
1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2856123, IEEE
Transactions on Information Forensics and Security

1

IoT-NUMS: Evaluating NUMS Elliptic Curve
Cryptography for IoT Platforms

Zhe Liu Senior Member, IEEE, Hwajeong Seo Member, IEEE

Abstract—In 2015, NIST held a workshop calling for new
candidates for the next generation of elliptic curves to replace
the almost two-decade old NIST curves. NUMS (Nothing Upon
My Sleeves) curves are among the potential candidates presented
in the workshop. Here, we present the first implementation
of the NUMS256, NUMS379, and NUMS384 curves on two
types of embedded devices. The implementations, which exhibit
regular, constant-time execution to protect against timing and
simple side-channel attacks, set new speed records and advance
the state-of-the-art of curve-based(without endomorphism) scalar
multiplication on 8-bit AVR and 32-bit ARM11 microcontrol-
lers. For example, our NUMS256 implementation computes a
scalar multiplication in∼1.4 million cycles on a low-power 32-bit
ARM11 microcontroller using mixed C and Assembly language.
These results demonstrate the potential of deploying IoT-NUMS
on constrained and low-power applications such as protocols for
the Internet of Things (IoT).

Keywords—NUMS curves, AVR ATmega, ARM11, efficient soft-
ware implementation.

I. INTRODUCTION

New security issues and designs for the Internet of Things
(IoT) have been an important area of research due to the
emergence of IoT applications. In general, the use cases
include resource constrained embedded processors, which in-
troduce challenges on the use of Public Key Cryptography
(PKC) due to the lack of available memory and higher costs
attached to energy consumption. PKC protocols including
digital signatures and key agreement schemes usually lead to
significant overheads in terms of execution time and energy
consumption, which are undesirable for the low-end battery-
powered IoT processors. A common sensor node features an 8-
bit microcontroller clocked at a frequency of less than 32 MHz
and equipped with a few kilobytes (KB) of data and stack me-
mories and up to 256 KB of flash memory for storing program
code and constants. Under these computational constraints, the
most precious resource of IoT device is energy. Once deployed
in the field, the platforms are expected to work several months

Z. Liu is with Nanjing University of Aeronautics and Astronautics, China.
E-mail:sduliuzhe@gmail.com

H. Seo is with Hansung University, Korea.
Manuscript received July XX, 2017; revised ...

or years, with the limited energy supplied by two AA batteries
that cannot be easily replaced or even recharged. To minimize
the energy consumption, lightweight PKC implementations are
a fundamental requirement. Among the existing candidates for
PKC, elliptic curve cryptography (ECC) is the most promising
one compared to other finite field-based (Diffie-Hellman) or
integer-factoring-based cryptosystems (RSA). While the best
classical attacks against RSA and Diffie-Hellman over finite
fields are sub-exponential attacks while the Elliptic Curve
Discrete Logarithm Problem (ECDLP) remains exponential
and are based on the Pollard’s rho attack. This translates into
smaller key sizes and bandwidth occupation for ECC. The
features of ECC has also promote the public-key cryptography
application in IoT solutions as, in many cases, transmitting
a bit is about orders of magnitude more expensive than
processing a bit in terms of energy consumption in Wireless
Sensor Networks for example.

Many elliptic curves are already standardized for several
years, for example, NIST standardized 15 elliptic curves,
designed by NSA, in the FIPS 186-2 standard together with
the ECDSA digital signature scheme in the year of 2000.
On the other hand, Edward Snowden, who worked many
years for NSA revealed in 2013 that the Dual EC DRBG
algorithm, presented as a cryptographically secure pseudo-
random number generator (CSPRNG), would possibly contain
a backdoor. In addition to that, new elliptic curves models
and optimized parameters with protection against side-channel
attacks have been found in the last years and therefore there is
consensus in the cryptographic community that elliptic curve
standards should be upgraded.

The first really efficient ECC software for an 8-bit processor
was introduced by Gura et al. at CHES 2004 [4]. They reported
an executed time of only 6.48 · 106 clock cycles for a full
scalar multiplication over a 160-bit SECG-compliant prime
field on the ATmega128. This high speed is mainly due to a
smart optimization of the multiple-precision multiplication, the
nowadays widely used hybrid method. Since the publication
of Gura et al’s paper, numerous research has been devoted to
improve the efficiency of ECC software implementation on the
ATmega128, overwhelmingly concentrating on enhancing the
hybrid multiplication technique or developing more efficient
variants of it. For instance, a further improvement of the hybrid

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2856123, IEEE
Transactions on Information Forensics and Security

2

method was reported by Scott et al. [26] via utilizing so-called
“carry catcher” registers to reduce the cycle count to 2651.
Uhsadel et al. [27] proposed an optimized method based on
the hybrid method and managed to decrease the execution time
to 2881 cycles for a (160 × 160)-bit multiplication (without
modular reduction). The so-called operand-caching method
which was presented by Hutter et al. [7] is the currently one of
the fastest approaches of the multi-precision multiplication of
two large integers on the ATmega128, following a similar idea
as the hybrid technique, namely exploiting the large number of
general-purpose registers to store (parts) of the operands [7].
This technique significantly reduced the number of required
load instructions via caching of operands outperforming the
related works by a factor of 10% to 23%. Seo et al. [25] impro-
ved this method minimizing the number of needed load/store
instructions and managed to boost the speed of total multiplica-
tion for public key cryptography. Moreover, there exist several
ECC implementations on ARM processors in the published
literature. The first to implement ECC over Cortex-M0+ were
Wenger and Unterluggauer [28] in 2013, who presented a side-
channel protected and resource saving scalar multi-precision
multiplication algorithm with constant running time. Later,
they revisited their work and improved the performance by
harnessing the drop-in module as well as the advanced MAC
hardware extension in CHES 2014 [29]. In 2015, Dull et
al. [8] proposed several optimized implementation approaches
of Curve25519 across a wide range of processor types in-
cluding 8-bit AVR ATmega, 16-bit MSP430 and 32-bit ARM
Cotex-M0, setting new speed records for scalar-multiplication
in constant runtime. Furthermore, Longa [24] presented a high-
speed implementation of the recently proposed elliptic curve
FourQ [22] over 32-bit ARM processors with high security.
Later in 2018, Liu et al. [16] further developed this method
and managed to set new speed records for curve-based scalar
multiplication with constant time on 8/16/32-bit IoT embedded
devices.

In 2014, Microsoft Research team introduced NUMS curves,
a set of high-security elliptic curves designed to employ the
state-of-the-art algorithms with respect to speed and side-
channel countermeasures, which cover three security levels
(128-, 192- and 256-bit security) [2], [14], [15]. The curves
have a very simple and deterministic generation procedure
so that the possibility of introducing backdoors is greatly
minimized. For instance, in the previous curve generation
procedure by NIST/NSA, a seed would be chosen “at random”
and its hash would give rise to the curve coefficients. In this
procedure, there is no way to check if the parameter designer
had tested a large amount of distinct seeds until they had found
a curve with some weaknesses or backdoors. In particular, the
new approach for NUMS does not allow for such a flexibility in
choosing the curve coefficients as it is explained in Section II.
The underlying NUMS finite fields are also chosen in a way

that arithmetic is fast while prioritizing security at the same
time.

NUMS curves were previously implemented on some high-
performance end platforms including x64 devices running
Windows or Linux and achieved high-performance on those
target platforms [15]. The implementation results show that
NUMS curves are promising candidate for new elliptic curve
standards. On the other hand, due to the fact that NUMS is a
relatively recent proposal, there exist no implementations on
low-power embedded devices in the previous work.

In this paper, we first focus on the low-level algorithms for
typical NUMS finite field arithmetic targeting some typical
candidates on IoT platforms, which include 8-bit AVR and
32-bit ARM11 processors. Then, we provide carefully tailored
assembly implementations for multi-precision modular multi-
plication and squaring operations for the finite fields defined in
the three NUMS curves. In particular, we implement NUMS
curves including NUMS256, Ted37919, and NUMS384, which
combine the individual computational advantages of the twis-
ted Edward and Montgomery curves and efficient pseudo-
Mersenne primes. We achieve record-setting execution times
for scalar multiplication over 256, 379, and 384-bit security
prime fields. For example, NUMS256 curve only requires
1.357 M cycles on 32-bit ARM11 processor, which is more
than1.6x faster than the widely-used Curve25519. Our experi-
mental results also demonstrate that NUMS could also achieve
good performance on resource-limited IoT devices.

The remainder of this paper is organized as follows. In
Section II, we recap the NUMS curves and related choice
parameters. In Section III, we discuss the 8-bit AVR archi-
tecture and its features. In Section IV, we introduce effi-
cient multiplication and squaring for implementing NUMS256,
Ted37919, and NUMS384 on 8-bit AVR and 32-bit ARM11
microcontrollers. In Section V, we implement NUMS256,
Ted379 and NUMS384 by using a mixed of C and assembly
languages. Finally, Section VI concludes the paper.

II. PRELIMINARIES: NUMS CURVES

The 15 NIST-standardized curves in FIPS 186-2 do not
include all the advances in elliptic curve cryptography and
side-channel resistance anymore and new replacement curves
are being suggested by the cryptographic community in the
last few years 1. Furthermore, industry companies have a
priority demand for cipher-suites including perfect forward
secrecy support. With all of these new requirements in mind,
high-secure and fast arithmetic elliptic curves, namely NUMS
curves, were proposed [15] including important characteristics.

1https://safecurves.cr.yp.to/

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2856123, IEEE
Transactions on Information Forensics and Security

3

First, the NUMS curves support standard security levels,
including 128-bit, 192-bit, and 256-bit. Second, they use a
rigid technique for parameter generation where given the
security level as an input parameter, the curve and finite
field parameters are deterministically computed and therefore
the attack surface for backdoored constants and parameters
is reduced. Also, the underlying primes are defined to be
close to a power of 2 integer so that fast modular reduction
techniques can be employed such as the Barrett reduction [9].
Third, the NUMS curves work with the existing ECC protocol
infrastructure such as TLS 1.2, X.509v3/PKIX, and CMS.
Fourth, the NUMS curves can also achieve good performance
on both key agreement and digital signature schemes given
that they can be defined over the Weierstrass and the Twisted
Edwards forms. Fifth, the NUMS curves support standard
elliptic curve point representations compatible with existing
(x, y) coordinate encoding formats. Finally, NUMS offer an
implementation-friendly standard group and field order bit
lengths, allowing for a typical 64-bit length alignment (i.e.,
modern CPU register boundary).

In this paper, we target three NUMS curves covering 128-bit,
189-bit, and 192-bit security levels. NUMS256 and NUMS384
are defined over Montgomery curve and Ted37919 is defined
over Twisted Edward curve, respectively. The detailed descrip-
tions are as follows.

To generate Weierstrass NUMS-based curves, we are given
security level s ∈ {128, 192, 256}, and the prime p is selected
as a pseudo-Mersenne prime and parameterized by p = 22s−c
for a positive integer c. The prime will be chosen to be the one
for the smallest c such that p = 22s− c is prime. For the three
values of s above, the resulting primes satisfy p ≡ 3 mod 4.
The Weierstrass model of the respective curves will be such
that for the equation

Eb/Fp : y2 = x3 − 3x+ b.

We select the coefficient b 6= ±2 so that it has the smallest
possible absolute value and both the order of |Eb| and its
quadratic twist |E′b| are both prime.

Later, NUMS were extended to primes satisfying p ≡ 1 mod
4 in order to enable the use of the fast complete formulas in
the twisted Edwards model. They are curves of the form

Ed/Fp : −x2 + y2 = 1 + dx2y2,

whose quadratic twist is automatically given by

E′d/Fp : −x2 + y2 = 1 + (1/d)x2y2.

The criteria to select a curve of this form consists of picking a
prime which is close to a power of 2 and has a small constant
c. To find the curve equation coefficient, look for the smallest
d (in absolute value) which is a non-square in Fp such that

|Ed| = h · r and |E′d| = h′ · r′ where r, r′ are primes and
h = h′ = 4.

NUMS256 (or numsp256d1). This is a Weierstrass curve
offering a security of about 127.8 bits against Pollard’s rho
attack. The underlying prime is given by s = 128 and c = 189,
i.e.,

p256 = 2256 − 189.

The Weierstrass form uses the coefficient b = 152961 and is
given by

E152961 : y2 = x3 − 3x+ 152961,

while its isomorphic Montgomery form is given by the follo-
wing

EM,−61370 : y2 = x3 − 61370x2 + x.

Ted37919 (or numsp379t1). This is a twisted Edwards curve
offering security of about 188 bits. The selected prime is

p379 = 2379 − 19.

The respective twisted Edwards equation sets d = 143305 and
is given by

E143305 : −x2 + y2 = 1 + 143305x2y2.

This curve also has an isomorphic Montgomery equivalent
with smallest constant (A + 2)/4 which allows for more
efficient scalar multiplication.

NUMS384 (or numsp384d1). This is a Weierstrass curve
offering security of about 192 bits. The underlying prime sets
s = 192 and c = 317, i.e.,

p384 = 2384 − 317.

Its Weierstrass equation uses b = 34568 and is given by

E34568 : y2 = x3 − 3x+ 34568.

In the following, we also list other three well-known efficient
elliptic curves that are quite related to our work.

FourQ. FourQ, introduced by Costello and Longa in
2015 [22], is defined by the complete twisted Edwards [23]
equation:

E/Fp2 : −x2 + y2 = 1 + dx2y2,

where the quadratic extension field Fp2 = Fp(i)
for i2 = −1 and p = 2127 − 1, and d =
125317048443780598345676279555970305165 · i +
4205857648805777768770. The prime order subgroup
E(Fp2)[N], where N is the 246-bit prime corresponding
to #E(Fp2) = 392 · N , is used to carry out cryptographic
computations. In this subgroup, the neutral element is
given by OE = (0, 1) and the inverse of a point (x, y) is
given by (−x, y). FourQ provides two different types of

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2856123, IEEE
Transactions on Information Forensics and Security

4

endomorphisms(i.e. the CM and Frobenius endomorphisms),
which ensures its fastest implementations for key-exchange
and signature scheme.

Curve25519. Curve25519 was proposed by Daniel J. Bern-
stein, it provides roughly 128-bit security level together with
high performance on modern processors [18]. The arithmetic
is with equation

E/Fp : y2 = x3 + 486662x2 + x

defined over the field F2255−19.

Curve448. Curve448 was suggested by Mike Hamburg to
provide the high-end security together with the flexible im-
plementation for a wide range of different software platforms
[19]. In particular, the curve satisfies the SafeCurves policies
and eliminates the security vulnerabilities and flaws in previous
NIST curves [20]. The arithmetic is with equation.

E/Fp : y2 + x2 = 1 + dx2y2

defined over the field F2448−2224−1 and d = −39081.

III. IMPLEMENTATION ON 8-BIT AVR
MICROCONTROLLER

A. 8-bit AVR Architecture

Today, many widely-used low-cost smartcards and wireless
sensor nodes are equipped with 8-bit AVR microcontrollers
(e.g. the MicaZ mote). AVR microcontroller (such as the Atmel
ATmega128 or the ATxmega256A3) has an 8-bit RISC in-
struction set and a modified Harvard architecture that features
32 8-bit general-purpose registers denoted by R0,...,R31.
From this pool of registers, the last three pairs, called X
(R27:R26), Y (R29:R28) and Z (R31:R30), are used as
16-bit address pointers to load and store data from memory.
The AVR instruction set supports a total of 133 instructions,
and each instruction has a fixed latency. For example, the
ordinary arithmetic/logical instructions such as addition (ADD)
and addition with carry (ADC), are executed in a single clock
cycle, while the unsigned multiplication (MUL) and load/store
instructions cost two clock cycles.

Depending on the concrete type of the processor, AVR
microcontrollers are different with the memory capacity. For
example, the ATxmega256A3 has 256KB of programmable
flash memory, 16KB of SRAM, and 4KB of EEPROM. There
exist numerous development tools for AVR. For our actual
benchmarks we adopt the ATxmega256A3 which operates
at a maximum frequency of 32MHz, we run the code on
AVR Studio, which features an assembler and a cycle-accurate
graphical simulator.

The cycle count measurement methodology consists of
monitoring the number of cycles for each operation (including
function call overheads) using the simulator graphical interface
cycle monitor. In addition, because our scalar multiplication
algorithms are designed to be constant-time, every execution
of scalar multiplication will take the same number of cycles
independently of the input scalar and point coordinates. We
confirm that by monitoring a single execution versus a 1000×
average execution. Most of the software implementation on
AVR microcontrollers is written in both mixed C and As-
sembly code. The C function-call ABI specifies that the first
three 16-bit arguments (e.g., pointers) are passed in register
pairs (R24:R25), (R22:R23), and (R21:R20). Furthermore,
it specifies that registers R2-R17, R28, and R29 are “called-
saved” registers, and the register R1 is assumed by the com-
piler to always contain zero thus has to be set to zero before
returning from a C function.

B. Multiplication and Squaring

Finite field multiplication and squaring are the most expen-
sive low-level operations, which contributes to more than 70%
of the whole ECC scalar multiplication. In the following, we
will describe our implementation for the NUMS primes.

Multiplication. A simple and easy-to-implement technique
for multi-precision multiplication is the operand scanning
method, also known as schoolbook method. An alternative
way of performing multi-precision multiplication is the product
scanning method, which was the first to describe an efficient
implementation on an Intel processor but later found to be
efficient on embedded devices as well. In 2011, Hutter and
Wenger presented a very interesting idea to increase the
performance of multiplication by sophisticated caching of
operands [7]. Their method significantly reduces the number
of needed memory-access instructions(e.g., LD, ST). By follo-
wing Hutter-Wenger’s work, Seo and Kim proposed the con-
secutive operand-caching method to further reduce the number
of addition with carry instruction [5]. Another interesting work
based on product scanning method belongs to Liu et al.,
who improved Comba’s result for small devices using the so-
called Reverse Product-Scanning approach [13]. The Karatsuba
algorithm is a fast multiplication algorithm which reduces
the time complexity of multi-precision multiplication down to
O(nlog23) asymptotically for an n-digit representation. In this
work, given the 64-bit alignment of the NUMS primes, we take
advantage of the Karatsuba multiplication in multiple layers.
Also, due to a limited number of general purpose registers, we
perform the modular multiplication and squaring operations
separately, namely, the reduction is executed independently
of the computation of the multi-precision multiplication and
squaring and therefore. The detailed description is as follows.

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2856123, IEEE
Transactions on Information Forensics and Security

5

1) 256-bit Multiplication and Squaring: We employ the
state-of-the-art multiplication and squaring for 256-bit in our
implementation, namely the subtractive Karatsuba implemen-
tation proposed by Hutter-Schwabe in [10] and the squaring
in [11]. Our 256-bit multi-precision multiplication performs
three times of subtractive Karatsuba multiplications, which
enhances the performance by a factor of 18.8% when compared
to consecutive operand caching. For the squaring operation, the
hybrid Karatsuba method [11] combines both advantages of
Karatsuba method and sliding block doubling, which improves
the performance by 7.2% compared to sliding block doubling.
Both method represents the state-of-the-art implementation
for multi-precision multiplication and squaring on 8-bit AVR
processors. For reduction, we also implement it in assembly
language.

2) 379/384-bit Multiplication and Squaring: The 384-bit
multiplication/squaring on AVR processor is not studied in
previous works [10], [11]. In order to construct the 384-bit
cases, we employ Hutter-Schwabe’s Karatsuba implementation
[10] to perform the 192-bit multiplication, while the squaring
is realized by the optimized Karatsuba squaring [11]. That is
to say, we actually adopt three-level Karatsuba method for the
384-bit multiplication and squaring, which are implemented
in pure Assembly. The multiplication requires 10,633 clock
cycles and consumes 15,502 bytes while the 384-bit squaring
needs 7,278 clock cycles and 10,376 bytes. The detailed 384-
bit multiplication and squaring are available in Algorithm 1 and
Algorithm 2, respectively. We use constant-time subtractive
Karatsuba method to perform a 384-bit multiplication/squaring
with three 192-bit multiplications/squaring operations.

3) Memory-optimized Multiplication and Squaring: A low-
end 8-bit AVR processor provides limited program ROM
typically ranging from 64-256 KB. If the application is highly
code memory consuming, then little ROM would be left
available for cryptographic purposes. In order to strike the
balance between code size and performance, we introduce
a Karatsuba-Reverse-Product-scanning (KRPS) method. This
memory efficient technique supports practically fast computa-
tion within 2 KB of memory. For the 384-bit case, the KRPS
is 26% slower in performance but saves about 11% of the
code size; the RPS squaring is 14% slower in performance but
requires only 8% of the code size. A concrete comparison is
given in Table I.

4) Fast Incomplete Reduction for 2379 − 19: The reduction
equation can be realized as 2379 ≡ 19 mod p1 by following
the definition of the modulo. A straightforward reduction is to
repeatedly replace ZH ·2379 with ZH ·19 where ZH consists
of the bits if the argument greater than the 379th one. However,
since 379 is not an 8-bit friendly number (i.e. a multiple of
8), this method requires a number of shifting operations on

TABLE I. EXECUTION TIME AND CODE SIZE OF 384-BIT

MULTIPLICATION AND SQUARING WITH DIFFERENT

COMBINATIONS

Integer Combination Time (cycles) ROM (bytes) Karatsuba

384-bit MUL (1) + (3) 11,898 5,474 3 levels
384-bit SQR (2) + (4) 8,037 3,800 3 levels
384-bit MUL (1) + (5) 14,382 1,704 1 level
384-bit SQR (6) 8,505 832 No
384-bit MUL (7) 10,633 15,502 3 levels
384-bit SQR (8) 7,278 10,786 3 levels

(1): Constant-time subtractive Karatsuba multiplication (in ANSI C).

(2): Constant-time subtractive Karatsuba squaring (in ANSI C).

(3): 192-bit Karatsuba multiplication [10] (in Asembly).

(4): 192-bit Karatsuba squaring [11] (in Assembly).

(5): Optimized RPS multiplication [3] (in Assembly).

(6): Optimized RPS squaring [3] (in Assembly).

(7): 384-bit Karatsuba multiplication (in Assembly).

(8): 384-bit Karatsuba Squaring (in Assembly).

intermediate results. In order to optimize the shift operation,
we introduce a fast modular reduction technique for the NUMS
prime 2379 − 19. The reduction is inspired by the observation
that

2379 ≡ 19 =⇒ 2384 ≡ 608 mod p1

The main idea is to perform the first round reduction with
2384 ≡ 608 mod p1 and then do the second round reduction
with 2379 ≡ 19 mod p1. Instead of doing a complete reduction
with the final result in the range of [0, 2379−19], the reduction
is carried out in an incomplete way which allows for the
reduction result to be kept in the range of [0, 2380]. The fast
reduction algorithm shown in Algorithm 3 can be described as
follows:

1) We perform the first reduction (line 1), i.e. the com-
putation of (c′, Z ′) = ZH · c1 + ZL. Instead of
computing the whole ZH · c + ZL, we only compute
T [0 ∼ 5] = ZH[44 ∼ 47] · c + ZL[44 ∼ 47], which
essentially determine the part which is over 384-bit.

2) After addition, the sum is longer than 384-bit. We
separated the sum into two parts. The first part is lower
than 2379, namely, ((T1[3]&0x07) ‖ T1[0 ∼ 2]), we
directly store them in memory (line 2).

3) The second part is higher than 2379, namely, (T1[3 ∼
5])� 3. we multiply it by c2, and store the product in
three temporary registers T2[0 ∼ 2].

4) Finally, the remaining parts (ZH[0 ∼ 43]) are multip-
lied by constant c and added to the intermediate results
(ZL[0 ∼ 47]) and reduction results T2[0 ∼ 2].

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2856123, IEEE
Transactions on Information Forensics and Security

6

Algorithm 1 Constant-time subtractive Karatsuba multiplication (subtractive fashion)
Input: Two 384-bit operand A = AH · 2192 +AL and B = BH · 2192 +BL.
Output: The product Z = A ·B.

1: Compute abstract value of ADIFF = |AH −AL|. {int_neg; int_sub}
2: Compute abstract value of BDIFF = |BH −BL|. {int_neg; int_sub}
3: Compute abstract value of ZDIFF = |ADIFF ·BDIFF |. {int_neg; karatsuba_mul_192 [10]}
4: Compute ZL = AL ·BL. {karatsuba_mul_192 [10]}
5: Compute ZH = AH ·BH . {karatsuba_mul_192 [10]}
6: Compute Z = ZH · 2384 + (ZL+ ZH − ZDIFF) · 2192 + ZL. {Three int_add; int_add_word}
7: return Z

Algorithm 2 Constant-time subtractive Karatsuba squaring (subtractive fashion)
Input: Two 384-bit operand A = AH · 2192 +AL.
Output: The product Z = A2.

1: Compute abstract value of ADIFF = |AH −AL|. {int_neg; int_sub}
2: Compute abstract value of ZDIFF = ADIFF 2. {karatsuba_sqr_192 [11]}
3: Compute ZL = AL2. {karatsuba_sqr_192 [11]}
4: Compute ZH = AH2. {karatsuba_sqr_192 [11]}
5: Compute Z = ZH · 2384 + (ZL+ ZH − ZDIFF) · 2192 + ZL. {Two int_add; int_sub, int_add_word}
6: return Z

Algorithm 3 requires an execution time of 1018 clock cycles
including the stack operation at the beginning and end of the
Assembly function (e.g., PUSHs and POPs).

5) Fast Incomplete Reduction for 2384 − 317: Similar as
Algorithm 3 for 2379 − 19, the reduction of p384 needs
an execution time of 1157 clock cycles. The fast reduction
algorithm shown in Algorithm 4 can be described as follows:

1) We perform the first reduction (line 1), i.e. the compu-
tation of (c′, Z ′) = ZH · c+ZL. Instead of computing
the whole ZH · c+ ZL, we only compute T [0 ∼ 5] =
ZH[44 ∼ 47] · c + ZL[44 ∼ 47], which essentially
determines the part which is over 384-bit.

2) We separate the sum into two parts. The first part is
lower than 2384, namely, (T1[0 ∼ 3]). Then, we directly
store them in memory (line 2).

3) The second part is higher than 2384, namely, T1[4 ∼
5]. We multiply it by c, and store the product in three
temporary registers T2[0 ∼ 3].

4) The remaining parts (ZH[0 ∼ 43]) are multiplied
by constant c and added to the intermediate results
(ZL[0 ∼ 47]) and reduction results T2[0 ∼ 3].

5) Finally, the carry bit is multiplied by constant c and
added to results R[0 ∼ 47].

6) Field Inversion: Constant-time inversion can be obtained
by using Fermat’s little theorem a−1 = ap−2 mod p. The
inversion of NUMS256 requires 255S + 12M as shown in
Algorithm 5, which costs 1, 218, 645 cycles. Similarly, the
inversion operation of Ted379 requires an execution time of

378S + 12M as shown in Algorithm 6. On an 8-bit AVR
processor, the inversion requires 3, 304, 148 clock cycles. For
NUMS384, the Fermat-based inversion requires 383S+13M .
The addition chain is given in Algorithm 7.

C. Summary of Execution time for Field Arithmetic Operations

The execution time of field arithmetic of NUMS256,
Ted379 and NUMS384 is summarized in Table II. The
NUMS256 shows relatively higher performance than others
since NUMS256 is performed over short integer. Interestingly,
TED379 shows the fastest finite field addition since this curve
can avoid reduction by taking advantages of incomplete repre-
sentation. TED379 shows higher performance than NUMS384
in other operations as well. Overall, TED379 achieves the
balanced results between security and performance.

IV. IMPLEMENTATION ON 32-BIT ARM11
MICROCONTROLLER

A. 32-bit ARM11 Architecture

ARM11 is part of 32-bit RISC ARM processor cores. It
supports the ARMv6 instruction set, which comprises 16-bit
Thumb, 32-bit Thumb-2, and 32-bit ARM instructions. The
ARM11 processor has a 8-stage pipeline with unaligned and
mixed-endian data access and 16 32-bit registers (r0:r15).
Instructions that are relevant for our implementation include
32-bit arithmetic and logical instructions.

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2856123, IEEE
Transactions on Information Forensics and Security

7

Algorithm 3 Fast (Incomplete) Reduction for p379
Input: A 2n-bit product Z = ZH · 2384 + ZL, the constants c1 = 25 · 19 and c2 = 19.
Output: The incomplete reduction result R = Z mod p1 ∈ [0, 2380].

1: T1[0 ∼ 5]← ZH[44 ∼ 47]× c1 + ZL[44 ∼ 47] {First reduction: 2384 ≡ 608 mod p1}
2: ZL[44 ∼ 47]← ((T1[3]&0x07) ‖ T1[0 ∼ 2])
3: T2[0 ∼ 2]← (T1[3 ∼ 5]� 3)× 19 {Second reduction: 2379 ≡ 19 mod p1}.
4: R[0 ∼ 47]← (ZH[0 ∼ 43]× c1) + ZL[0 ∼ 47] + T2[0 ∼ 2]
5: return R

Algorithm 4 Fast (Incomplete) Reduction for p384
Input: A 2n-bit product Z = ZH · 2384 + ZL, the constants c = 317.
Output: The incomplete reduction result R = Z mod 2384 − 317 ∈ [0, 2384].

1: T1[0 ∼ 5]← ZH[44 ∼ 47]× c+ ZL[44 ∼ 47]
2: ZL[44 ∼ 47]← T1[0 ∼ 3]
3: T2[0 ∼ 3]← T1[4 ∼ 5]× c
4: {carry,R[0 ∼ 47]} ← (ZH[0 ∼ 43]× c) + ZL[0 ∼ 47] + T2[0 ∼ 3]
5: R[0 ∼ 47]← carry × c+R[0 ∼ 47]
6: return R

TABLE II. EXECUTION TIME OF FIELD ARITHMETIC FOR NUMS256, TED37919 AND NUMS384 ON AVR MICROCONTROLLER (U: UNROLL, P:
PARTLY UNROLL AND L: LOOPED FASHIONS), CMUL: CONSTANT MULTIPLICATION WHERE NUMS256 IS 16 · 256-BIT (0x3BEF) TED379 IS 24 · 379-BIT

(0x22FCA) AND NUMS384 IS 16 · 256-BIT (0x2D25)

Operation ADD SUB MUL SQR INV CMUL

p256 550 550 6,301 4,489 1,218,645 830
p379 (U/P/L) 363 686 11,721/12,971/15,455 8,363/9,081/10,496 3,304,148 /3,566,477/4,132,598 1424
p384 (U/P/L) 959 959 11,862/13,113/15,590 8,501/9,254/10,663 3,411,204/3,715,866/4,287,720 1227

Algorithm 5 Fermat-based inversion mod p256
Input: Integer A satisfying 1 ≤ A ≤ p− 1.
Output: Inverse Z = Ap−2 mod p = A−1 mod p.

1: a6 ← (a2 · a)2 { exp: 6, cost: 2S+1M}
2: t1 ← ((a6)

2)2 · a6 · a { exp: 25 − 1, cost: 2S+2M}
3: t2 ← ((t1)

2)5 · t1 { exp: 210 − 1, cost: 5S+1M}
4: t3 ← ((a6)

2)2 · a6 · a { exp: 220 − 1, cost: 10S+1M}
5: t4 ← (((t3)

2)10 · t2)2 · a { exp: 231 − 1, cost: 11S+2M}
6: t5 ← (((t4)

2)31) · t4 { exp: 262 − 1, cost: 31S+1M}
7: t6 ← (((t5)

2)62) · t5 { exp: 2124 − 1, cost: 62S+1M}
8: t7 ← (((t6)

2)124) · t6 { exp: 2248 − 1, cost: 124S+1M}
9: Z ← (((((t6)

2)2 · a)2)6) · a { exp: 2256 − 191, cost:
8S+2M}

10: return Z

Parameter passing: for example, function add(a, b, c, d), the
address of array a, b, c, d will be stored in registers R0, R1,
R2 as well R3, respectively, in sequence.

Register usages: ARM processor has 16 registers, all of them
are 32 bits wide. R13, R14 and R15 are special registers. R13
(SP) holds the stack pointer. R14 (LR) is the link register
which holds the callers’ return address. R15 (PC) holds the
program counter. R0 is the return value. For example, multi-

Algorithm 6 Fermat-based inversion mod p379
Input: Integer A satisfying 1 ≤ A ≤ p− 1.
Output: Inverse Z = Ap−2 mod p = A−1 mod p.

1: a2 ← a2 { exp: 2, cost: 1S+0M}
2: a9 ← (a2)

22 · a { exp: 9, cost: 2S+1M}
3: a11 ← (a9) · a2 { exp: 11, cost: 0S+1M}
4: t1 ← (a11)

2 · a9 { exp: 25 − 1, cost: 1S+1M}
5: t2 ← (t1)

25 · t1 { exp: 210 − 1, cost: 5S+1M}
6: t3 ← (t2)

21 · a { exp: 211 − 1, cost: 1S+1M}
7: t4 ← (t3)

211 · t3 { exp: 222 − 1, cost: 11S+1M}
8: t5 ← (t4)

222 · t4 { exp: 244 − 1, cost: 22S+1M}
9: t6 ← (t5)

244 · t5 { exp: 288 − 1, cost: 44S+1M}
10: t7 ← (t6)

288 · t6 { exp: 2176 − 1, cost: 88S+1M}
11: t8 ← (t7)

2176 · t7 { exp: 2352 − 1, cost: 176S+1M}
12: t9 ← (t8)

222 · t4 { exp: 2374 − 1, cost: 22S+1M}
13: Z ← (t9)

25 · a11 { exp: 2379 − 21, cost: 5S+1M}
14: return Z

precision multiplication (ε, C) = A+B, the carry ε has to be
moved into register R0.

Instruction set: ARM 11 instruction set can be found in http:
//simplemachines.it/doc/arm inst.pdf. Some basic instructions
used in our implementation:

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2856123, IEEE
Transactions on Information Forensics and Security

8

Algorithm 7 Fermat-based inversion mod p384
Input: Integer A satisfying 1 ≤ A ≤ p− 1.
Output: Inverse Z = Ap−2 mod p = A−1 mod p.

1: a3 ← a2 · a { exp: 3, cost: 1S+1M}
2: a15 ← (a3)

22 · a3 { exp: 15, cost: 2S+1M}
3: t0 ← a215 · a { exp: 25 − 1, cost: 1S+1M}
4: t1 ← t2

5

0 · t0 { exp: 210 − 1, cost: 5S+1M}
5: t2 ← (t1)

25 · t0 { exp: 215 − 1, cost: 5S+1M}
6: t3 ← (t2)

215 · t2 { exp: 230 − 1, cost: 15S+1M}
7: t4 ← (t3)

230 · t3 { exp: 260 − 1, cost: 30S+1M}
8: t5 ← (t4)

260 · t4 { exp: 2120 − 1, cost: 60S+1M}
9: t6 ← (t5)

2120 · t5 { exp: 2240 − 1, cost: 120S+1M}
10: t7 ← (t6)

2120 · t5 { exp: 2360 − 1, cost: 120S+1M}
11: t8 ← (t7)

215 · t2 { exp: 2375 − 1, cost: 15S+1M}
12: t9 ← ((t8)

23 · a3)2
6

) · a { exp: 2384 − 319, cost: 9S+2M}
13: return t9

• UMULL: 32-bit multiplication. UMULL R10, R11,
R4, R5 means R11 · 232 +R10 = R4 ·R5.

• MOV: move value. MOV R5, R4: move the value in R4
to R5.

• LDR, STR: load/store value from/to memory to/from
one register. LDR R3, [R0, #4]: load the operand
in memory address R0 + 4 to register R3. STR
R5, [R1, #4]: store the value in R5 to the me-
mory address R1 + 4. Pre-indexed; for example STR
r0, [r1, # 12]. Post-indexed: STR r0, [r1],
12.

• LDMIA, STMIA: load/store value from/to memory
to/from several registers. LDMIA R0!, R4-R7,
STMIA R2!, R6-R7, the symbol ! means updating
the memory address automatically.

• ADD/ADC/SUB/SBC: add/sub value between registers.
ADCS R4, R4, R8: (ε,R4) = R4+R8+carry, and
then set ε to “carry” flag. The S following ADC is used
for set status flag.

Different from AVR processors, the ARM instructions des-
cribed above only cost one clock cycle.

B. Multiplication and Squaring

1) Comparing different multiplication approaches: There
exist several methods that can be used for performing the
multi-precision multiplication and squaring on 32-bit ARM
processor. The first method is called operand scanning method
(i.e. Left side of Figure 1). It keeps the multiplier bi constant
and multiplies it with the entire multiple-precision multipli-

cand (an−1, ..., a1, a0) before moving to the next multiplier
bi+1. The operand scanning method has advantage when the
processor has sufficient registers for keeping entire operands
and necessary computation usage. Namely, (1) n+1 registers
to keep the operand A and one word of operand B (i.e. bi); (2)
n + 1 registers for accumulator registers; (3) at least 2 more
registers for UMULL instruction. In our case, the operand has
a length of 256-bit or 384-bit, and the ARM processor has 13
registers available for user, which is, no doubt, not enough for
operand scanning method. Another method to perform multi-
precision multiplication is called product scanning method, it
sums up columns of partial products aj ·bi, where i+j = l for
column l. At the end of each column, one 32-bit word (for 32-
bit ARM platform) is stored as part of the final multiplication
result. This method requires less registers for computation
but more load operations (from memory to registers). The
third general method for efficient multiplication is Karatsuba
method, which replaces the multiplication with addition and
subtraction operation. However, Karatsuba method has the
advantage only when the cost of multiplication is much more
expensive than addition and subtraction, which may not be

a0·b0

a0·b1

a0·b2

a0·b3

a1·b0

a1·b1

a1·b2

a1·b3

a2·b0

a2·b1

a2·b2

a2·b3

a3·b0

a3·b1

a3·b2

a3·b3

a0·b0

a0·b1

a0·b2

a0·b3

a1·b0

a1·b1

a1·b2

a1·b3

a2·b0

a2·b1

a2·b2

a3·b2

a3·b0

a2·b3

a3·b1

a3·b3

b0b1b2b3

a0a1a2a3

b0b1b2b3

a0a1a2a3

R0R1R2R3 R0R1R2

a0·b0

a0·b1

a1·b0

a2·b0

a1·b1

a2·b1

a3·b0

b0b1b2b3

a0a1a2a3

R0R1R2R3R4

a0·b2

a1·b2

a0·b3

a1·b3

a2·b2

a3·b2

a2·b3

a3·b3

a3·b1

Hybrid Scanning (d =2)Product ScanningOperand Scanning

Fig. 1. Operand scanning VS product scanning VS hybrid scanning

suitable on 32-bit ARM processor where both of UMLL and
ADD instructions has the same cost, i.e. one clock cycle.

2) Our choice: Hybrid-scanning method: Hybrid scanning
method was first proposed by Gura et al. in CHES’04 [4] for
speeding up the performance of multiplication on AVR plat-
form. Hybrid scanning aims at optimizing for both the number
of registers and the number of memory accesses. We employ
the product-scanning strategy as the “outer algorithm” and the
operand-scanning strategy as the “inner algorithm”. That is,
hybrid multiplication computes columns that consist of rows
of partial products. The savings in memory bandwidth stem
from the fact that 32-bit operands of the multiplier are used
in several multiplications, but are loaded from memory only
once. A comparison of operand scanning, product scanning as
well as hybrid scanning methods can be see in [4, Page 8,
Table 1].

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2856123, IEEE
Transactions on Information Forensics and Security

9

Our implementation applies this idea for multi-precision
multiplication and squaring on ARM platform. For sake of
achieving good performance, we allocate the 13 available
registers (R0−R12) in the following way:

• R0, R1, R2 for operand address. mul 256(A,B,R):
R = A ·B.

• R3, R4 for operand A, R5 for operand B.

• R6, R7, R8, R9, R12 for accumulator T = R12, U =
(R6, R7), V = (R8, R9)

• R10, R11 for UMULL instruction, namely temporary
registers for keeping the product.

See Figure 2 for an example of hybrid scanning method for
256-bit multiplication and squaring. Using the IAR Workbench
simulator in the context of the ARM11 of the architecture,
our implementation of multi-precision multiplication/squaring
requires 404/285 and 898/659 cycles for 256-bit and 384-
bit, respectively. One may also consider to use the carry-
catcher method [12, Page 11] for the implementation of multi-
precision multiplication on ARM processor, however, when
using one carry-catcher for the function of several carry-
catchers, one has to pay extra cost for masking and shifting
operations before adding the carry bits to the accumulator
registers. The process of masking and shifting is complex
and even requires more execution time than straightforward
using the hybrid multiplication. For a comparison, Scott and
Szczechowiak in [12] reported 580 clock cycles for product
scanning method and 487 cycles for carry-catcher method in
case of a 192 · 192 bit multiplication, and our implementation
of 256-bit multiplication only costs 543 cycles. Düll et al.[8]
pointed out that the most efficient strategy for multiplication
on ARM Cortex-M0 is Karatsuba method. However, our target
platform ARM11 also supports the full word multiplication
(i.e. 32 − bit × 32 − bit ← 64 − bit)2, which ensures hybrid
multiplication is slightly more efficient than Karatsuba method
for 384-bit length. To confirm this, we evaluated the 256-bit
finite field multiplication and 384-bit finite field multiplication
with Karatsuba method. Karatsuba method requires execution
time of 746 and 1407 clock cycles for 256-bit and 384-bit,
respectively, which is slower than the hybrid multiplication
implementation (i.e. 543 and 1139 clock cycles for 256-bit and
384-bit, respectively). On the other hand, hybrid multiplication
is more efficient in the sense of memory consumption. To
summarize, we adopt hybrid multiplication in the ARM11
implementation.

2Note that Cortex M0 only provides a half word multiplication (i.e. 32 −
bit× 32− bit← 32− bit).

a0 ·b 0

a0 ·b 1

a1 ·b 0

a1 ·b 1

B0B1B2B3

A0A1A2A3

A0 ·B 0

A1 ·B 0

A0 ·B1

A2 ·B 0

A1 ·B1

A0 ·B2

A3 ·B 0

A2 ·B1

A1 ·B2

A0 ·B3

A3 ·B1

A2 ·B2

A1 ·B3

A3 ·B2

A2 ·B3

A3 ·B3

A0A1A2A3

A0A1A2A3

A0 ·A0

A1 ·A0

A2 ·A0

A3 ·A0

A1 ·A1

A2 ·A1

A3 ·A1

A2 ·A2

A3 ·A2

A3 ·B3

R0R1R2R3R4R5R6R7

R0R1R2R3R4R5R6R7

Hybrid Multiplication (d =2) Hybrid Squaring (d =2)

a0 ·a 0

a1 ·b 1

a1 ·a 0

Fig. 2. Hybrid scanning method (d=2) for 256-bit multiplication and squaring

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we summarize our implementation results
for 8-bit AVR and 32-bit ARM11 microcontrollers. For our
benchmarks, the implementations were compiled and evaluated
using IAR Embedded Workbench. Our IoT-NUMS implemen-
tations are based on [14] for the case of variable-base scalar
multiplication.

A. Implementation results

1) Results on AVR: The execution time of FourQ, Kummer,
NIST256, NUMS256, Ted37919, NUMS384, Curve41417 and
Ed448 is given in Table III. We used window method (w = 5)
for twisted Edwards curve and Montgomery ladder algorithm
for Montgomery form. We test the current implementation of
Montgomery ladder method for Ted379 and NUMS384, which
require 41,931,327 and 44,051,162 clock cycles. We also give
the reasonable estimated results for Curve41417 and Ed448
in Table III. For 128-bit security level, FourQ achieved the
highest performance because of the feature of endomorphism.
Unfortunately, FourQ implementation requires roughly 38 KB
for code size. When compared to Curve25519 implementation
in [8], the NUMS256 implementation is slightly slow, the main
reason is that the prime 2255 − 19 provides more efficient
reduction operation. However, NUMS curves could support
standard security levels, including 128-bit, 192-bit, and 256-
bit and have a rigid technique for parameter generation. The
implementation of NUMS256 curve only requires 18∼20 KB
with reasonably fast performance. For the higher security
level, NUMS384 and Ted37919 curves show a very good
performance as well.

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2856123, IEEE
Transactions on Information Forensics and Security

10

TABLE III. PERFORMANCE COMPARISON OF SCALAR MULTIPLICATION FOR FOURQ, µKUMMER, NUMS256, TED379, NUMS384, CURVE41417 AND

ED448 ON AVR MICROCONTROLLER

Alg. FourQ [16] Kummer [17] NUMS256 Curve25519 [8] NIST256 [1] Ted379 NUMS384 Curve41417 Ed448

Window – – 15,807,767 – 34,930,000 42,978,573 44,633,126 49,919,039† 59,421,773†

Ladder ? 9,948,900 19,945,200 15,125,232 13,900,397 – 41,931,327 44,051,162 48,727,345† 58,619,275†

†: Estimated results.

?: Constant multiplication (A+ 2)/4 is used in point doubling.

2) Results on ARM11: The execution time of field arithmetic
of NUMS256, Ted37919 and NUMS384 is summarized in
Table IV. The finite field multiplication and squaring operati-
ons require 543/428, 1126/884, and 1139/898 clock cycles for
NUMS256, Ted37919, and NUMS384 curves. For the finite
field addition, Ted37919 shows the highest performance due
to the efficient incomplete reduction method.

TABLE IV. EXECUTION TIME OF FIELD ARITHMETIC FOR NUMS256,
TED37919 AND NUMS384 ON ARM MICROCONTROLLER (UNROLL AND

LOOPED FASHIONS), CMUL: CONSTANT MULTIPLICATION WHERE

NUMS256 IS 16 · 256-BIT (0x3BEF) TED379 IS 24 · 379-BIT

(0x22FCA) AND NUMS384 IS 16 · 256-BIT (0x2D25)R (UNROLL

FASHION)

Operation ADD SUB MUL SQR INV CMUL

p256 47 45 543 428 115,878 67
p379 23 48 1126 884 347,847 85
p384 70 68 1139 898 358,962 101

Including the function call, the point doubling/addition of
NUMS256 costs 3659/5285 clock cycles. For NUMS384,
the point doubling/addition requires an execution time of
7475/10801 clock cycles, respectively. For the scalar multipli-
cation, we tested both twisted Edward curve and Montgomery
curve. The detailed results are given in Table V. Compa-
red to the C implementation of Curve25519 on ARM11 by
running SUPERCOP, the NUMS256 implemented in mixed
C-assembly achieves a speed up of 1.64X. When compared
to Goldilock, the NUMS256, Ted37919 and NUMS384 out-
perform by a factor of 8.2, 2.8 and 2.7, respectively. The
comparison graph is drawn in Figure 3. The figure shows that
IoT-NUMS successfully fills the medium security level and
achieves the highest performance among them.

B. Protection against timing and simple-side channel attacks

The scalar multiplication in variable execution time is
vulnerable to timing attack and simple power analysis. To
protect against these attacks, the computations should be in

0

2000000

4000000

6000000

8000000

10000000

12000000

Ladder

Window(w=5)

Fig. 3. Comparison of MSR curves with Curve25519 and Goldilock on
ARM11 microcontroller

constant execution time and regular fashion.3 All of the multi-
precision finite-field arithmetic operations, elliptic curve group
operations, and scalar multiplication of IoT-NUMS curves
are implemented in a highly regular fashion (i.e. without
if-then-else constructs) so that always exactly the same
sequence of operations is executed, independent of the actual
value of the operands. For the scalar multiplication we take
advantage of the generalized scalar recoding introduced with
NUMS [15]. Furthermore, the proposed implementations of
IoT-NUMS serve a new benchmark for ECC implementation
on 8-bit AVR processors and 32-bit ARM11 processors.

VI. CONCLUSIONS

This paper presented high speed implementation of ECC,
and we presented, evaluated, and optimized NUMS256,
Ted37919, and NUMS384 on 8-bit AVR and 32-bit ARM11

3Note: our implementation is SPA resistance in the sense that it does not
contain any conditional statements and, therefore, executes always the same
sequence of instructions, independent of the value of the operands. We also
include a statement that this is not a perfect protection against SPA since
differences in the Hamming weight of the processed data may cause small
differences in the power consumption profile, which could be exploited in an
SPA attack.

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2856123, IEEE
Transactions on Information Forensics and Security

11

TABLE V. EXECUTION TIME OF SCALAR MULTIPLICATION FOR NUMS256, TED37919 AND NUMS384 ON ARM MICROCONTROLLER

Curves NUMS256 Ted37919 NUMS384 Curve25519 Ed448

Montg. ladder 1,357,795 3,913,321 4,118,369 2,238,000 –
Window(w = 5) 1,412,947 4,002,787 4,294,175 – 11,148,000

processors. In particular, we introduced an efficient imple-
mentation of multi-precision multiplication and squaring for
multiplication on 8-bit AVR and ARM micro-controllers. The
finite field multiplication and squaring with the length of 256-
bit can be accomplished within 6,301/4,489 and 543/428 clock
cycles for 8-bit AVR and 32-bit ARM, respectively. The result
sets new speed records on an 8-bit AVR and 32-bit ARM pro-
cessors. And then, we implemented NUMS curves including
NUMS256, Ted37919, and NUMS384, which combine the
individual computational advantages of the twisted Edward and
Montgomery curves. Finally, we achieved record-setting exe-
cution times for scalar multiplication over 256, 379, and 384-
bit security prime fields. For example, NUMS256 curve only
requires 1.357 M cycles on 32-bit ARM11 processor, which
is more than 1.6x faster than the widely-used Curve25519.

ACKNOWLEDGMENT

The authors would like to thank Dr. Patrick Longa from
Microsoft Research and Dr. Geovandro Pereira from Uni-
versity of Waterloo, Canada for their helpful comments on
various aspects of this work. This work was supported by
the Natural Science Foundation of Jiangsu Province of China
(No. SBK2018043466) and Fundamental Research Funds for
the Central Universities (grant NE2018106). This work of
Hwajeong Seo was supported by Institute for Information &
communications Technology Promotion(IITP) grant funded by
the Korea government(MSIT) (No.2018-0-00264, Research on
Blockchain Security Technology for IoT Services).

REFERENCES

[1] E. Wenger Thomas Unterluggauer, and Mario Werner. “8/16/32 shades
of elliptic curve cryptography on embedded processors,” Progress in
Cryptology - DOCRYPT 2013. Springer International Publishing, 2013.
244-261.

[2] C. Costello, P. Longa, and M. Naehrig. “A brief discussion on selecting
new elliptic curves,” Microsoft Research, 2015.

[3] Z. Liu and H. Seo and J. Großschädl and H. Kim.“AVRRSA: An
Efficient RSA Implementation for 8-bit AVR Processors,” preprint.

[4] N. Gura, A. Patel, A. Wander, and H. Eberle & Shantz, S. C. (2004).
“Comparing elliptic curve cryptography and RSA on 8-bit CPUs,” In
Cryptographic hardware and embedded systems-CHES 2004 (pp. 119-
132). Springer Berlin Heidelberg.

[5] H. Seo, and H. Kim. “Consecutive operand-caching method for
multiprecision multiplication, revisited,” Journal of information and
communication convergence engineering, 13(1):27–35, 2015.

[6] H. Fujii, and D. F. Aranha. “Curve25519 for the Cortex-M4 and
beyond,” LATINCRYPT 2017 - 5th International Conference on
Cryptology and Information Security in Latin America, Habana, Cuba,
September 20-22, 2017. Proceedings.

[7] M. Hutter, and E. Wenger. “Fast multi-precision multiplication for
public-key cryptography on embedded microprocessors,” International
Workshop on Cryptographic Hardware and Embedded Systems, Sprin-
ger, 459–474, 2011.

[8] M. Düll, B. Haase, G. Hinterwälder, M. Hutter, C. Paar, A. H. Sánchez,
and P. Schwabe. “High-speed Curve25519 on 8-bit, 16-bit, and 32-bit
microcontrollers,” Designs, Codes and Cryptography, 77(2-3):493–514,
2015.

[9] P. Barrett. “Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor,” Conference
on the Theory and Application of Cryptographic Techniques, Springer,
311–323, 1986.

[10] M. Hutter and P. Schwabe. “Multiprecision multiplication on AVR
revisited,” Journal of Cryptographic Engeering, 2014.

[11] H. Seo, Z. Liu, J. Choi, and H. Kim. “Optimized Karatsuba Squaring
on 8-bit AVR Processors,” http://eprint.iacr.org/2014/817.pdf

[12] M. Scott and P. Szczechowiak. “Optimizing Multiprecision Multiplica-
tion for Public Key Cryptography,” IACR Cryptology ePrint Archive,
2007.

[13] Z. Liu, and H. Seo, and J. Großschädl, and H. Kim. “Reverse
product-scanning multiplication and squaring on 8-bit AVR processors,”
International Conference on Information and Communications Security,
Springer, 2014, 158–175.

[14] J. Bos, C. Costello, P. Longa, and M. Naehrig. “Specification of curve
selection and supported curve parameters in MSR ECCLib,” Technical
Report MSR-TR-2014-92, Microsoft Research, 2014.

[15] J. Bos, C. Costello, P. Longa, and M. Naehrig. “Selecting elliptic
curves for cryptography: An efficiency and security analysis,” Journal
of Cryptographic Engineering, 6(4):259–286, 2016.

[16] Z. Liu, P. Longa, G. Pereira, O. Reparaz and H. Seo. “FourQ on
embedded devices with strong countermeasures against side-channel
attacks,” IEEE Transactions on Dependable and Secure Computing,
2018.

[17] J. Renes, P. Schwabe, B. Smith and L. Batina. “µKummer: Effi-
cient Hyperelliptic Signatures and Key Exchange on Microcontrollers,”
International Conference on Cryptographic Hardware and Embedded
Systems, 301-320, 2016.

[18] D. J. Bernstein. “Curve25519: new diffie-hellman speed records,” In
International Workshop on Public Key Cryptography, pages 207–228.
Springer, 2006.

[19] M. Hamburg. “Ed448-Goldilocks, a new elliptic curve,” IACR
Cryptology ePrint Archive, 2015:625, 2015.

[20] D. J. Bernstein and T. Lange. “SafeCurves: choosing safe curves
for elliptic-curve cryptography,” URL: https://safecurves. cr. yp. to.
Citations in this document, 9, 2015.

[21] J. W. Bos, C. Costello, H. Hisil, and K. Lauter. “Fast cryptography
in genus 2,” In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, 194-210, Springer, 2013.

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2856123, IEEE
Transactions on Information Forensics and Security

12

[22] C. Costello and P. Longa. “FourQ: Four-dimensional decompositions
on a Q-curve over the Mersenne prime,” In T. Iwata and J. H. Cheon,
editors, Advances in Cryptology - ASIACRYPT 2015, volume 9452 of
Lecture Notes in Computer Science, 214–235. Springer, 2015. Full
version: https://eprint.iacr.org/2015/565.

[23] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. “Twisted
Edwards curves,” In S. Vaudenay, editor, Progress in Cryptology -
AFRICACRYPT 2008, volume 5023 of Lecture Notes in Computer
Science, 389–405. Springer, 2008.

[24] Longa P. “FourQ NEON: Faster Elliptic Curve Scalar Multiplications
on ARM Processors,” International Conference on Selected Areas in
Cryptography, 501-519, Springer, 2016.

[25] Seo H, Kim H. “Consecutive operand-caching method for multipreci-
sion multiplication, revisited,” Journal of information and communica-
tion convergence engineering, 13(1): 27-35, 2015.

[26] Scott M, Szczechowiak P. “Optimizing Multiprecision Multiplication
for Public Key Cryptography,” IACR Cryptology ePrint Archive, 299,
2007.

[27] Uhsadel L, Poschmann A, Paar C. “Enabling full-size public-key
algorithms on 8-bit sensor nodes,” European Workshop on Security
in Ad-hoc and Sensor Networks, 73-86, 2007.

[28] Wenger, Erich and Unterluggauer, Thomas and Werner, Mario “8/16/32
shades of elliptic curve cryptography on embedded processors,” Pro-
gress in Cryptology–INDOCRYPT 2013, 244–261, Springer, 2013.

[29] Unterluggauer, Thomas and Wenger, Erich “Efficient pairings and
ECC for embedded systems,” Cryptographic Hardware and Embedded
Systems–CHES 2014, 298–315, Springer, 2014.

Zhe Liu received the BS and MS degrees in
Shandong University in 2008 and 2011, respectively.
He is a professor in College of Computer Science and
Technology, Nanjing University of Aeronautics and
Astronautics(NUAA), China. Before joining NUAA,
he was a researcher in SnT, University of Luxem-
bourg, Luxembourg. He received his Ph.D degree
Laboratory of Algorithmics, Cryptology and Security
(LACS), University of Luxembourg, Luxembourg in
2015. His Ph.D thesis has received the prestigious

FNR Awards 2016 – Outstanding PhD Thesis Award for his contributions
in cryptographic engineering on IoT devices. His research interests include
computer arithmetic and information security. He has co-authored more than
70 research peer-reviewed journal and conference papers.

Hwajeong Seo received the BSEE, MS and PhD
degrees in Computer Engineering at Pusan National
University. He had worked at I2R in Singapore from
2016 to 2017. He is currently an assistant professor
in Hansung university. His research interests include
Internet of Things and information security.

