it is assumed twisted Edwards curves are
used together with extended twisted Edwards coordinates
as outlined in Section 2.2. This means that one should be
careful when to compute or omit the calculation of extended
T coordinate since this has a direct impact on the arithmetic
cost in Fq2 . Let us write an elliptic curve operation O
as aOb where O ∈ {A,D,T} (which correspond to point
addition (A), point doubling (D), and point tripling (T)) and
the a, b ∈ {p, e} denote if the in- or output of the elliptic
curve operation is in the projective coordinate ((p), no T -
coordinate) or extended coordinate system ((e), with T -
coordinate). This gives the following six options in practice:
eAp, eAe, pDp, pDe, pTp, and pTe. The input to the point
addition is always in extended twisted Edwards form since
the T -coordinate is required, however the computation of
the output T -coordinate can be omitted if not needed. The
point doubling and point tripling formulas do not need the
T -coordinate as input.

The post-processing scripts go over the found chains
and, besides locating and merging the triple operations,
determine when the T -coordinate is required and when not.
It should be noted that it is not immediately clear if the
result of an operation O might require the computation of

the T -coordinate. This extended coordinate might not be
immediately needed for the next step in the chain; however,
when this value is later used in a point addition then
this elliptic curve point should be stored together with the
extended coordinate T . Hence, the situation in SIDH is
different from the one in elliptic curve cryptography where
in a windowing algorithm one can assume the precomputed
points always are in extended form (see [30]). The usage
of extended coordinates comes at a slightly higher price in
SIDH. A summary of our findings is presented in Table 6.
When displaying the chains the second operand to the point
addition has occurred before in the computation.

4.3 Discussion of Results
As can be seen from Table 6 the cost expressed in mul-
tiplication per bit of the scalar used in the elliptic curve
scalar multiplication does go down when multiplying with
larger scalars (i.e. addition chains for primes raised to larger
exponents). In order to make an easy comparison the lower
part of Table 6 shows the optimal differential chains for
usage with Montgomery curves. It should be noted that
the notation for the chains is slightly different compared
to the upper part of the table: this is to emphasize that when
adding a term the difference has occurred in the chain as
well. Moreover, the notation (1 · 2 + 1) means the chain
starts with the computation of a triple but in contrast to the
twisted Edwards formula used the value 2 · 1 and 3 · 1 are
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computed and stored which means the value 2 can be used
later.

Hence, we were not able to find any addition-subtraction
chains which when used in combination with the extended
twisted Edwards coordinates result in a speed-up for the el-
liptic curve scalar multiplication in SIDH. When one simply
applies the differential chains for the primes and applies
them repeatedly to compute the scalar multiplication for
higher powers using the efficient Montgomery arithmetic
the result always outperforms more advanced addition-
subtraction chains as far as we could verify. For larger num-
bers, addition chains will become more useful for twisted
Edwards curves because of the differential restriction on
Montgomery curves. However, given that chains for such
large numbers are difficult to find and the generally more
expensive operations it is unclear if twisted Edwards curves
can become faster in this setting.

5 CONCLUSIONS AND FUTURE WORK

We have studied various arithmetic properties which are
useful for enhancing the performance in a recent post-
quantum key encapsulation candidate based on the hard-
ness of constructing an isogeny between two isogenous
supersingular elliptic curves defined over a finite field.
We have provided an overview of different techniques to
compute arithmetic modulo 2xpy ± 1. Although we have
surveyed this in more generality it turns out that the non-
interleaved Montgomery reduction which is optimized for
such primes is the most efficient approach in practice. Addi-
tionally, we have identified other moduli suitable for SIDH
which allow even faster implementations. Furthermore, we
have analyzed the relative costs of Montgomery curves and
the twisted Edwards family of curves which allows precom-
puting more efficient addition chains. We found multiple
efficient addition-subtraction chains for the scalar powers
required in the key encapsulation mechanism computation.
However, based on these results we have to conclude that
these more efficient chains cannot compensate for the more
expensive group law in twisted Edwards curves.

Incorporating such efficient addition-subtraction chains
into the computation of the isogeny tree presents an inter-
esting challenge because the algorithm for calculating the
optimal tree given by Jao and De Feo [21] cannot be easily
generalized to arbitrary steps since the problem becomes
much harder.
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