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Abstract 

In this paper, a new bi-step quantum image cryptography algorithm is presented. The proposed 

scheme is consisted of four different coding algorithms. According to the pixels of original 

image and corresponding quantum bits of the generated random binary key, the employed coding 

algorithm is selected. The security of the proposed scheme is increased through randomization of 

binary image key generation and alteration the pixel values of the original gray-scale values. The 

simulation of the proposed scheme assures that the final coded image is completely meaningless 

and it could not be recognized visually through the analysis of the resulted meaningless coded 

image. 

Key Words: Quantum cryptography, Quantum image representation, Quantum image processing 

  

1. Introduction  

Since the introduction of the first protocol of quantum key distribution proposed by Bennett and 

Brassard in 1984 [1], a number of different studies have focused on establishing the potential 

practical application of quantum information processing and computation [2–14]. 
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Processing of digital images is one of the most popular activities in our daily life, and essentially 

is used to extract useful information from physical objects and environments. Quantum Image 

Processing (QIP) is recognised as a new discipline focused on the development of novel 

algorithms for the purposes of storing, processing, and retrieving visual information in a 

quantum computing framework. The first quantum image processing study was presented by 

Vlasov in 1997 [15]. Subsequently, Beach et al. [16], Venegas-Andraca and Bose [17,18] and 

other researchers followed the idea of quantum image processing in 2003, with many subsequent 

studies focused on quantum image processing topics, such as quantum image representation  

[19–22], quantum image encryption/decryption [23], quantum image segmentation [24], 

quantum image filtering [25], quantum image storage and retrieval [26], quantum image 

matching [27], quantum steganography[28–30], quantum watermarking [31–34], and so on 

[35,36]. 

One of the simplest and most efficient methods for protecting multimedia data is cryptography. 

The main aim of image cryptography which commonly is used as pre-processing in many image 

processing algorithms is to transform a meaningful image into a disordered image. In recent 

years, many different algorithms for quantum image coding have been proposed. In 2010, for 

example, Ye [37] proposed ‘image scrambling encryption algorithm of pixel bit based on chaos 

map’. Later, in 2012, Dalhoum et al. [38] proposed digital image scrambling using 2D cellular 

automata. Later, in 2014, Jiang et al. proposed quantum Hilbert image scrambling [39] and the 

quantum realisation of Arnold and Fibonacci image scrambling [40]. And recently in 2015, Zhou 

et al. [41] proposed ‘quantum image Gray-code and the Bit-plane scrambling algorithm’. 

In this paper, a new quantum image cryptography algorithm is proposed. In the suggested 

algorithm, the original image is coded twice throughout the entire procedure. The applicability of 

the algorithm is confirmed with the application of software simulation. 

In Section 2, various necessary preliminaries are presented. The proposed algorithm is 

introduced in Section 3. A discussion and analysis are provided in Section 4. Finally, Section 5 

presents conclusions and provides a discussion.  

2. Preliminaries  

2.1. Quantum image representation models 

According to Zhang et al.’s novel enhanced quantum representation (NEQR) for digital images, 

two entangled qubit sequences are used to store the information of gray-scale value and position 

of all the pixels [20]. The representation of a 2N * 2N image with the gray-scale range of 2q using 

NEQR is defined as follows  

                                             |𝐼⟩ =
1

2𝑁
∑ ∑ |𝑓(𝑦, 𝑥)⟩ ⊗ |𝑦𝑥⟩2𝑁−1

𝑥=0
2𝑁−1
𝑦=0                                            (1) 

where 𝑓(𝑦, 𝑥) = 𝐶𝑦𝑥
0 … 𝐶𝑦𝑥

𝑞−2𝐶𝑦𝑥
𝑞−1

 and 𝐶𝑦𝑥
𝑘 ∈ {0,1}. 

An example of a 2 × 2 NEQR quantum image and its perspective quantum state is shown in 

Fig.1.  
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Fig.1. A simple example of an NEQR image[20]. 

In 2015, Zhou et al. improved the NEQR model [40]. Based on the improved model, 

representation of a   2𝑀 × 2𝑁 image with the gray-scale range of 2𝑞 is defined as follows  

                                           |𝐼⟩ =
1

2𝑡
∑ ∑ |𝑓(𝑦, 𝑥)⟩ ⊗ |𝑦𝑥⟩2𝑁−1

𝑥=0
2𝑀−1
𝑦=0                                              (2) 

where 𝑡 =  (𝑀 + 𝑁)/2, the gray-scale value of the (𝑦, 𝑥) pixel is 𝑓(𝑦, 𝑥) = 𝐶𝑦𝑥
0 … 𝐶𝑦𝑥

𝑞−2𝐶𝑦𝑥
𝑞−1

 

and 𝐶𝑦𝑥
𝑘 ∈ {0,1}. 

2.2 Previous work  

2.2.1. Quantum Image Gray-code and Bit-plane Scrambling 

In pursuit of improving the NEQR representation of quantum digital images, Zhou et al. 

proposed a quantum image Gray-code and Bit-plane scrambling algorithm [41].  Using their 

proposed scheme, a constant algorithm is used to code different images. The proposed scheme is 

coding the color image based on the value of the pixels. Firstly, the image is divided into 8 bit-

planes, where the 𝑘𝑡ℎ bit-plane (1 ≤  𝑘 ≤  8) is composed of the 𝑘𝑡ℎ bit of the gray-scale value 

for each pixel of the image. Subsequently, the whole bit-planes will go through XOR operation 

together according to the Gray-code scheme. Therefore, the scheme alternates the gray-scale 

value of all of the pixels and codes the image.  

This scheme can be shown as in Eq. (3):  

𝑆𝑐𝑟(|𝐼⟩) =
1

2𝑡
∑ ∑ 𝑆𝑐𝑟(|𝑓(𝑦, 𝑥)⟩) ⊗ |𝑦𝑥⟩2𝑁−1

𝑥=0
2𝑀−1
𝑦=0 =

1

2𝑡
∑ ∑ |𝑔(𝑦, 𝑥)⟩ ⊗ |𝑦𝑥⟩2𝑁−1

𝑥=0
2𝑀−1
𝑦=0           (3) 

where 𝑡 = (𝑀 + 𝑁)/2,  Scr denotes the coding, 𝑔(𝑦, 𝑥) is the gray-scale value of the output 

pixels of the coding process and ⊗ denotes the tensor product.  

The main problem of this scheme is that if the attacker realizes the flow of the algorithm, he can 

easily decode the coded image and retrieve the original one. Therefore, the security of the 

protocol is not assured against this type of attacks.  

2.2.2. Quantum Hilbert Image Scrambling 

In Quantum Hilbert Image Scrambling method [38], a 2𝑛 × 2𝑛 image can be coded by utilizing 

the property of Hilbert Scanning Matrix (𝐻𝑛) which consists of numbers ranging from 1 to 22𝑛 

with a constant order.  According to the size of the original image (based on n), the 𝐻𝑛 matrix 

and Hilbert curve are realized. Therefore, the original image will be coded by applying both the 

perspective curve and the geometric transportation as illustrated in Fig.2. 
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Fig.2. (a) Hilbert curve for n=1, (b) Hilbert curve for n=2, (c) Hilbert curve for n=3, (d) Hilbert 

curve for n=4,  (e) Original image and (f) Coded image[38]. 

The algorithm suffers from two major artefacts: security and the size of image. Firstly, the 

transmission of the image is achieved completely by employing the Hilbert curve with a constant 

Hilbert scanning matrix 𝐻𝑛. Accordingly, the security is imperfect as the attacker, who captures 

Hilbert scanning matrix, can decrypt the coded image and retrieve the original one without any 

difficulty. Secondly, since the Hilbert scanning matrix is a square matrix, the algorithm can 

only be used to code a square image. 

3. Proposed algorithm 

Now let us introduce our new algorithm for image cryptography. In the present scheme, a 

random binary image is used as the key. Therefore, the security of the proposed scheme is 

increased through randomization of binary image key generation and alteration the pixel values 

of the original image. According to both the pair of original images pixels and its corresponding 

quantum bits of the generated randomized key, the employed coding algorithm is selected. The 

chosen coding algorithm is employed to change the gray-scale value and the position of pixels.  

Suppose that Alice wants to code a 2𝑁 × 2𝑀 image. Since she is the only one who has the key 

and knows which algorithm is used to code each pixel, if she communicates the key with 

someone else in a secured way (such as 𝑄𝐾𝐷 [2]), the other one can easily decode the coded 

image using this key image.  

Based on the enhanced 𝑁𝐸𝑄𝑅 representation of quantum images, our proposed algorithm can be 

expressed as shown in Eq.4. 

                                      𝑆𝑐𝑟(|𝐼⟩) =
1

2𝑡
∑ ∑ |𝑓′(𝑦, 𝑥)⟩ ⊗ |𝑦𝑥⟩2𝑀−1

𝑥=0
2𝑁−1
𝑦=0                                      (4) 

where 𝑡 = (𝑀 + 𝑁)/2, Scr denotes the coding, 𝑓 ′(𝑦, 𝑥) is the gray-scale value of the 𝑦𝑥 pixel of 

the coded image and ⊗ denotes the tensor product. 

Our proposed cryptography algorithm is composed of two main parts, which are coding and 

decoding processes. The original image is coded twice according to the first and second random 

key images. Then, the coded image is stored. By the same way, the decoding process is achieved 

and the result is the original image as shown in Fig.3. 

(e) (f) 
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Fig.3. Schematic of proposed algorithm 

3.1. Coding process 

Our proposed coding process is composed of the following steps: 

Step 1: Splitting the image: First of all, Alice splits the original main image into four equal sub-

blocks. Then she prepares a 2N×2M random binary image as the coding key and splits it into four 

equal sub-blocks too (Fig.4). Alice encodes the 1st and 4th sub-blocks of the image according to 

First Random 

Key Image 

First Coding 

Step 

Original          

Image 
First           

Coded Image 

Second 

Random Key 

Image 

Second 

Coding Step 

 

Coded Image 
First Decoding 

Step 

First Decoded 

Image 

Second 

Decoding Step 

Original          

Image 

1 2 
2M

2
 

… 

 
1 

…
  

2N

2
 

2 

M2
 2M

2
+1
 

… 

 

N2
 

2N

2
+1 

…
  

1 2 
2M

2
 … 

 

N2
 

2N

2
+1 

…
  

R
an

d
o

m
 B

in
ar

y
 K

ey
 

1 

…
  

2N

2
 

2 

M2
 

2M

2
+1 
… 

 

M2
 2M

2
+1
 

… 

 

N2
 

2N

2
+1 

…
  

1 2 
2M

2
 

… 

 
1 

…
  

2N

2
 

2 bl
o
ck

-
su

b
 

st
1

 

b
lo

ck
-

su
b

 
n

d
2

 

b
lo

ck
-

su
b

 
rd

3
 

b
lo

ck
-

su
b

 
th

4
 

2 
1 

N2
 

O
ri

g
in

al
 I

m
ag

e
 

…
  

2N

2
 

2N

2
+1 

…
  

1 2 M2
 

2M

2
 

2M

2
+1 … 

 

… 

 

Splits into 4 sub-blocks 

b
lo

ck
-

su
b

 
st

1
 

b
lo

ck
-

su
b

 
n
d

2
 

b
lo

ck
-

su
b

 
rd

3
 

b
lo

ck
-

su
b

 
th

4
 

Splits into 4 sub-blocks 

1 

…
  

2N

2
 

2 

M2
 

2M

2
+1 
… 

 

R
an

d
o
m

 K
ey

 

Fig.4. Splitting the original image and random key to 4 sub-blocks 
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the 1st and 4th sub-blocks of the key, and the 2nd and 3rd sub-blocks of the image according to the 

2nd and 3rd sub-blocks of the key.  
 

 

Step 2: Selecting the coding algorithm based on the key: To code the 1st and 4th (2nd and 3rd) 

sub-blocks, Alice starts from the first pixel of each sub-block. According to the corresponding 

qubits of the 1st and 4th (2nd and 3rd) sub-blocks of the binary key, Alice uses one of the A, B, C 

or D coding algorithms to code these pixels (Table.1, Fig.5). Then she goes on.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.  Quantum circuit of the key qubits and the selected coding algorithm.  
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Table.1. Qubits of the key and corresponding coding algorithm.  

Qubits of the key Corresponding 

coding algorithm 

Qubits of the key Corresponding 

coding algorithm 

10 A 11 C 

01 B 00 D 

 

Step 3: Applying the corresponding coding algorithm on pixels: After selecting the coding 

algorithm based on the qubits of the key, Alice applies one of the 'A', 'B', 'C' or 'D' coding 

algorithms on the corresponding pixels. To simplify the presentation of algorithms, consider the 

pixel of the 1st (or 2nd) sub-block as the top pixel with gray scale value of |𝑝𝑖𝑗⟩ = |𝑝𝑖𝑗
1 𝑝𝑖𝑗

2 … 𝑝𝑖𝑗
8 ⟩, 

and the pixel of the 3rd (or 4th) sub-block as the bottom pixel with gray scale value of |𝑞𝑘𝑡⟩ =
|𝑞𝑘𝑡

1 𝑞𝑘𝑡
2 … 𝑞𝑘𝑡

8 ⟩. Advert that Alice always codes all of the odd qubits before the even qubits. These 

four coding algorithms are presented in detail below:  

Algorithm 'A': If the qubits of the key are 10, Alice applies the algorithm 'A' on corresponding 

pixels. Using algorithm 'A' to code the pixels, Alice codes every qubit of the gray scale value of 

them as follows:  

For the top pixel: To code the value of qubit 𝑝𝑖𝑗
𝑐 , if c is an odd number, she applies the XOR gate 

on the qubit 𝑝𝑖𝑗
𝑐  with the next qubit of the pixel (𝑝𝑖𝑗

𝑐+1) and puts the result in 𝑝𝑖𝑗
𝑐 . If c is an even 

number, she applies XOR gate on the qubit 𝑝𝑖𝑗
𝑐  with the qubit 𝑘(1)(𝑐−1) of the key image and puts 

the result in 𝑝𝑖𝑗
𝑐 . 

For the bottom pixel: To code the value of qubit 𝑞𝑘𝑡
𝑐 , if c is an odd number, she applies the XOR 

gate the qubit 𝑞𝑘𝑡
𝑐  with the next qubit of the pixel (𝑞𝑘𝑡

𝑐+1) and puts the result in 𝑞𝑘𝑡
𝑐 . If c is an even 

number, she applies the NOT gate the qubit 𝑞𝑘𝑡
𝑐 . 

Finally, Alice swaps the coded grayscale values of the top and bottom pixels. 

Algorithm 'B': If the qubits of the key are 01, Alice applies the algorithm 'B' on corresponding 

pixels. Using algorithm 'B' to code the pixels, Alice codes every qubit of the gray scale value of 

them as follows:  

For the top pixel: To code the value of qubit 𝑝𝑖𝑗
𝑐 , if c is an odd number, she applies the NOT gate 

on the qubit 𝑝𝑖𝑗
𝑐 . If c is an even number, she applies XOR gate on the qubit 𝑝𝑖𝑗

𝑐  with the previous 

qubit of the pixel (𝑝𝑖𝑗
𝑐−1) and puts the result in 𝑝𝑖𝑗

𝑐 . 

For the bottom pixel: To code the value of qubit 𝑞𝑘𝑡
𝑐 , if c is an odd number, she applies the XOR 

gate the qubit 𝑞𝑘𝑡
𝑐  with the qubit 𝑘(2𝑁)(2𝑀−7+𝑐) of the key image and puts the result in 𝑞𝑘𝑡

𝑐 . If c is 

an even number, she applies XOR gate on the qubit 𝑞𝑘𝑡
𝑐  with the previous qubit of the pixel 

(𝑞𝑘𝑡
𝑐−1) and puts the result in 𝑞𝑘𝑡

𝑐 . 

Finally, Alice swaps the coded grayscale values of the top and bottom pixels. 
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Algorithm 'C': If the qubits of the key are 11, Alice applies the algorithm 'C' on corresponding 

pixels. Using algorithm 'C' to code the pixels, Alice codes every qubit of the grayscale value of 

them as follows:  

For the top pixel: To code the value of qubit 𝑝𝑖𝑗
𝑐 , if c is an odd number, she applies the XOR gate 

on the qubit 𝑝𝑖𝑗
𝑐  with the 𝑝𝑖𝑗

9−𝑐 qubit of the pixel and puts the result in 𝑝𝑖𝑗
𝑐 . If c is an even number, 

she applies XOR gate on the qubit 𝑝𝑖𝑗
𝑐  with the qubit 𝑘(1)(9−𝑐) of the key image and puts the 

result in 𝑝𝑖𝑗
𝑐 . 

For the bottom pixel: To code the value of qubit 𝑞𝑘𝑡
𝑐 , if c is an odd number, she applies the XOR 

gate the qubit 𝑞𝑘𝑡
𝑐  with the qubit 𝑞𝑘𝑡

9−𝑐 of the pixel and puts the result in 𝑞𝑘𝑡
𝑐 . If c is an even 

number, she applies XOR gate on the qubit 𝑞𝑘𝑡
𝑐  with the 𝑘(2𝑁)(2𝑀+1−𝑐) qubit of the key image 

and puts the result in 𝑞𝑘𝑡
𝑐 .  

Algorithm 'D': If the qubits of the key are 00, Alice applies the algorithm 'D' on corresponding 

pixels. Using algorithm 'D' to code the pixels, Alice codes every qubit of the gray scale value of 

them as follows:  

For the top pixel: To code the value of qubit 𝑝𝑖𝑗
𝑐 , if c is an odd number, she applies the XOR gate 

on the qubit 𝑝𝑖𝑗
𝑐  with the 𝑘(2𝑁)(2𝑀+1−𝑐) qubit of the key image and puts the result in 𝑝𝑖𝑗

𝑐 . If c is an 

even number, she applies XOR gate on the qubit 𝑝𝑖𝑗
𝑐  with the qubit 𝑝𝑖𝑗

9−𝑐 of the pixel and puts the 

result in 𝑝𝑖𝑗
𝑐 . 

For the bottom pixel: To code the value of qubit 𝑞𝑘𝑡
𝑐 , if c is an odd number, she applies the XOR 

gate the qubit 𝑞𝑘𝑡
𝑐  with the qubit 𝑘(1)(9−𝑐) of the key image and puts the result in 𝑞𝑘𝑡

𝑐 . If c is an 

even number, she applies XOR gate on the qubit 𝑞𝑘𝑡
𝑐  with the 𝑞𝑘𝑡

9−𝑐 qubit of the pixel and puts the 

result in 𝑞𝑘𝑡
𝑐 .  

Fig.6 shows the quantum circuits of these four coding algorithms. 
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Fig.6. Quantum circuits of (a) the coding algorithm 'A', (b) the oding algorithm 'B', (c) the coding 

algorithm 'C' and (d) the coding algorithm 'D'. 
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3.2. Decoding process 

The decoding process is composed of several steps similar to the coding process: 

Step 1: Splitting the Coded Image: by the same concept of coding process, Alice splits the 

coded image into four equal sub-blocks which resulted to split the binary key image into four 

equal sub-blocks. Here again, Alice decodes the 1st and 4th sub-blocks of image according to the 

1st and 4th sub-blocks of the key, and the 2nd and 3rd sub-blocks of image according to the 2nd and 

3rd sub-blocks of the key respectively. 

Step 2: Selecting the Decoding Algorithm based on the Key: To decode the 1st and 4th (2nd and 

3rd) sub-blocks of image, Alice starts from the first pixel of each sub-block. According to the 

corresponding qubit values of the 1st and 4th (2nd and 3rd) sub-blocks of the key, Alice uses one of 

the 'A', 'B', 'C' or 'D' algorithms to decode these pixels as illustrated in (Table.2, Fig.7). Then, she 

will go ahead to continue the process.  

Table.2. Relation between the Quantum bits of the key and their corresponding decoding 

algorithm.  

Qubits of the key Corresponding 

algorithm 

Qubits of the key Corresponding 

algorithm 

10 A 11 C 

01 B 00 D 

 

Step 3: Applying the Corresponding Decoding Algorithm on Pixels: After selecting the 

appropriate decoding algorithm according to the qubits of the key, Alice applies one of the 'A', 

'B', 'C' or 'D' decoding algorithms on the corresponding pixels. Consider that Alice always 

decodes all of the even qubits before the odd one. These four algorithms are presented in details 

below:  

Algorithm 'A': In case of the qubits of the key are 10, then, Alice swaps the coded grayscale 

values of the top and bottom pixels. After that: 

For the top pixel: To decode the value of qubit 𝑝𝑖𝑗
𝑐 , if c is an even number, she applies XOR gate 

on the qubit 𝑝𝑖𝑗
𝑐  with the qubit 𝑘(1)(𝑐−1) of the key image and stores the result in 𝑝𝑖𝑗

𝑐 . If c is an 

odd number, she applies the XOR gate on the qubit 𝑝𝑖𝑗
𝑐  with the next qubit of the pixel (𝑝𝑖𝑗

𝑐+1) 

and stores the result in 𝑝𝑖𝑗
𝑐 .  

For the bottom pixel: To decode the value of qubit 𝑞𝑘𝑡
𝑐 , if c is an even number, she applies the 

NOT gate the qubit 𝑞𝑘𝑡
𝑐 . If c is an odd number, she applies the XOR gate the qubit 𝑞𝑘𝑡

𝑐  with the 

next qubit of the pixel (𝑞𝑘𝑡
𝑐+1) and stores the result in 𝑞𝑘𝑡

𝑐 .. 

Algorithm 'B': In case of the qubits of the key are 01, at first Alice swaps the coded grayscale 

values of the top and bottom pixels. After that: 

For the top pixel: To decode the value of qubit 𝑝𝑖𝑗
𝑐 , if c is an even number, she applies XOR gate 

on the qubit 𝑝𝑖𝑗
𝑐  with the previous qubit of the pixel (𝑝𝑖𝑗

𝑐−1) and stores the result in 𝑝𝑖𝑗
𝑐 . If c is an 

odd number, she applies the NOT gate on the qubit 𝑝𝑖𝑗
𝑐 . 
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Fig.7. Quantum circuit of the key qubits and selected decoding algorithm. 
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For the bottom pixel: To decode the value of qubit 𝑞𝑘𝑡
𝑐 , if c is an even number, she applies XOR 

gate on the qubit 𝑞𝑘𝑡
𝑐  with the previous qubit of the pixel (𝑞𝑘𝑡

𝑐−1) and stores the result in 𝑞𝑘𝑡
𝑐 . If c is 

an odd number, she applies the XOR gate the qubit 𝑞𝑘𝑡
𝑐  with the qubit 𝑘(2𝑁)(2𝑀−7+𝑐) of the key 

image and puts the result in 𝑞𝑘𝑡
𝑐 . 

Algorithm 'C': In case of the qubits of the key are 11: 

For the top pixel: to decode the value of qubit 𝑝𝑖𝑗
𝑐 , if c is an even number, she applies XOR gate 

on the qubit 𝑝𝑖𝑗
𝑐  with the qubit 𝑘(1)(9−𝑐) of the key image and stores the result in 𝑝𝑖𝑗

𝑐 . If c is an 

odd number, she applies the XOR gate on the qubit 𝑝𝑖𝑗
𝑐  with the 𝑝𝑖𝑗

9−𝑐 qubit of the pixel and stores 

the result in 𝑝𝑖𝑗
𝑐 . 

For the bottom pixel: to decode the value of qubit 𝑞𝑘𝑡
𝑐 , if c is an even number, she applies XOR 

gate on the qubit 𝑞𝑘𝑡
𝑐  with the 𝑘(2𝑁)(2𝑀+1−𝑐) qubit of the key image and stores the result in 𝑞𝑘𝑡

𝑐 . If 

c is an odd number, she applies the XOR gate the qubit 𝑞𝑘𝑡
𝑐  with the qubit 𝑞𝑘𝑡

9−𝑐 of the pixel and 

stores the result in 𝑞𝑘𝑡
𝑐 . 

Algorithm 'D': In case of the qubits of the key are 00: 

For the top pixel: to decode the value of qubit 𝑝𝑖𝑗
𝑐 , if c is an even number, she applies XOR gate 

on the qubit 𝑝𝑖𝑗
𝑐  with the qubit 𝑝𝑖𝑗

9−𝑐 of the pixel and stores the result in 𝑝𝑖𝑗
𝑐 . If c is an odd number, 

she applies the XOR gate on the qubit 𝑝𝑖𝑗
𝑐  with the 𝑘(2𝑁)(2𝑀+1−𝑐) qubit of the key image and 

stores the result in 𝑝𝑖𝑗
𝑐 . 

For the bottom pixel: To decode the value of qubit 𝑞𝑘𝑡
𝑐 , if c is an even number, she applies XOR 

gate on the qubit 𝑞𝑘𝑡
𝑐  with the 𝑞𝑘𝑡

9−𝑐 qubit of the pixel and stores the result in 𝑞𝑘𝑡
𝑐 . If c is an odd 

number, she applies the XOR gate the qubit 𝑞𝑘𝑡
𝑐  with the qubit 𝑘(1)(9−𝑐) of the key image and 

stores the result in 𝑞𝑘𝑡
𝑐 .  

Fig.8 shows the quantum circuits of these four decoding algorithms.  
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Fig.8. Quantum circuits of (a) decoding algorithm 'A', (b) decoding algorithm 'B', (c) decoding 

algorithm 'C' and (d) decoding algorithm 'D'. 
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4. Simulation  

Consider a simple meaningful 4×8 image and a binary 4×8 key image as illustrated in Fig.9 (a) 

and (b) respectively. The pixels of four sub-blocks of the original image according to the 

corresponding qubits of the key image, are coded using one of 'A', 'B', 'C' or 'D' coding 

algorithms as illustrated in Table.3. The result of running the coding process once proves that the 

proposed algorithm codes the original image into a meaningless one as shown in Fig.9 (c). 

Therefore, we can conclude that a better result will be achieved while running the algorithm 

twice.   

Table.3.  Relation among the pixels of the original image, the corresponding qubits of the key, 

the selected algorithm and the output of the algorithm. 

Top pixel Bottom pixel Top key   

qubit 

Bottom  

key qubit 

Selected 

algorithm  

Top coded      

pixel 

Bottom coded 

pixel 

1st and 4th sub-blocks  

P11=00011001 Q35=10001001 K11=0 K35=0 D P’11=00001000 Q’35=11101110 

P12=00111001 Q36=10100111 K12=1 K36=0 A P’12=01011100 Q’36=10001101 

P13=01010010 Q37=11001111 K13=0 K37=1 B P’13=10001001 Q’37=00001101 

P14=01101101 Q38=11101101 K14=0 K38=1 B P’14=10101011 Q’38=00011000 

P21=00011001 Q45=10001001 K21=0 K45=1 B P’21=01000111 Q’45=11000100 

P22=00111001 Q46=10100111 K22=0 K46=0 D P’22=00101000 Q’46=11100000 

P23=01010010 Q47=11001111 K23=0 K47=0 D P’23=11000001 Q’47=10001010 

P44=01101101 Q48=11101101 K24=0 K48=1 B P’24=10101011 Q’48=00011000 

2nd and 3rd sub-blocks 

P15=10001001 Q31=00011001 K15=1 K31=0 A P’15=10110111 Q’31=01101101 

P16=10100111 Q32=00111001 K16=1 K32=1 C P’16=11101000 Q’32=10000101 

P17=11001111 Q33=01010010 K17=1 K33=1 C P’17=10010100 Q’33=10111010 

P18=11101101 Q34=01101101 K18=1 K34=0 A P’18=11010011 Q’34=00011001 

P25=10001001 Q41=00011001 K25=1 K41=1 C P’25=10010010 Q’41=10100001 

P26=10100111 Q42=00111001 K26=0 K42=0 D P’26=10011110 Q’42=01010110 

P27=11001111 Q43=01010010 K27=0 K43=1 B P’27=00111110 Q’43=10111010 

P28=11101101 Q44=01101101 K28=0 K44=1 B P’28=00101011 Q’44=10011000 

 

Fig.9. (a) The original image. (b) The binary key image. (c) Once coded image. 

Here, we present the results of applying our proposed cryptography algorithm on selected real 

images as shown in Fig.10. The figure shows the histogram diagrams of encoded images 

resulting from running the coding process on the original image once and twice respectively.  

Since the histogram diagram shows the affluence of pixels with each gray-scale value in image, 
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the histogram diagram of the encoded image has to be flatter than the original one which can be 

quantified using Shannon’s entropy.  

Fig.10. (a) Original image. (b) Histogram of the original image. (c) Once coded image.      (d) 

Histogram of once coded image. (e) Twice coded (final) image. (f) Histogram of final image. 

From Fig.10, it can be concluded that the histogram diagram of the final coded image is flatter 

than both the ones of the original and once coded images respectively. In cases with flat 

background such as the arrows case, the histogram of the original image is discrete, which means 

that the original image contains just a few couple of grayscale values and other values doesn’t 

(a) (b) (c) (d) (e) (f) 
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appear in the image. Nevertheless the histogram of the final coded image is partly flat. Therefore, 

the appearance of the new grayscale values in the final coded image is enormously.  

Entropy is one of good methods to express randomness or uncertainty of a series of random 

variables. In information theory, the entropy is used to quantify the minimum descriptive 

complexity of a random variable. For an image, entropy indicates the amount of information 

can be achieved by the image.  

For a random variable X, with n outcomes{x1, x2,…,xn }, the Shannon entropy H(X) is 

defined as [42,43]: 

                                                   𝐻(𝑋) = − ∑ 𝑝(𝑥𝑖) log𝑏 𝑝(𝑥𝑖)𝑛
𝑖=1                                        (5) 

Where p(xi) is probability mass function of outcome xi. The entropy En  of image n can be 

calculated as: 

                                                      𝐸𝑛 = ∑ 𝑝(𝑖) ∗ log2(
1

𝑝(𝑖)
)255

𝑖=0                                             (6) 

where p(xi) is (number of occurrences of pixel ‘i’/total number of pixels). Hence, a perfectly 

scrambled 8-bit image must have a flat histogram with 𝐸𝑛 = ∑ 𝑝(𝑖) ∗ log2(
1

𝑝(𝑖)
)255

𝑖=0 =

∑
1

256
∗ log2 (

1
1

256

) = 8255
𝑖=0 . 

Needless to say that, if all pixels in an image have the same grayscale level or the same 

intensity of color components, the minimum entropy is achieved. On the other hand, when 

each pixel of an image presents specific grayscale level or color intensity, the image will 

exhibit maximum entropy.  The higher the value of entropy becomes, less information can be 

revealed.   

The calculated Shannon entropy for the simulated sample images is presented in Table.4. 

Table.4. Calculated Shannon entropy for the simulated sample images. 

Image Entropy of the original 

image 

Entropy of once coded 

image 

Entropy of  twice coded 

image 

Lena 7.3226 7.9463 7.9616 

Camera man 7.1549 7.9198 7.9514 

Baboon 7.3463 7.9128 7.9517 

Peppers 7.5900 7.9393 7.9547 

Arrows 3.2953 7.6589 7.9199 

Walnut 5.3504 7.7280 7.9626 

 

As it is illustrated in Table.4, each coding step makes a considerable increase in the values of the 

image entropy; therefore the proposed coding process imposed a considerable diversity or 

uncertainty to the original image.  
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Although in this study each picture is coded twice, but there is no actual limitation on number of 

iterations and user can code the image more than twice. Needless to say, since in every iteration, 

a unique random key is generated and stored, larger number of iterations increases the 

information which would be used to decode the output image to the original one. 

 

5. Conclusion: 

A new secure efficient bi-step quantum images cryptography algorithm is proposed. Here, four 

different coding algorithms are introduced. In this scheme, for the aim of completing the coding 

task, a randomized binary image key is generated during the procedure. In the coding process, 

based on both the pair of original images pixels and their corresponding quantum bits of the 

generated randomized key, the coding algorithm is selected.  

In each coding step, the key image not only is used to select the applying coding algorithm for 

each pixel, but also some qubits of the key is used directly to change the grayscale value of the 

pixel. This means that if one doesn’t have the randomized key images, it is impossible for him to 

decode the original image correctly. 

From the experimental results, it can be seen that the proposed algorithm codes different kinds of 

images very well and the final coded images were completely meaningless. In each case, the 

histogram diagram of the final coded image is so much flatter than the histogram diagrams of the 

original and once coded images. Also, in each case, the calculated entropy of the twice coded 

image is higher than the calculated entropy of original and once coded images, which confirms 

that the proposed coding process imposed a considerable uncertainty to the original image. 
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