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Highlights 

 The grain emergency vehicle scheduling model was established and solved by 

using the improved and optimized IACO algorithm. 

 A hybrid algorithm was proposed to address the shortcomings of standard 

metaheuristic algorithms. 

 Several common optimization algorithms were employed to assess IACO 

performance. 

 This study demonstrated the effectiveness of IACO for emergency grain 

distribution optimization problem. 

 

 

Abstract: The routing optimization problem of grain emergency vehicle 

scheduling with three objectives is studied in this paper. The objectives are: 

maximizing satisfaction of the needs at the emergency grain demand points, 

minimizing total cost of grain distribution and minimizing the distribution time. A 

hybrid algorithm is present to solve the proposed problem based on combining 

artificial immune and ant colony optimization (ACO) algorithms. This hybrid 

algorithm calculates the degree of crowding and conducts non-dominated sorting of 

the population in the ant colony optimization algorithm by applying a Pareto 

optimization model. A better solution set is quickly generated by making use of the 

fast global convergence and randomness of the improved immune algorithm together 

with the distributed search ability and positive feedback of the ACO algorithm. A 

better solution set obtained as the initial pheromone distribution, is solved further by 

using ACO until the approximate optimal solution set is obtained. A comparison of the 

proposed algorithm with several common optimization algorithms on the Solomon 

benchmark dataset demonstrates that this method obtains better performance in 

shorter time, and is an efficient way to solve the vehicle routing problem in 

emergency grain distribution scenarios. 

 

Keywords: grain emergency logistics; immune ant colony optimization; routing 

optimization 
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1 Introduction 

After centers for grain distribution in a disaster area has been established, vehicles 

are distributed from the distribution centers to the emergency grain demand points in 

the surrounding area, which is also known as "the last kilometer" problem [1]. 

Compared with traditional vehicle routing problem (VRP) problems [2,3], emergency 

grain vehicle distribution should meet the timeliness and dynamic changes in demand 

for grain at the demand points. In addition, the environment of the distribution process 

affects the routing of the distribution vehicles. Therefore, scheduling and distribution 

should be completed within the least amount of time when planning distribution 

routes according to the practical demand for food at different times and locations. It is 

necessary to find the optimal distribution route with the development of optimization 

techniques according to the needs of the demand points, delivery cost, and delivery 

time form a multi-objective optimization problem [4]. 

At present, due to its importance and complexity, routing optimization problem of 

vehicle scheduling has been studied extensively and many researches have been 

devoted to solving this problem by using multi-objective optimization techniques over 

the last decades. In terms of multi-objective approaches, metaheuristics approaches 

such as genetic algorithms (GA), ACO and IA have been widely developed to obtain 

approximately solutions for multi-objective problems. 

Stodola et al. [5] present the capacitated multi-depot vehicle routing problem, 

heuristic and metaheuristic algorithms were studied, and an original solution 

of the MDVRP problem by using ACO algorithm was obtained. Ben et al. [6] present 

multi-criteria optimization problem, in which three objectives including minimizing 

total travel distance, total tardiness time and the total number of vehicles, are 

considered. Huang et al. [7] proposed several novel hybrid ACO algorithms to 

resolve multi-objective job-shop scheduling problem, PSO algorithm was used for 

adaptive tuning of parameters, the real-world data was employed to analyze the 

performance of the developed algorithms. Khanra et al. [8] proposed a hybrid 

heuristic algorithm combining ACO and GA for single and multi-objective imprecise 

traveling salesman problems. The performance of the algorithm is tested and analyzed. 

Kumar et al. [9] developed MMPPRP-TW with two objectives. This study studied 

those objectives (minimization of the total operational cost and the total emissions) 

and solved the model by hybrid SLPSO algorithm.  

On the other hand, because of unconventional emergencies occurred frequently, 

which caused tremendous economic damages and attracted widespread concerns in 

the international community.  Toregas et al. [10] present linear programming method 

to solve the locating problem of emergency facilities. Camacho-Vallejo et al. [11] 

presented a non-linear mathematical model for humanitarian logistics, which 

optimizes the decisions related to post-disaster international aids after a catastrophic 

disaster in a mixed integer linear programming format. Afshar et al. [12] proposed a 

comprehensive model to control the flow of relief goods. Tofighi et al. [13] brought 

up a two stage stochastic fuzzy model for emergency resource distribution in response 

ACCEPTED M
ANUSCRIP

T

http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=5B8mLQuUIa7KwbCm2Z8&field=AU&value=Stodola,%20P&ut=83417190&pos=1&excludeEventConfig=ExcludeIfFromFullRecPage


to natural disasters, they considered the warehouse locations and distribution policy. 

Yi and Kumar [14] developed an ant colony optimization method to solve the logistics 

distribution planning. Therefore, it is significant that delivering relief materials should 

be distributed to the affected area using optimization models and appropriate 

algorithms.  

In spite of the majority of the researches in the field of response to the emergency 

distribution problem, few studies have considered optimization algorithm for the grain 

emergency distribution problem. In this study, we combine the immune with ACO 

algorithm to propose a new method, the immune ACO (IACO) algorithm. Results on 

the Solomon benchmark dataset show that it outperforms existing optimization 

methods. 

2 Mathematical model for the optimization of emergency grain 

distribution routing  

The routing of emergency grain distribution vehicles should be reasonably 

planned under all the limits of the environment to meet the needs of the emergency 

grain demand points. The routing model for emergency grain distribution vehicles is 

designed using the following three objective functions: 1) satisfaction of the needs at 

the emergency grain demand points, 2) the total cost of grain distribution, and 3) 

control of the distribution time. The total cost includes transportation cost, penalty 

cost (the difference between the distribution time and demand time), and the cost of 

the vehicles themselves (additional vehicles increase the vehicle cost). The demand 

points have a higher degree of satisfaction if all vehicles that participate in the 

emergency grain distribution fulfill their task in the shortest time possible. The lowest 

distribution time is the longest time that the vehicles spend travelling from the food 

distribution center to the emergency grain demand points after the grain has been 

distributed to all of the demand points.    

 

2.1 Assumptions and constraints of the model 

The following assumptions are used in this study. 

(1) The information about the locations and distance of the emergency grain 

distribution points and demand points is known. 

(2) Grain demand is determined according to the population at the demand point. 

(3) The demand point has the last arrival time constraint in the process of emergency 

grain distribution, and reverse distribution is not allowed. 

(4) The number of emergency grain distribution vehicles are sufficient and the vehicle 

attributes (fuel consumption, capacity, and speed) are uniform. 

(5) Emergency grain distribution vehicles set off from the supply center to the demand 

points, and finally return to the emergency grain distribution point, but each 

demand point can receive grain from only one vehicle. 

(6) The demand points and routes should be composed into a transport map and the 

emergency road conditions are estimated. If road conditions are poor, the speed is 
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slow and the travel time is long. 

 

2.2 Penalty function 

In emergency grain distribution scheduling, the time constraint has always been a 

focus for researchers in China and internationally. In this article, a penalty function is 

used to describe the timeliness of the emergency grain distribution scheduling. The 

optimal distribution time window of each grain demand point is set according to the 

different levels of disaster in the disaster-affected areas and different levels of damage 

to infrastructure and demand for food. If grain distribution vehicles finish the 

distribution within the set time window, they will not be penalized. If distribution 

vehicles finish the distribution before the set time window or later than the set time 

window, distribution cannot be completed or emergency scheduling results are 

affected, and they must pay a penalty. The penalty cost function is designed as 

follows: 

)0,max()0,max()( iiiiii lsqsepsP                   (1) 

This equation can be rewritten to more intuitively reflect the meaning of the 

penalty cost as follows: 
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Here, ie is the earliest time at which emergency grain is distributed to the demand 

points, il is the latest time at which the emergency grain is distributed to the demand 

points, is is the travel time from the emergency grain distribution center to the 

demand point, p is the waiting cost incurred if the vehicles arrive ahead of schedule, 

and q is the penalty cost incurred when the vehicles arrive later than the set time 

window. 

 

2.3 Modeling 

In this section, the multi-objective optimization approach for emergency grain 

distribution logistics [1] [15] is presented. 

 

2.3.1 Parameters and variables 

The node set is denoted as {0,1,2, , }V n , where 0 is emergency grain 

distribution center, which is the starting point and ending point of a grain distribution 

route, and the demand nodes are numbered as {1,2, , }n . Moreover, 
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{1,2, , }M m  is the set of emergency grain distribution vehicles. Other parameters 

are defined as follows: 

∙ iq is the demand of demand point i. 

∙ kQ is the load capacity of emergency distribution vehicle k, which should meet 

max{ , }k iQ q i V  .  

∙ 
ijd  is the distance between demand points i and j. 

∙ ij  is the road condition coefficient between nodes i and j, and it takes a value 

in the range [0, 1]. Worse road conditions are indicated by smaller values.  

∙ v  is the speed of an emergency grain distribution vehicle. 

∙ ijt  is the time that the emergency grain distribution vehicle takes to travel from 

demand point i to demand point j.  

∙ c is the cost an emergency vehicle incurs when moving a unit distance on good 

roads.  

∙ ijf is the cost from demand point i to j. 

∙ 
rf is the fixed cost of the emergency delivery vehicle. 

∙  0, iT  refers to the distribution time window of emergency point i. 

∙ it is the time at which the emergency distribution vehicle arrives at the demand 

point. 

   ∙ kST refers to the total delivery time of vehicle k. 

Finally, 
( )i it

refers to the degree of satisfaction of demand point i in the 

emergency grain distribution process. This function is expressed as: 

 

( )
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( )
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i i
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                        (3) 

If the delivery vehicles fulfill the emergency distribution tasks on time, the degree 

of satisfaction of the demand points increases. In contrast, as the delivery time is 

increasingly delayed, the degree of satisfaction gradually reduces.  

1,

0,

k

ij

distribution vehicle k travels from i to j. 
x

otherwise


 

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1,

0,

k

i

grain emergency point is distributed by vehicle k
y

otherwise


 


 

 

2.3.2  Objective function 

Considering these assumptions, three objectives are defined for the mathematical 

model including total costs of grain distribution, total distribution time and 

satisfaction of the needs at the emergency grain demand points. Since the objective 

isn’t one summation, the minimization-maximization format is used in the objective 

function. Using on the above parameters and variables, the multi-objective function of 

the emergency grain distribution vehicle routing model is as follows: 

1

1
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                          (4) 
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(6) 

The first objective function of the model, which is shown in equation (4), 

maximizes the satisfaction degree of an emergency grain distribution scheduling 

demand point. The second objective function, which is shown in (5), consists of three 

parts. The first part is related to the cost from demand point, transportation costs from 

demand point to distribution centers, the second part is related to the invariability of 

the total cost, and the last part is related to the penalty costs of the model. The third 

objective function, which is shown in equation (6), minimizes the delivery process 

time through the minimization of the sum of the transportation time among the 

demand points. 

The constraint conditions are expressed by the following equations. 
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Constraint condition (7) defines the capacity limits of the emergency distribution 

vehicles. Constraint condition (8) defines the time that a distribution vehicle needs to 

travel from demand point i to demand point j considering the traffic conditions. 

Constraint condition (9) defines the cost that a distribution vehicle incurs traveling 

from demand point i to demand point considering the traffic conditions. Constraint 

condition (10) specifies that the distribution task of each demand point is fulfilled by 

only one vehicle. Constraint condition (11) limits the number of emergency grain 

distribution vehicles. Constraint conditions (12–14) specify that after an emergency 

distribution vehicle starts from the distribution center and fulfills the distribution tasks 

at the emergency demand points, it returns to the distribution center, forming a loop. 

 

3 IACO algorithm for emergency grain distribution routing  

This section presents the IACO algorithm for the vehicle scheduling model, which 

maximizes demand point satisfaction and minimizes cost and delivery time. The 

hybrid algorithm uses an IA [16–18] to distribute pheromones and uses ACO [19,20] 

to determine the optimal solution. First, non-dominated sorting and the degree of 

crowding are calculated for the population. The initial solution is determined using an 

immune mechanism to extract a vaccine. The algorithm accelerates its convergence 

speed through the immunity calculations and avoids premature convergence. ACO is 

then used to obtain the Pareto solution. 

 

3.1 Immune antibody design for ACO 

3.1.1 Non-dominated sorting 

In order to ensure the diversity and convergence of a Pareto optimization model 

[21], this study uses the rapid non-dominated sorting algorithm to design the immune 

antibodies of the ant colony. Non-dominated sorting genetic algorithm II is introduced 

by Deb et al [22], is one of the most widely used algorithms for multi-objective 

problem, which has the two following specific features: a non-dominated sorting 

method and crowding degree estimation. The former feature that ranks the population 

members in non-dominated front classes, the members are not dominated by the other 
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population member, while the first non-dominated front class with rank 1. The next 

front class with rank 2, which is dominated only by the members in the first class. The 

third front class with rank 3 and the members are dominated only the first and the 

second class members, and so on.  Another characteristic is the crowding degree 

estimation that determines whether a member is located in a crowded area of known 

Pareto solutions or not. The search toward a uniformly distributed Pareto front is 

determined by crowding degree. The steps of NSGA II are as follows: 

(1) Random population P0, then sorting P0 based on the Pareto frontier, the rank of 

each member of the population is calculated. The crossover, mutation operator and 

tournament selection mechanism are used to handle the initial population, and a next 

population Q0 can be obtained 

(2)  Generating the next population of Rt = Pt∪Qt, then sorting P0 based on the 

Pareto optimization and the non-dominated frontiers F1, F2, ….are obtained.  

(3) According to the crowding degree, sorting the entire members in Fi, and 

selecting the best NA members to generate population Pt+1. 

(4) Performing the crossover and mutation operator, generating the next 

population Qt+1. 

(5) Satisfying the termination conditions and the algorithm will be ended. 

Otherwise, t = t + 1, go to step (2). 

The main pseudo codes of this algorithm are listed in Algorithm 1.  

Algorithm 1. Rapid non-dominated sorting 

Inputs: p: an antibody, which is a feasible solution, in population P; N: the number 

of antibodies in population P; SP: the antibody set dominated by antibody p in 

population P; np: the number of antibodies that dominate antibody p.  

for each Pp
 

Sp = 0, np = 0  //initialize Sp and np 

for each Pq  

if p dominates q then 

add q to  ,p p pS S S q   

else if q dominates p then 

1 pp nn  

If 0pn  //there is no antibody dominating p  

then  

Mark rank  1 11,rankp NDset NDset p    

End 

Initialize counter 1i  

While 0iNDset // iNDset is the first layer non-dominated antibody set; when it is circulated 

i times,
 

0iNDset  

Initialize 0Q  
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for each   iNDsetp  

         for each   pSq //Sp is the antibody set dominated by each p in the present iNDset  

1q  qnn  

         If 0q n then  

mark rank
 

 qupdatingirank  QQ,1q
 

1i i  ， iNDset =Q 

 

3.1.2 Computation of the crowding degree 

The crowding degree refers to the surrounding antibody density for a given 

antibody in the population; The crowding degree of members is the distance 

difference of the two objectives between adjacent two solutions in the same rank. The 

crowding degree was presented to preserve the diversity of population. That is, the 

average length of the biggest rectangle in the area of the antibody itself. This 

calculation is performed mainly to ensure the diversity of population in the algorithm. 

After non-dominated sorting has been performed, the crowding of each antibody in 

each non-dominated set iNDset  needs to be computed and pseudo-code of the 

crowding degree method in a non-dominated set are shown in Algorithm 2. 

 

Algorithm 2. Crowding degree computation 

Inputs: ( )distanceI i : the crowding degree of population antibody i, n: the number of 

antibodies, m: the number of objective functions. 

for each i 

    Initialize 0)( tan cedisiI
 

for each m 

I = sort [I, m] //ranking each objective’s antibodies i 

 cediscedis nII tantan )()1(
 

for  i= 2 to (n-1) 

min

m

max

m

tantan
ff

).1().1(
)()(






miImiI
iIiI cediscedis  

// I(i).m stands for the number m objective function values of antibody i. 

 

After Algorithms 1 and 2 have been computed, each antibody population p has 

two properties: rankp and dp . Using these two properties, the dominance relation 

between any two antibodies (i.e., antibodies i and j) can be distinguished. Only when 

condition irank < jrank or irank = jrank and id > jd is met can antibody i be considered to be 
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better than antibody j. 

3.2 Algorithm flow 

Combining the characteristics of the emergency grain distribution vehicle routing 

optimization problems and the optimized mathematical model, the main flow of the 

algorithm is as follows. 

 

3.2.1 Generating the initial antibody population 

All the population antibodies are encoded using natural numbers, where 0 is the 

distribution center and 1,2, ,n  are the demand points that need distribution. 

Supposing that there are m distribution vehicles in the distribution center, we can 

obtain at most m distribution paths. First, an initial antibody is randomly generated. If 

the randomly generated initial antibody has an illegal solution, repair strategies can be 

used to compute a legal solution or a penalty is incurred and the solution is deleted. 

The penalty strategy is used in this article, that is, illegal solutions are simply deleted. 

 

3.2.2 Antibody affinity assessment  

Antibody affinity is evaluated to determine the standards for the selection of 

antibodies, which is mainly affected by the objective function and constraint 

conditions [23]. Non-dominated sorting and crowding degree are used to determine 

affinity in the proposed method. Hence, to assess affinity, considering the objective 

function of the constraint conditions is sufficient to calculate the target value of each 

antibody. 

 

3.2.3 Memory cell generation 

The IA enables the best antibodies to be stored in the memory. After each iteration, 

the antibodies saved in the memory are replaced by the better antibodies generated in 

this iteration. This memory functionality effectively avoids the possibility that the best 

feasible solution is lost during evolution. After non-dominated sorting and crowding 

degree calculation, the proposed method treats the antibodies for which rankP is small 

and crowding degree is high as optimal. 

 

3.2.4 Antibody Metabolism 

 In this section, the crossover and mutation functions [24] in the proposed method are 

described.  

For crossover, the antibodies in memory are chosen randomly from the global 

solution set based on the probability mP . These antibodies are exchanged with other 

antibodies to generate new antibodies. The aim is to improve the convergence speed 

of the algorithm and obtain the optimal solution as soon as possible. 

For example, suppose there are two antibodies H1 and H2, and two numbers (3 

and 6) are randomly selected as the insertion point. Then, 
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H1：3 8|4 2 5 6 |1 9 7             H2：2 5|8 7 1 6|3 4 9 

 

Exchanging antibody H1 with antibody H2, we obtain: 

 

A1：3 8|8 7 1 6|1 9 7              A2：2 5|4 2 5 6|3 4 9 

 

Then, repeated elements in A1 and A2 are deleted and the elements that do not 

appear in the antibody are added. Finally, two legal solutions are obtained: 

 

A1：3 8|4 7 1 6|5 9 2              A2：7 1|4 2 5 6|3 8 9 

 

For mutation, suppose the mutation probability of a certain point in an antibody is

mP . When mutation occurs, one or more points are randomly chosen and randomly 

inserted into other positions. For example: suppose there is an antibody H and 

variation occurs at points (4, 7). If  H is 3 6 5 4 7 8 9 1 2, extracting the two 

underlined numbers obtains A, which is 3 6 5 7 8 1 2. Next, two numbers (3 and 6) are 

randomly generated. If the two numbers are inserted simultaneously, A becomes 3 6 4 

5 7 9 8 1 2 1. 

 

3.2.5 Vaccine operation 

It is difficult to find a vaccine that is suitable for solving the entire food 

emergency vehicle scheduling problem described in this paper. Only some parts can 

be adjusted, that is, each target value of the antibodies is improved as much as 

possible. Specifically, the distance between each demand point is calculated first. At 

each iteration, for the demand points with low satisfaction, the vehicles that are the 

closest to those demand points are scheduled to distribute grain to them in order to 

save transportation time and cost. This is the so-called vaccine operation in the IA. 

For example: suppose satisfaction at demand point iS  is low ( 0.6  ), the 

antibody of demand point iS  is encoded as  0 1, , , iS S S S . If the same vehicle 

should be used to transport grain to demand point 0S  and demand point iS , the 

positions of 0S  and iS  are switched and  1 0, , ,iS S S S  is obtained. If 

satisfaction is higher at demand point iS  ( 0.6  ) and the distance between demand 

points jS  and iS  is the smallest, the randomly generated antibody is encoded as

 0 1 1 1, , , , , ,i i j jS S S S S S S  . To save delivery time and cost, the same 
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distribution vehicle is used and only the positions of 1iS   and jS  are switched. 

 

3.2.6 Immune selection 

The non-dominated sorting and crowding degree is calculated again for the 

antibodies. The results are used to update the memory and the ACO algorithm is 

further used to solve the non-dominated solutions in memory to distribute pheromone. 

 

3.2.7 Parameter initialization for pheromone distribution 

In the ACO algorithm, the following parameters need to be initialized: c  is the 

pheromone constant; G  denotes the pheromone value, which was changed by the IA, 

N is the number of the ants,  indicates for the importance of edge ( , )i j ,   is the 

importance of visibility i j  and pheromone concentration ij ,  is the evaporation 

coefficient of a pheromone track, and Q is the pheromone strength. The initial value 

of the pheromone is set using the following equation:  

,

(0)

c G

ij

c

 If sides (i, j) are on the better 

feasible route obtained by immune selection

τ ,otherwise

 






 

     

(15)

 

 

3.2.8  Calculating of the vehicle route for each ant  

All ants are placed at the distribution center to select the demand points to which 

they will travel. When an ant is at demand point i, the next demand point j needs to be 

selected. First, the selection probability of a demand point that has not been scheduled 

is calculated, and then the roulette selection algorithm is used to select the next point 

that needs to be scheduled. The probability that a demand point can be selected is 

influenced by two factors: i) the intimacy between demand points i and j, namely the 

visibility 1
ij

ijd
  , where ijd  stands for the length of edge (i, j) and ii) the 

feasibility from demand point i to demand point j, namely, pheromone concentration

ij . The probability that ant k travels from demand point i to demand point j at time t 

is represented by  

( ) . ( )
, ;

( ) . ( )( )

0                                , ;

k

ij ij

kk

K A ik ikij

k

t t
j A

t tp t

j A

 

 

 

 




 






                        

(16)

 

Here, kA  is a demand point that has not been visited by ant k in the ACO 
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solution. 

In the process of dispatching grain the demand points using ants to represent 

vehicles, when the remaining vehicles cannot meet the demand of the next 

distribution point, it returns to the distribution center for more grain and continues to 

dispatch grain to demand points that still need grain. When the ants have traversed to 

all demand points, that is, one cycle has ended, a distribution is finished. Moreover, 

every time an ant fulfills a distribution, all pheromones in the corresponding paths are 

added and updated until all distributions have been completed. 

The update rules of the proposed ACO algorithm are as follows: 

( +1)= -ij ij ijt    （1 ）                                 
(17)

 

 

 

, ( , )

0,

k

kij

Q
If  ant k  passes sides i  j  in this cycle

z

otherwise






  

             

(18) 

Here, k

ij  indicates that ant k ant assesses the pheromones and traverses edge (i, 

j) and kZ is the path length of ant k in that cycle. 

 

3.2.9 Population update 

After the above steps are complete, a new antibody population is obtained. To 

ensure a wide global distribution of the Pareto model’s optimal solutions, 

non-dominated sorting and calculation of the crowding of the antibody population in 

memory need to be recalculated. Next, the memory needs to be updated again. 

 

3.2.10 Algorithm termination 

If the algorithm has reached the maximum number of iterations or the current 

antibody population contains the globally best individual, then the algorithm ends. 

Otherwise, the algorithm will return to step 4 and iterate again. 

 

4 Experiments 

4.1 Experimental data 

To verify the effectiveness of the proposed IACO algorithm for solving the 

emergency grain distribution vehicle scheduling model, the data in the Solomon 

benchmark examples [25–27] were used for the numerical simulation with some 

slight modifications. The representative cases R101, C101, and RC101, which consist 

of 100 demand points, were selected for the experiment and 30 distribution points 

were randomly selected for the three cases. The demand of the emergency demand 

points, emergency vehicles, emergency distribution centers, the capacity of the 

distribution vehicles, and the emergency delivery times are consistent with the 
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Solomon benchmark examples. We set the fixed cost of distribution vehicle Cf = 20 

RMB/vehicle, the average travelling cost of a vehicle to C = 6 RMB/km, and the 

average velocity of the vehicles to v = 40 km/h. 

 

4.2 Results 

First, the parameters of the algorithm need to be initialized. We set the size of the 

antibody population to N = 60, the maximum number of iterations to 220, and the 

number of memory cells in the antibody to 10, m 0.9P  . Moreover, the initial value 

of the ant colony pheromone distribution was 100c   and 10G  , and the other 

parameters were set as follows: 1 40 =1 =4 =0.4, =100N Q   ， ， ，  and . The 

steps of the algorithm flow described above were used to solve the model, and the 

final computational results of the IACO are shown in Table 1. 

 

Table 1 Final computational results of the model 

Examples R101 C101 RC101 

Pareto-optimal solution 9 8 8 

Number of delivery vehicles 4 5 5 

Maximum average degree of 

demand point satisfaction 
0.95 0.81 0.79 

Minimum average degree of 

demand point satisfaction 
0.78 0.71 0.76 

Shortest delivery time (min) 66.9 71.2 75.3 

Longest delivery time (min) 80.8 86.2 90.3 

Lowest cost (RMB) 176.3 159.3 154.7 

Highest cost (RMB) 183.5 162.5 163.0 

 

The characteristics of the time window and the geographical position of each 

demand point are different in each distribution process. Therefore, the average degree 

of satisfaction, number of vehicles, and delivery time and cost of the three examples 

are different. Figures 1–3 respectively show the scheduling scheme of three examples 

that were randomly chosen from the solution set of examples R101, C101, and RC101. 

The central point in the figure indicates the distribution center and all the other points 

indicate the demand points. ACCEPTED M
ANUSCRIP

T
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          Figure 1 Scheduling route for example C101 
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          Figure 2 Scheduling route for example R101 
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Figure 3 Scheduling route for example RC101 

 

The optimal routes of the distribution schemes are shown in Table 2. 

 

Table 2. Optimal route of the distribution scheme. 

Dataset 

Route 

(Vehicle) 

No. 

Optimal Route 

R101 

1 
GDC----DP19----DP6----DP5----DP4----DP30----DP3----

DP1----DP2---- GDC 

2 
GDC----DP9----DP11----DP10----DP7----DP8----DP12---

--GDC 

3 

GDC—DP26----DP29---DP13----DP14----DP16--- 

DP25-----DP24---DP23---- DP26---DP27---- 

DP22---DP20---- 

GDC 

4 GDC----DP21----DP18----DP17----DP15-----GDC 

C101 

1 
GDC----DP7----DP3----DP1---DP2----DP6----DP4---- 

GDC 

2 
GDC----DP11----DP13----DP10----DP18----DP22---- 

DP25----GDC 

3 GDC----DP28----DP27----DP26----DP14----GDC 

4 
GDC----DP16----DP17----DP19----DP24-----DP30---- 

DP29----DP21----DP23----DP20----DP15----GDC 

5 GDC----DP8----DP5---DP9----DP12----GDC 

RC101 1 GDC----DP3----DP2----DP1---DP4----GDC 
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2 
GDC----DP13----DP14----DP17----DP19----DP18---- 

DP16-----GDC 

3 
GDC----DP15----DP26---DP28----DP29----DP30---DP27

----GDC 

4 
GDC----DP21----DP23----DP24----DP25-----DP22----DP

20----DP12----DP10----DP9----GDC 

5 GDC----DP11----DP8----DP7----DP6----DP5----GDC 

GDC: Grain Distribution Center, DP: Demand Point  

 

4.3 Performance of the proposed algorithm 

To evaluate the performance of the proposed method, an ACO, IA, and genetic 

algorithm (GA) [28,29] were also employed as reference methods. The same 

population size and iterations were used for each method in the experiment. Moreover, 

the parameters of the GA were as follows: the population size was 50, 

c m0.9, 0.1P P  , and the maximum number of iterations was 200. The above four 

algorithms were able to obtain Pareto solutions, which can be distributed evenly. The 

experiments used the modified version of R101 in the Solomon benchmarks problems. 

The above four algorithms found 5, 5, 4, and 9 Pareto solutions, respectively. 

Specifically, the procedure of forming the Pareto front for objectives 1 and 2 along 

with the Pareto front for the objectives 1 and 3 are shown in Figure 4. The results 

show that the performance of the proposed algorithm is much better than that of the 

other algorithms. Moreover, the IA, combined with ACO, is clearly an effective 

potential tool for the analysis and study of route planning for emergency grain 

distribution logistics.  
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Figure 4 Comparisons of the Pareto fronts for objectives 1 and 2 (a) and objective 1 and 3 (b) 

obtained by different algorithms  

In addition, to evaluate the proposed algorithm more deeply, the mean ideal 

distance (MID) [30], CPU running time, and convergence speed are presented for the 

IACO algorithm. MID, which indicates the closeness between the Pareto solution and 

the ideal point, calculates the average distance of the solutions in the Pareto fronts 
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from an ideal point (minimum of each objective). It can be calculated by the formula: 

1

n
i

i

c
MID

n


 .                               

(18) 

Here, ic  is the distance of the Pareto solution from the ideal solution and n is 

the number of Pareto solutions. Better performance of the algorithm is indicated 

by lower MID values. Meanwhile, the CPU running time of the algorithm is an 

important criterion for assessing the performance of the implemented algorithms. 

Figure 5 shows the convergence of the experimental analysis for the ACO 

algorithm, IA, GA, and proposed algorithm. Each algorithm was calculated 10 

times. It is clear that the proposed algorithm outperforms the others. The optimal 

value is obtained within 80 iterations; the proposed method has the advantages of 

high search efficiency and fast convergence performance.   
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Figure 5 Convergence of the algorithms 

 

The MID and CPU times were calculated for R101, and the results are shown in 

Figure 6. 

This figure shows that the performance of the proposed method is better than that 

of others with respect to MID and CPU time. The MID values of IA, ACO, and GA 

are higher than that of IACO; this is also true for the CPU running time. These 

comparisons show that IACO not only improves the quality of the solution, but also 

avoids stagnation and ensures the effectiveness and global property of the search. 

These results indicate that the IACO possess fast convergence speed compared to the 

standard ACO algorithm and IA. Therefore, the proposed hybrid algorithm is efficient 

and feasible for the emergency grain distribution vehicle routing problem. 
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Figure 6 Comparison of the metaheuristic algorithms based on MID (a) and CPU time (b). 

In order to assess the performance and make the experiment more 

comprehensive, we select the hypervolume (HV) to measure the characteristics of the 

algorithms; HV evaluates the convergence and the diversity of the obtained solutions. 

HV is calculated as follows: 

1 1( [ ( ), ] ( ), ])m m

x P

HV VOL f x z f x z


 

.                               

(19)

 

 

Where ( )VOL   indicates the Lebesgue measurement. and 1 mz z  denotes 

reference points dominated by all Pareto-optimal solutions. The larger the HV value, 

the better the quality of obtained P for approximating the whole PF and better 

diversity. 

Table 3 The comparison results of average HV for R101,C101 and RC101 

Problems AIACO NSGAII SPEA2 

R101 0.264 0.257 0.224 

C101 0.315 0.281 0.279 

RC101 0.874 0.693 0.676 

The hypervolume indicator was employed to compare the non-dominated 

solutions and the other two comparing algorithm (NSGAII and SPEA2).Table 3 

shows the comparison results of average HV for R101,C101 and RC101 problems 

respectively. It can provide a qualitative measure not only of convergence but also of 

diversity. It can be seen that non-dominated solutions obtained by the proposed 

algorithm have larger hypervolume values on all the R101, C101 and RC101 

problems. 

According to the average hypervolume values, the proposed algorithm 

outperforms all the other on R101, C101 and RC101 problems. NSGA II and 

SPEA2obtains the relatively next-best performance in C101and RC101problems in 

terms of HV metric, while the two algorithms presented an almost unanimously 
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values. The customers in R101, C101 and RC101 have small time windows and are 

randomly distributed; IACO has obvious advantages on these problems.  

To better visualize the results and further investigate the performance on the 

IACO, the comparison results of HV with generations for the instance of RC101 for 

the five algorithms are present in Fig .7. 
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Figure 7 The comparison results of HV with generations during varied algorithms on RC101  

As shown in Figure 7, HV indicates that the solutions are better spread and 

closer to the optimal set and the HV changes indicate that the performance of the 

algorithms differ during the evolutionary process. It is clear that AIACO always 

obtains the better HV value during the whole evaluations, which shows that the 

AIACO has a clear advantage and outperforms the others. IA and ACO have a better 

HV at first, but with the increasing evolutionary numbers, the performance is not very 

stable. While NSGA-II and GA produce the stable HV and obtain the similar results.  

 

5 Conclusions 

This article established a multi-objective mathematical model for emergency grain 

distribution route optimization. This problem is based on the actual problem of 

emergency food logistics optimization together with its specific requirements and 

characteristics. This model was solved by the improved and optimized IACO 

algorithm and experimental simulation data were used to obtain the optimal route. 

This approach nicely solves "the last kilometer" problem in emergency grain 

distribution logistics. A hybrid algorithm was proposed to address the shortcomings of 

standard metaheuristic algorithms. ACO, IA, and GA were employed to assess IACO 
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performance, and the results show that the IACO algorithm performs better than the 

other algorithms in this paper. Therefore, this study demonstrated the effectiveness of 

IACO for multi-objective optimization problems, and it can be concluded that IA 

combined with ACO is a potential tool to obtain a vehicle routing solution for 

emergency grain distribution logistics. 
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