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Abstract
With the increasing number of satellite, the satellite control resource scheduling problem (SCRSP) has been main challenge
for satellite networks. SCRSP is a constrained and large scale combinatorial problem. More and more researches focus
on how to allocate various measurement and control resources effectively to ensure the normal running of the satellites.
However, the sparse solution space of SCRSP leads its complexity especially for traditional optimization algorithms. As the
validity of ant colony optimization (ACO) has been shown in many combinatorial optimization problems, a simple ant colony
optimization algorithm (SACO) to solve SCRSP is presented in this paper. Firstly, we give a general mathematical model of
SCRSP. Then, a optimization model, called conflict construction graph, based on visible arc and working period is introduced
to reduce workload of dispatchers. To meet the requirements of TT & C network and make the algorithm more practical, we
make the parameters of SACO as constant, which include the bounds, update and initialization of pheromone. The effect of
parameters on the algorithm performance is studied by experimental method based on SCRSP. Finally, the performance of
SACO is compared with other novel ACO algorithms to show the feasibility and effectiveness of improvements.

Keywords Satellite control resource scheduling · Ant colony optimization · Pheromone · Constant

1 Introduction

The satellite control resource scheduling problem (SCRSP)
means that the measurement and control center should
allocate the resources containing radar and human resources
effectively to ensure satellites running in their orbits. In
order to ensure the normal operation of the spacecraft, it
is required to provide a series of measurement and control
support by TT & C network. TT & C network is the
only link between the transit of the space system and
the two part of the earth. The radio link is established
between the ground (TT & C network) and the completion
of the spacecraft through monitoring stations (including
land and fixed station, onshore, and offshore station survey
ship) to realize the spacecraft tracking, telemetry, remote
control, space communication, and data transmission.
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However with more and more practical satellite into space,
especially the emergence of a large number of low-cost
constellation system, TT & C network is facing more and
more serious situation that measurement and control for
multi satellites simultaneously. Measurement and control
equipment, information processing system, command, and
control system which can support the number of satellites
are always limited. When supporting multiple satellites
simultaneously, to meet the satellite measurement and
control needs, TT & C network center needs to reasonably
dispatch and allocate these resources. However, the demand
for measurement and control resources will conflict with
each satellite mission when the number of satellites
supported exceeds a certain limit. The emergence of
measurement and control resource contention also will lead
that some satellite measurement and control needs cannot
be met.

There are two approaches of hardware and software
to solve SCRSP. On the hardware side, we can increase
measurement and control resources and improve satellite
performance. But the construction of TT & C station is not
only long cycle, huge economic input, but also technical
constraints. In the software aspect, we can reasonably and
effectively design the scheduling scheme and coordinate the
activities of the satellite mission to measure and control
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resource contention, conflict compression to the lowest
degree and then maximize to meet the satellite mission
measurement and control needs. Compared with hardware
improvement, the software design cycle is short, the cost is
small, and the income is huge. Therefore, a large number
of researchers have been involved in the management of
spacecraft measurement and control system.

The problems of space resource scheduling in the
existing literatures include the following categories: ground
measurement and control resource allocation [1, 2], satellite
range scheduling [3, 4], deep space scheduling [5, 6],
satellite data scheduling [7, 8, 10], and relay satellite
scheduling [11, 12]. So the SCRSP belongs ground
measurement and control resource allocation in this paper.
Because the elements of these problems are the same or
similar, we can learn from other research results to study
the problem of ground measurement and control resource
allocation.

Along with the development of the aerospace measure-
ment and control network, especially the sharp increase
in the number of satellites, the problem of space resource
scheduling is developing and changing. The scheduling
objects evolve from the initial single satellite scheduling to
the multi satellite scheduling with complex functions. Cor-
respondingly, the scheduling methods changed from tradi-
tional optimization methods to heuristic methods even meta-
heuristic algorithms (intelligent optimization algorithms).
Vazquez [13] proposed an automated algorithm based on
Integer Linear Programming to solve the satellite antenna
assignment problem. The constraints and manual process
are considered as globally in this method. The experiments
show that the algorithm can solve large number of passes
in a short amount of time. A formal definition of satellite
range scheduling was given by Vazquez and Erwin [4] based
on number of resources, pre-emption, slack, redundancy,
precedence, and priority. They also gave the complexity
analysis of the problem and showed that some special prob-
lem with special constraints can be solved in polynomial
time.

Besides the mathematical methods, researchers turned
to use hybrid heuristic algorithm to solve the problem.
Bianchessi [14] developed tabu search method to cope
multiple satellite and multiple orbit problem. Marinelli et al.
[15] proposed heuristic Lagrangian fix-and-relax algorithm
based on standard integer programming and Lagrangian
relaxation technique to solve large scale constraints satellite
range scheduling problem. The experiment result shows that
it can find near optimal solutions for large scale relevant
instances which obtained by the European GALILEO
program. Karapetyan [9] proposed an ejection chain
heuristic algorithm to solve satellite downlink scheduling
problem. They [10] also compared some heuristic algorithm
such as ejection chain, simulated annealing, and tabu

search. The results show that simulated annealing is best.
Xhafa [16] considered several objective function containing
windows fitness, clashes fitness, time requirement fitness,
and resource usage fitness in ground station scheduling
problem and introduced tabu search (TA) algorithm to cope
the problem. The experiments show the good performance
of proposed algorithm on different size instance generated
by the Satellite Tool Kit.

With developing of the intelligent optimization algo-
rithm, more and more researchers choose this meta-heuristic
method to solve SCRSP. Barbulescu [17] used genetic
algorithm (GA) to solve SCRSP. GA starts with complete
and feasible solutions and constructs child solutions by
crossover operators of parent solutions, which replace the
worst solutions in the current solution population. They
[18] also observed that a genetic method, called Genitor,
performed well for a broad range of problem instances.
Xhafa [19, 20] analysed some relevant formulations of the
satellite scheduling problems such as satellite scheduling,
satellite range scheduling, task scheduling for satellite based
imagery, ground station scheduling, and proposed a novel
GA, called struggle GA, to solve ground station schedul-
ing. The aim used struggle strategy in struggle GA is to
keep the diversity of GA and avoid premature convergence.
Sarkheyli [21] modelled the SCRSP as graph coloring prob-
lem and used Tabu search with a new move operation to
solve the problem. The experimental results showed that
the algorithm can effectively get near-optimal feasible solu-
tion with less computing time compared with GA. Wu
[22] proposed differential evolution algorithm based on
analysing the situation features to solve multi-satellite mon-
itor scheduling problem. An ant colony optimization (ACO)
algorithm based on guidance-solution, called GsB-ACO,
has been presented to solve MSCRSP by Zhang [23]. Gao et
al. [24] adopted ant colony optimization plus iteration local
search approach to resolve the multi-satellite observation
scheduling problem. Wu et al. [25] presented a novel two-
phase based scheduling method with the consideration of
task clustering for solving satellite observation scheduling
problem. Zhang et al. [26] used TSIACO to solve MSCRSP,
called as MSCRSP-ACO.

MSCRSP-ACO has good performance when solving
SCRSP. However, TT & C network finds that MSCRSP-
ACO is too complex to SCRSP for them in the process
of using the algorithm. In order to meet their requirements
and make the algorithm more practical, a novel ACO based
on MSCRSP-ACO, called simple ant colony optimizaiton
algorithm (SACO), is proposed in this paper to solve To
SCRCP. The rest of this paper is organized as follows.
In Section 2, we give the mathematical model of SCRCP
and briefly review the ACO based on TSP. In Section
3, the detailed procedure of SACO is described in this
section. In Section 4, some computational experiments are
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given to show the effectiveness of these modifications. The
conclusion of this paper is given in Section 5.

2Mathematical model of SCRCP

In this section, we will give the detailed description of
SCRCP and then get the mathematical model which can be
solved by ACO. A briefly review of ACO also will be given
in this section.

2.1 Mathematical model of SCRCP

Every day, the orbiting satellites must contact with the
ground stations several times to transmit information to
or receive commands from the antennas in order to keep
working effectively. However, there will generate conflicts
between the satellites and antennas due to the their unequal
numbers. Generally, the conflicts contain two types. One
is called satellite conflict because one satellite will be
visible to several antennas simultaneously. Another is called
measurement and control equipment conflict due to more
than one satellites passing over the same antenna at the same
time. Especially, with the increasing number of satellites,
the conflicts become more and more serious. Then the
SCRSP can be described by the following four-tuple:
{tasks, resources, constraints, optimization objective}.

2.1.1 Scheduling object

Tasks and resources as main elements of SCRCP are often
used as scheduling objective to build optimal model in many
scheduling researches. However, to describe the SCRCP, the
optimal model needs to add other variables, for example
time window resource. Then the scheduling process based
on the model should be carried out two steps. It is also
not conducive to the analysis of the problem essentially.
A visible arc [23] containing large useful information will
be formed when the satellite passes through the ground
station. So, it can be used as a scheduling object if it
is completeness and uniqueness. Under this considering,
a visible arc should be composed of eight elements. Let
the satellite set is S = {s1, s2, · · · , s|S|}, where |S| means
the number of satellite needed to tracking telemetering and
command (TT & C) support in the scheduling period, TT &
C equipment set E = {e1, e2, · · · , e|E|}, where |E| means
the number of TT & C equipment in the scheduling period.
Visible arc set A = {a1, a2, · · · , a|A|}, where |A| means
number of visible arc in the scheduling period. Then, we
can get the definition of visible arc. That is, a visible arc is
ai = {sai, cii , dai, eqi, eli , tsi , tei , ori}, where

– sai is satellite which contains visible arc ai

– cii is lap time of ai

– dai is day time
– eqi is service equipment
– eli is highest elevation angle
– tsi is the start time
– tei is the end time
– ori is arc type. When ai is in the stage of raising the

orbit, ori = 1, otherwise, ori = −1.

2.1.2 Constraint condition

The constraint condition means that the satellite and
the measurement and control equipment must meet the
constraint conditions in order to ensure the normal operation
of a single measurement and control task. We mainly
consider the following constraints in the article.

Geometric constraint It is the geometric condition that
the spacecraft and the measurement and control station
must meet a certain direction angle to ensure the normal
measurement of spacecraft. Generally, the position of the
spacecraft must be above the minimum elevation θ of the
measurement and control equipment. The spacecraft is not
sheltered in the antenna beam range.

Task interval constraint The measurement and control
equipment needs a period of time to set up the equipment
state and adjust the antenna direction. the equipment can
not provide support for spacecraft measurement and control
during this time.

Health state constraint ofmeasurement and control stations
The health status of the measurement and control station
refers to whether the measurement and control equipment
function is normal in the scheduling period, and whether
the environment of the monitoring and control station can
carry out the measurement and control task. In the stage of
pre scheduling, the measurement and control equipment is
used to satisfy the constraint. In the execution phase of the
scheduling plan, it should be dynamic adjustment if there is
a sudden situation.

Support time constraint The visible arc of the TT &
C station must be greater than that needed to complete
the measurement and control task. That is, the time of
measurement and control of the spacecraft in a cycle
must be greater than the time required to complete the
measurement and control tasks.

Control equipment exclusive constraint Measurement and
control equipment possess single task. That is, it does not
provide support for two or more than two spacecraft at the
same time. If visible time window of the two visible arcs
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Fig. 1 Schematic diagram of conflict between spacecraft

ai and aj provided by the same measurement and control
equipment overlap, then measurement and control conflicts
will occur. That is,

{eq(ai) = eq(aj )}&{[ts(ai), te(ai)]∩[ts(aj ), te(aj )] �= ∅}
Figure 1 is a schematic diagram of conflict generated by

three satellites. So, we can get that the exclusive constraint
of the measurement and control equipment in the scheduling
period is a set EC

EC :={∀i, j, v(ai)+v(aj )≤1, if {eq(ai)=eq(aj )}&
{[ts(ai), te(ai)] ∩ [ts(aj ), te(aj )] �= ∅}}

(1)

Spacecraft exclusive constraints A spacecraft can only
receive a set of equipment measurement and control support
at the same time. If a satellite is monitored by two or more
than two sets of equipment at the same time, only one of
them can be set up to provide support. The example can be
seen Fig. 2. We also can describe it as

{sa(ai) = sa(aj )}&{[ts(ai), te(ai)]∩[ts(aj ), te(aj )] �= ∅}
Then spacecraft exclusive constraint set SC can be defined
as following

SC :={∀i, j, v(ai)+v(aj )≤1, if {sa(ai) = sa(aj )}&
{[ts(ai), te(ai)] ∩ [ts(aj ), te(aj )] �= ∅}}

(2)

Although the constraint conditions are complex, the first
four conditions no longer need to be considered if we use
visible arc as scheduling object. They can be processed
before we get visible arc from forecast data.

2.1.3 Optimization objective

The establishment of the satellite monitoring and dispatch-
ing plan is determined by two aspects. One is satellite
users, and another is TT &C network. They will put for-
ward the corresponding optimization objectives according
to their own needs. In this article, we only consider the crewł
working load of TT &C network as optimization objective.
Satellites can be divided into three kinds according their
height of orbit.

In this paper, we only study the low-earth-orbit (LEO)
satellites. Then we can represent visible arc ai as ai =
{sai, eai, [tsi , tei]}, which means that one task of satellite
sai can be served by the antenna eai in the time window
[tsi , tei].

2.1.4 Mathematical model

Let G = (A, E) is a conflict construction graph for LEO
SCRCP, where A is the set of nodes, E is the set of edge. The
node of G is visible arc, and the edge of G is constructed by
the constraints of problem. Two kinds of constraints which
describe the conflicting relationships among the visible arcs
are transformed into the set of edge E. The first is spacecraft
exclusive constraints. Once a visible arc is selected, others
which can also execute the same task in the same period will
be abandoned. The second is control equipment exclusive
constraint. Every two visible arcs having such relationships
are connected by an edge.

In practice, several operators make up one group and
take charge of the operations for two or more satellites.
There are two time slots in one day for the groups to fulfill
concentrative the tasks when the satellites are visible to the
antennas. We call these slots as working periods. During
each working period the groups have to work continually

Fig. 2 Schematic diagram of the
conflict between measurement
and control equipment



Ant colony algorithm for satellite control resource scheduling problem

until all the tasks are finished. Using working period, we
can divided a visible arc set A into many subset.

Let Al ⊂ A and Kl represents respectively the
set of visible arcs and the number of required tasks
in the lth working period, where l = 1, 2, · · · , Land
L is the number of working periods in a scheduling
horizon. The optimization objective is to minimize the
working span based on satisfying all the required tasks.
That is,

min F(A′) =
L∑

l=1

T (A′
l ) (3)

Let A′ = {A′
l}Ll=1 ⊆ A represents a feasible schedule,

where A′
l ⊆ Al and |A′

l | = Kl . The working span for the lth
working period in the A′ is represented as follows

T (A′
l ) = max {tei |ai ∈ A′

l} − min {tsj |aj ∈ A
′
l}

2.2 Ant colony optimization

ACO is first proposed by Dorigo [27] modelled on the
foraging behaviour of an ant colony. Now it represents a
class of optimization algorithms[28–30]. The main process
of ACO is constructing solution and updating pheromone.
It is also the main difference between different algorithms.
Ant colony system (ACS) [28] and max-min ant system
(MMAS) [29] are widely used ACO algorithms. After
the initial proof-of-concept application to the travelling
salesman problems (TSP), ACO was applied to many other
combinatorial optimization problems, such as dynamic
travelling salesman problems, shortest path problem, feature
selection, and vehicle routing problems.

The positive feedback mechanism based on pheromone
accumulation in ACO directly impact on the search pro-
cess of algorithm, thereby affecting the performance of
the algorithm. Therefore, an effective management mech-
anism of pheromone will determine the performance of
the algorithm. The main improvements in MMAS algo-
rithm are to adjust the pheromone management strat-
egy. From pheromone initialization to updating, different
scenarios have adopted compared with AS algorithm. It
uses only one ant (the ant may be the one which con-
structed the global-best solution sgb or the iteration-best
solution sib) to update pheromone trails. In addition, it
imposes upper and lower trail limits on pheromone trails
to avoid stagnation. The upper bound τmax is set to an
estimate of the asymptotically maximum value, and the
lower bound τmin is set to ετmax where 0 < ε < 1.
All of them are based on in-depth analysing the char-
acteristics of the optimization problem and ant algorithm
itself.

3 A Novel ant colony algorithm solving
SCRSP

The detailed procedure of SACO will be discussed in this
section. At first, we will preprocess data.

3.1 Data preprocessing

The original data supplied by satellite control center can
not be directly processing. If we want to used the data, we
should do data preprocessing. Firstly, we convert original
data into visible arc. Meanwhile, the first four constraints
will be checking in this process. Then, we will construct the
optimization model based on the visible arc.

3.2 SACO solve SCRSP

SACO algorithm still continues the MMAS algorithm struc-
ture on the algorithm framework, but some improvements
has done on the pheromone management strategy. The main
procedure of the SACO algorithm solving SCRCP is shown
in Algorithm 1.

Algorithm 1 SACO algorithm

Input: ant number , evaporation rate , parameter and

1: Initialization:Define pheromone and heuristic value by (4)

Pheromone initialized by (5)

2: while termination condition is not satisfied do

3: for all 1 to do

4: Ants construct solutions according to (6) and (7);

5: end for

6: Record the iteration-best solution ib;

7: if gb ib then

8: gb ib

9: end if

10: Update pheromone according to the (8);

11: end while

Output: the global-best solution gb and fitness gb

Define pheromone and heuristic information According to
the model of SCRSP, it is a typical subset problem and there
are no order relationships among the vertices. Therefore a
pheromone trail is associated to each vertex, and τi indicates
the learned desirability of adding a certain vertex ai to the
partial solution sk .

Heuristic information ηi characterizes its visible desir-
ability to be added to the partial solution. Since the objective
of SCRSP is to minimize the working span, those ver-
tices which protract the working span for shorter time are
more desirable. We can consider the protracted length of the
working time as heuristic information.
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For the lth working period, the current working length is
supposed to be [tel − tsl], where tsl and tel are respectively
the earliest start time and the latest end time in this period.
The protracted working length for adding a vertex ai ∈ Al

to sk is �ti = �ti1 + �ti2, where

�ti1 =
{

0, tsl ≤ tsi
tsl − tsi , tsl > tsi

�ti2 =
{

0, tel ≥ tei

tei − tel, tel < tei

Then we can define heuristic information ηi of ai as
follows.

ηi = e−λ�ti (4)

where λ(λ > 0) is a constant value.

Initialize pheromone values In MMAS algorithm,
pheromone is initialized to the upper bound of pheromones.
The upper bound of pheromone is related to the optimal
solution of the problem to be solved. However, it is difficult
to obtain the optimal solution. An estimated upper bound is
used at first, and then it will be amended by the algorithm
in the subsequent iterative process. But in SACO all the
pheromone values are initialized to the numerical value
at the beginning. That is, the initialization is done by the
following

τ0 = ω · τmax (5)

where ω is a constant and satisfies 0 < ω ≤ 1. When ω

is equal to 1, it means that pheromone is initialized to the
upper bound τmax. It is similar to MMAS algorithm.

Construct solution The major improvements of SACO
algorithm are focused on simplifying the pheromone model.
The strategy of solution construction is still used the random
proportion rule. But compared to MMAS, the parameter α

in SACO is equal to 1. That is,

P(ai |Al(k)) =
⎧
⎨

⎩

τi ·ηβ
i∑

aj ∈Al (k) τj ·ηβ
j

, if ai ∈ Al(k)

0, otherwise
(6)

where Al(k) is the set of feasible candidate vertices for the
lth working period at the kth construction step.

Supposed that ai is added, the candidate list for the next
construction step is generated as follows
{

Al(k + 1) = Al(k) − {ai} − c(ai, Al(k)), ai ∈ Al(k)

Al′(k + 1) = Al′(k) − c(ai, Al′(k)), ai /∈ Al′(k)

(7)

where c(ai, Al(k)) is a set of vertices belonging to Al(k)

and connected with ai by edges.

Update pheromone SACO algorithm similar to MMAS
uses only a single solution (iterative optimal solution) to
update pheromone. However, the pheromone is limited to
a fixed range. For convenience, the range is still denoted
as [τmin, τmax]. τmin and τmax are constants and they are
not affected with changing of objective function value. In
addition, the update amount of pheromone is also a constant
related to τmax. When all the ants get a full path at iteration t ,
pheromone updates in accordance with the rules as follows

τi(t + 1) =
[
(1 − ρ)τi(t) + �τ best

i (t)
]τmax

τmin
(8)

where �τ best
i (t) is the amount of pheromone which the best

ant lays on vertex ai . It can be defined as

�τ best
i (t) =

{
ρτmax if ai ∈ sbest

0 otherwise
(9)

In fact, if pheromone meets the initialization conditions,
pheromone of each edge will not exceed the upper bound
of pheromone. Therefore, judgement of the process whether
pheromone exceeds the upper bound may be omitted in the
SACO algorithm.

In practice, we can take [τmin, τmax] as [0.001, 0.999].
We also use setting in the simulation experiment in the
Section 4. In fact, based on satisfying a certain conditions,
SACO can be seen as special instance of MSCRSP-ACO
[26]. The main difference of two algorithms is that the way
of pheromone updating. The way of SACO is the same, but
that is two phases in MSCRSP-ACO. The advantage is to
make the process of SACO as typical ACO (MMAS) and
reduce the extra parameters. Only the best ant pheromone
obtains update amount which equals to ρτmax, and the
rest of ants are 0 in SACO. This makes the exploring
way of the algorithm the same. The advantage of this
exploring approach is that the algorithm can always remain
the ability of exploiting the optimal solution above a
certain level. Therefore, the algorithm can keep a balance
between exploration and exploitation in a way to prevent
the algorithm into premature convergence. However, the
drawback of this method is that the exploration ability in the
first stage will be weaker compared with MMAS. That is,
SACO may need more convergence time.

4 Experimental results and analysis

In this section, the parameter setting for the SACO
algorithm is discussed and computational results of SCRSP
are presented. Firstly, we give four practical instances which
we get from SCN of China. Then, we organize them as the
demand of visible arc. The basic information of instances is
given in Table 1.
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Table 1 The basic information of the instance

Problem Num. of Num. of Num. of

instance satellite antennas vertices

S-1-10 10 6 2093

S-2-10 10 5 2079

S-3-10 10 5 2055

M-1-14 14 9 2367

M-1-14 14 9 2118

L-1-17 17 11 2231

L-2-17 17 13 2747

L-3-17 17 11 2731

L-4-17 17 12 2771

4.1 The parameter setting

Firstly, we experimentally study the influence on the setting
specific parameters on SACO performance based on the
instance L-4-17 using different settings of averaged over 5
independent executions of the algorithms, respectively. The
maximum number of tour constructions is 200. Here the
parameters of SACO which we study in this section are
the number of ant m, initial parameter ω, parameter β and
evaporation rate ρ. In the experiment, only one parameter
is changing, while maintaining the other parameters
unchanged. The default value of each parameter is m = 15,
ω = 0.5, β = 2, andρ = 0.04. Four sets of candidate values
{10, 15, 20, 30, 40}, {0.001, 0.1, 0.5, 0.7, 1}, {1, 2, 3, 5, 7},
and {0.02, 0.04, 0.9, 0.8, 0.5} are given for m, ω, β, and ρ

respectively. The results are showed in Figs. 3, 4, 5 and 6.

Ant number m Fig. 3 shows evolutionary curve of the
iterative optimal solution at different values of ant number
m. From Fig. 3 we can find that a better solution can
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be obtained with increasing ant number. However, the
calculation cost also will be increased. We also can find the
best solution of m = 20 lightly worse than that of m = 40,
meanwhile the calculation is only half of m = 40. So,
considering the balance between the cost and performance,
we should choose m as proper value.

Initial parameter ω Fig. 4 shows evolutionary curve of
the iterative optimal solution at different values of ant
number ω. From Fig. 4 we can find that the searchability
of algorithm is fastest when ω = 0.001. And it soon
concentrates near optimal solutions. As the value of ω

increases, the search speed is gradually slowed. Especially,
the search speed in the initial phase is slowest when ω = 1,
but in the latter phase it still has a certain ability to explore.
The reason may be added pheromone far less than existed
pheromone in the beginning when ω = 1.
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Parameter β Fig. 5 shows evolutionary curve of the
iterative optimal solution at different values of parameter β.
The Fig. 5 shows that as the value increases, search speed is
gradually accelerated. But the solution quality deteriorates
when β = 7. Therefore, in the SACO β = 2 is more
appropriate.

Evaporation rate ρ Fig. 6 shows evolutionary curve of the
iterative optimal solution at different values of evaporation
rate ρ. It can be seen in Fig. 6 that the higher the value
of evaporation rate ρ, the algorithm trapped to stagnation
is faster. However, if the value of ρ is too small, the
algorithm searches slowed significantly. Comprehensive
consideration, we adopt ρ = 0.04 in SACO.

4.2 Comparedwith other algorithms based on SCRSP

To test the performance of SACO, we compare the
experimental results with the iterative repair (IR) method,
the genetic algorithm (GA), MMAS and MSCRSP-ACO in
this section. Each example is run independently 10 times.
Every algorithm generates 10000 feasible solutions each
time. So, we set the ant number m = 20, and the maximum
iteration number Nmax = 500. The parameters of three
ACO algorithms are given in Table 2. The other parameters
of IR and GA set by Zhang [23]. For each instance, the best

Table 2 Parameter setting of ACO

Algorithm α β ρ τ0 τmin τmax ρ1 ρ2

MMAS 1 2 0.02 τmax 1
/
ρ f (sgb) α1τmax -- --

MSCRSP-ACO 1 2 -- τmax 0.001 0.999 0.01 0.1

SACO -- 2 0.04 0.5τmax 0.001 0.999 -- --

Table 3 Computational results between two ACO algorithms

Instance SACO MSCRSP-ACO

Sbest Sworst Savg Sbest Sworst Savg

S-1-10 171.62 172.58 171.88 171.77 172.75 172.06

S-2-10 186.93 187.10 187.04 187.05 187.13 187.09

S-3-10 173.28 173.52 173.40 173.43 174 173.60

M-1-14 312.95 313.75 313.11 313.07 314.12 313.29

M-2-14 263.53 263.83 263.67 263.67 264.2 263.80

Sbest , the worst Sworst and average solution values Savg as
well as standard deviations Std are given.

Firstly, we compare the performance of the SACO and
MSCRSP-ACO based on small and medium scale instances.
The results can be seen in Table 3. In five instances, the
best solution, the worst solution and the average solution
obtained by SACO are better than MSCRSP-ACO. It
showed that the quality and stability of the solution of
SACO is better than that of MSCRSP-ACO.

Secondly, we also compare the two algorithms based on
large scale instances. In addition to MSCRSP-ACO, we also
add several algorithms, that is, IR, GA, and MMAS. The
results are presented in Table 4. The best result for each
instance is in boldface. The evolution process of three ACO
algorithms on four instances is also given in Figs. 7, 8, 9, and
10 respectively to compare the performance of three ACO
algorithms.

As can be seen from Table 4 whether the optimal value
or the worst value, the three ACO algorithms are better
than IR and GA. In addition, SACO and MSCRSP-ACO
are better than MMAS whether the Sbest or Sworst . The Std

of two algorithms are less than MMAS. It shows that the
two algorithm are more robust than MMAS. Compared with
the evolution of three instances, we can find that MMAS
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Fig. 7 Evolution of the average fitness on L-1-17 instance
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Fig. 8 Evolution of the average fitness on L-2-17 instance

can concentrate around the best tour earlier than SACO and
MSCRSP-ACO in the beginning of evolution process, i.e.
the exploration ability of MMAS is stronger than SACO
and MSCRSP-ACO. But MMAS loses the searchability
ant traps to convergence after 100 iterations. Then SACO
and MSCRSP-ACO also can find better solution after 100
iterations, that is, they can keep stronger exploration ability
on the premise of exploitation. Therefore, the performance
of SACO and MSCRSP-ACO is better than MMAS.

When comparing the results of SACO and MSCRSP-
ACO, we can find that the quality of SACO is better than
MSCRSP-ACO on three instances, L-1-17, L-2-17, and L-
4-17. Especially, on instances L-2-17 and L-4-17, the Std of
SACO is also less than MSCRSP-ACO. But on instance L-
3-17 the performance of SACO is less than MSCRSP-ACO.
Compared with the evolution process of two algorithms
from Figs. 7 to 10, we can find the similarity of two
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Fig. 9 Evolution of the average fitness on L-3-17 instance
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Fig. 10 Evolution of the average fitness on L-4-17 instance

algorithms. we can classify two types according to evolution
process. First type contains the instance L-1-17 and L-4-
17. Second type contains the instance L-2-17 and L-3-17.
For first type, the searchability of SACO is weaker than
MSCRSP-ACO in the early stage, but SACO can keep in
later stage. Then the performance of SACO is better than
MSCRSP-ACO. For second type, the process is reversed.
The performance of SACO is slightly better than MSCRSP-
ACO on instance L-2-17, but slightly worse than MSCRSP-
ACO on instance L-3-17. It shows that sustainability of
searchability is important to algorithm.

5 Conclusion

How to effectively schedule the resource to ensure the
normal operation of orbiting satellites is one of the main
task for satellite networks. The model will be different
due to the different constraints and different optimization
objectives. It is one of the complexities of the SCRSP.
We discuss the general constraints of SCRSP and get
the optimization model based on visible arc to reduce
the workload of dispatchers. Then we get a novel ant
colony optimization based on MMAS to get the optimal
solution. Two improvements have done in SACO. First,
update amount of pheromone is changed to a constant
related to ρ and τmax. Second, the pheromone is initialized
to a constant. Then a new pheromone model is generated
by combining the two improvements and the constant
pheromone bounds. There are two benefits to use this
model. On one hand, the degree of parameters coupling is
reduced. On the other hand, SACO can be easily masted
by the crew of station network. To present the feasibility
and effectiveness of the novel work, some simulation
experiments on practical instances. Experimental results
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Table 4 Comparison of computational results

Instance Algorithm Sbest Sworst Savg Std

L-1-17 GA 306.57 309.31 307.77 1.03

IR 310.93 317.47 313.38 1.97

MMAS 305.55 306.53 306.15 0.32

MSCRSP-ACO 303.67 303.87 303.79 0.08

SACO 303.48 303.78 303.60 0.10

L-2-17 GA 428.76 437.42 433.07 3.05

IR 433.50 444.05 439.67 3.88

MMAS 425.32 425.97 425.64 0.22

MSCRSP-ACO 423.53 423.82 423.65 0.08

SACO 423.53 423.65 423.59 0.04

L-3-17 GA 430.78 438.27 434.43 2.05

IR 429.48 442.73 436.95 4.31

MMAS 423.87 424.68 424.25 0.26

MSCRSP-ACO 422.23 422.57 422.37 0.11

SACO 422.28 422.52 422.38 0.09

L-4-17 GA 389.80 402.03 395.91 4.77

IR 364.18 378.32 371.51 3.68

MMAS 359.40 360.02 359.70 0.23

MSCRSP-ACO 357.78 358.05 357.89 0.08

SACO 357.65 357.75 357.70 0.04

showed that the performance of SACO is better than that of
MMAS and MSCRSP-ACO.

Compared with the evolution process of SACO and
MSCRSP-ACO we can find that sustainability of searcha-
bility is also important to algorithm. It relates to another
important content for an optimization algorithm, that is,
keeping the balance between exploration and exploitation.
we find that using the pheromone model in SACO is helpful
to keep this balance in some extent. But we cannot clearly
explain the reason. Furthermore, how to decide the key fac-
tor and minor factor for the performance of SACO is also a
question. They may be one of future work for us. In addi-
tion, how to use the problem characteristics to design more
effective algorithm including the algorithm selecting and
parameter setting is another future work. Last, how to build
a united platform to compare the performance of differ-
ent metaheuristic algorithms is also important work in the
future.
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