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A B S T R A C T

Nondestructive and rapid estimation of soil total nitrogen (TN) content by using near-infrared spectroscopy plays
a crucial role in agriculture. The obtained original spectrum, however, presents several disadvantages, such as
high redundancy, large computation, and complex model, because it generally processes a large amount of data.
This study aimed to determine soil TN content-sensitive wavebands with high information quality, considerable
predictive ability, and low redundancy. This paper proposes an evaluation criterion in selecting sensitive wa-
vebands based on three factors, namely, degree of relevance with target variables, representative ability of the
entire spectral information, and redundancy of the selected wavebands. Based on these three factors, two
methods, namely, mutual information (MI) algorithm and the combination of ant colony optimization (ACO) and
MI, were innovatively developed to identify soil TN content-sensitive wavebands. After the analysis and com-
parison, a set of wavelengths, including 943, 1004, 1097, 1351, 1550, 1710, 2123, and 2254 nm, using the
ACO–MI combined method was selected as the soil TN content-sensitive wavebands to estimate the TN content
of soil samples, under four soil types, collected from different regions. The partial least squares (PLS) models
based on full-spectral information, multiple linear regression (MLR) models and support vector machine (SVM)
regression models based on the eight selected wavelengths for soil TN content were established separately. After
the comparison, the MLR and SVM models achieved higher accuracies than the PLS models based on the full
spectral information. In addition, the SVM models got the best results. In the calibration group, the coefficients
of determination (R2) was 0.989, and the root mean square errors (RMSE) of calibration was 0.078 g/kg. In the
validation group, the R2 was 0.96, and the RMSE of prediction was 0.219 g/kg. The residual predictive deviation
(RPD) was 5.426. For the soil samples with TN content in the range of 0–1 g/kg, the detection precision also
reached a high level. Therefore, the eight sensitive wavebands selected through the ACO–MI method performed
good mechanism, universality and predictive ability in soil TN content estimation. The ACO–MI method would
be valuable for soil sensing in precision agriculture.

1. Introduction

Soil is the primary support for soil-grown crops. It is an important
medium for plant root extension and the main nutrient source for crop
growing. The main soil nutrients include TN, OM, available potassium,
and available phosphorus (Chacón Iznaga et al., 2014; Sinfield et al.,
2010). Among those soil nutrients, soil nitrogen (TN and available ni-
trogen) plays the most important role in promoting the growth of leaf,
root, and stem and is a decisive factor to the crop yield (Bansod and

Thakre, 2014). Excessive nitrogenous fertilization however will cause
environmental pollution and crop distortion of growth and quality. The
amount of nitrogen fertilizer applied therefore needs to be precisely
controlled to ensure the crop yield and environmental protection. The
fundament of precision fertilizing is effectively acquiring the soil in-
formation in the field. Rapid and precise acquisition of soil nitrogenous
information in farmlands hence becomes increasingly important. The
conventional method of detecting soil nitrogen content usually takes
several days and consumes toxic chemicals. The conventional method
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also has several disadvantages, such as high requirements for detection
personnel, expensive testing equipment, low efficiency, and environ-
mental pollution (Debaene et al., 2014; Florinsky et al., 2002; Kuang
and Mouazen, 2013; Moore et al., 1993; Nocita et al., 2014). By con-
trast, spectral analysis techniques are based on the internal relations
between radiation energy and the composition and structure of matters.
According to the characteristic spectra of matter, the target con-
centration or properties can be determined rapidly without chemicals
(Igne et al., 2010; Vohland et al., 2011). For soil, the spectral in-
formation related to most of the organic radical groups containing
hydrogen was in the NIR region (Li, 2006). NIR spectroscopy is a rapid,
non-destructive, and non-pollutant testing method that plays an
growing important role in soil nutrition measurement and exhibits ex-
traordinary development potential in applications of soil TN content
detection (Chang et al., 2001; Lucà et al., 2017; Morellos et al., 2016).

In the detection of soil TN content with NIR spectroscopy, the
spectra of soil samples are first measured, and the NIR spectral data are
then used as the input variables to establish the prediction models.
Modern spectrometers possess high spectral resolution, and spectral
data measurement generally involves hundreds or thousands of wave-
length variables. Three kinds of information variables are involved in
measurement of such superlarge-scale data. One is the effective in-
formative variable, which can improve the model predictive ability
because it reflects the characteristics of the target substance in the NIR
region. The second is redundant or interfering variable, which is related
with other targets. The last one is uninformative variable, which is ir-
relevant to the target material and usually caused by the measurement
environment, such as noise. If the prediction model was established by
the entire-spectrum information, then the latter two kinds of variables
would increase the computation complexity and reduce the target
prediction accuracy of the model. The multivariate calibration model is
therefore a better choice when the informative variables could be se-
lected appropriately, which can help in simplifying the calibration
model and improving the model's predictive ability in terms of accu-
racy, speed and robustness (Petropoulos et al., 2012; Sorol et al., 2010).
Several studies confirmed that the models adopting limited character-
istic wavebands only are better than the ones with entire-spectrum
information. Cai et al. (2008) employed Monte Carlo uninformative
variable elimination method to extract the characteristic bands and
then established a PLS model to predict the sugar content of tomato.
The results showed that the prediction accuracy and robustness of the
proposed model were all better than the model on the basis of the entire
band. Gao et al. (2009) proposed a method combining screened con-
tribution and SPA to select soil TN content-sensitive wavebands. The
result of the established multivariable model was more precise than the
result derived from PLS for the entire spectra. Several scientists took
advantage of the specific wavelength of the light source to develop a
soil spectral detection device and obtained good detection accuracy (An
et al., 2014; Li et al., 2010). The results revealed that the use of limited
wavelength of light source in detecting soil nutrients had reached a
practical level. The existing characteristic wavelength selection algo-
rithm however revealed that several drawbacks in soil TN prediction
remained. The selected wavebands had a weak mechanism interpreta-
tion about soil TN, and the accuracies of the established models were
relatively low. The methods for selecting the characteristic wavebands
therefore need to be further explored for the study of NIR spectral
technology on soil TN content detection.

ACO is an evolutionary algorithm used to simulate the natural
foraging behavior of ant colonies and was introduced in the early 1990s
(Colorni et al., 1991). The technique is based on updating the co-
ordination mechanism of seeking the shortest path to achieve in-
telligent search and parametric optimization. The ACO algorithm has
been extensively applied in feature selection because of its prominent
advantages, such as information positive feedback, distributed com-
putation, heuristic search, robustness, and easy to combine with other
algorithms (Dorigo et al., 1996). Aghdam and Kabiri (2016) proposed

an intrusion detection system with features optimally selected using
ACO to improve the performance. Varma et al. (2016) also used fuzzy
entropy-based heuristic for ACO to search for the global best smallest
set of network traffic features for real-time intrusion detection data set.
Selection of the optimal spectral characteristic variable is also a com-
binatorial optimization issue. The features, such as global, discrete, and
probability selection of self-adaptive ACO, are applicable to spectro-
scopy analysis. Hou et al. (2016) applied ant colony clustering algo-
rithm to detect Grapevine leafroll disease (GLD) spectral anomalies on
four GLD-infected vineyards from multi-spectral images for precision
disease management. The classification accuracies of Non-, GLD1-,
GLD2-, and GLD3-infected grapevines were 94.4%, 75%, 84.6%, and
83.3%, respectively. Guo et al. (2014) selected sensitive wavebands
from apple NIR spectroscopy using ACO–PLS optimized algorithm
based on the features of heuristic global search and the random selec-
tion mechanism of Monte Carlo roulette to predict soluble solid content.
The prediction model obtained a good prediction performance for SSC
with correlation coefficients of 0.970, and RMSE of prediction of Brix of
0.514. Allegrini and Olivieri (2011) employed the concept of co-
operative pheromone accumulation, which is typical of ACO selection
methods, and optimized PLS models using a pre-defined number of
variables and employing a Monte Carlo approach to discard irrelevant
sensors. Ke et al. (2008) proposed an ACO-based algorithm to deal with
feature selection in rough set theory and compared its performance
with the simulated annealing-, genetic algorithm-, and Tabu search-
based algorithms. The results showed the proposed algorithm achieved
better performance according to both the classification results and the
number of features. Santana et al. (2010) found ACO performed better
than genetic algorithm-based feature selection method for ensemble
classifiers when the number of individual classifiers was small. Agrawal
and Kaur (2018) compared ACO and Hybrid Particle Swarm Optimi-
zation in test case selection. The results indicated ACO outperforms
Hybrid Particle Swarm Optimization in the calculating efficiency.

The studies discussed above used ACO to carry out feature selection
in numerous areas. After the comparison between ACO and other
heuristic algorithms, ACO performs more flexible and efficient. It is
especially suitable for the relatively small-scale problems (Xue et al.,
2016). In order to make further improvement on the performance of
ACO, the information theory, as a supplementary, could explore more
and deeper information from the variables themselves. When using
ACO, few researchers however adopt information theory to improve the
performance of ACO in feature selection. Several studies adopted the
Monte Carlo roulette principle to select features, which is random and
lack connection with the variable information (Allegrini and Olivieri,
2011; Guo et al., 2014). In this way, the selected features were mostly
dependent only on the performance of ACO. Merging ACO and in-
formation theory could significantly benefit feature selection, especially
when the training set is not big enough to represent the whole appli-
cation space.

In the early 1990s, Battiti (1994) and Lewis (1992)introduced MI
theory into variable selection research. The feature selection method
based on MI has gained considerable attention after 20 years of devel-
opment. MI is an excellent tool for quantitatively calculating the
common information between two random variables. The MI theory has
therefore been extensively applied as an effective indicator for in-
vestigating correlation. MI can also be used to measure the arbitrary
dependencies between random variables, which makes it suitable for
assessing the “information content” of features in complex tasks.

Filter methods are defined by a criterion J based on MI, also referred
to as a “relevance index” or “scoring” criterion, which is intended to
imply the potentially predictive ability of the feature (Duch, 2006).
Moreover, there is another widely accepted point that an useful and
parsimonious set of features is considered individually relevant and
should not be redundant with respect to each other, which means that
the selected features should not be highly correlated (Brown et al.,
2012). This heuristic has been adopted numerous times. Battiti (1994)
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presented MI feature selection criterion. Peng et al. (2005) proposed
max-relevance min-redundancy criterion. Cheng et al. (2011) proposed
a conditional MI feature selection criterion by using an assumption to
approximate the terms on the basis of joint MI. Vinh et al. (2016)
systematically investigated the issues of employing high-order de-
pendencies for MI-based feature selection based on “relevancy” and
“redundancy” criteria.

The variable selection methods above are all based on the principle
of maximizing “relevancy” between the independent variables and the
dependent variables and minimizing the “redundancy” between the
selected independent variables. However, from the information theory
perspective, another goal of feature selection is to select a feature subset
that can contain most or all information of the original data set. The
feature subset has the strongest representative ability of the entire data
set.

The studies summarized above thus show that an effective featured
waveband selection method is strongly needed for soil TN content
prediction. This paper aims to propose a modified ACO algorithm mixed
with a new evaluation criterion of waveband selection based on MI
theory. This criterion would comprehensively consider three factors
that demonstrate the relationships between independent and dependent
variables, representative spectral information of the entire spectra, and
discrepancies between the selected wavebands. To ascertain the uni-
versality and predictive ability of the selected wavebands, the soil
samples under different kinds of fertilizers and covering wide TN con-
tent range were collected to validate the soil TN content prediction
model.

2. Materials and methods

2.1. Experiment

The experiments were conducted from November 2014 to August
2016. Three experimental farms located in two representative areas of
China, North China plain, and Northeast China plain were selected for
this study, as shown in Fig. 1.

In November 2014, the experiments were conducted in
Shangzhuang experimental farm (116.191794°E, 40.144091°N) of the
China Agricultural University located in the North China plain. The soil
type is sandy loam. A total of 270 sampling spots were selected ran-
domly to collect soil samples. These samples were used to explore the
sensitive wavebands of soil TN.

To validate the TN predictive ability and universality of the selected
wavebands, two validation experiments were designed as described
below.

The first validation experiment was also conducted in the
Shangzhuang experimental farm in April 2015. Three different regions
were selected with the distance of 50m to avoid the interference from
each other. Three kinds of fertilizers, namely, carbamide (N≥ 27%),
calcium nitrate (N≥ 13%), and potassium nitrate (N≥ 13.5%), were
used separately to perform variable rate fertilization on the three re-
gions mentioned above. Sixty soil samples (20 in each region) were
collected, and the soil TN content of each sample was detected.

The second validation experiment was carried out in Heilongjiang
Province in August 2016. Two farms located in the Northeast China
plain, namely, Hongwei Farm and Shengli Farm, were selected.
Hongwei farm (133.4472°E, 47.3125°N) covers 63,000 hm2, and the
soil type is meadow albic bleached soil. One hundred soil samples were
collected in this farm. Shengli farm covers 87,733.33 hm2, and two
sampling areas were selected. The soil type in Shengli-A area
(133.7247°E, 47.5277°N) is turfy soil, and the soil type in Shengli-B
area (133.7530°E, 47.4044°N) is black soil. One hundred soil samples
were collected in each part.

Finally, 630 samples were obtained and used as the target materials
for all the subsequent experiments (NIR absorbance spectra measure-
ment and soil TN detection).

2.2. Spectra measurement

All the soil samples were air dried, and the NIR spectroscopy ab-
sorbance of each sample was measured in the laboratory by a MATRIX-I
type of FT-NIR analyzer with a rotating sample pool (Bruker Optical
Company, Germany). Approximately 15 g of each soil sample was
placed into a quartz cuvette with 48mm diameter, and the cuvette was
then placed into the rotating sample pool. The NIR spectra were finally
measured by using the spectrometer. The spectral measurement range
was 12,493–3899 cm−1 (800–2564 nm) with resolution of 4 cm−1 and
scan times of 32. Each sample was scanned 10 times with three re-
plications, and the mean value was considered the relative absorbance.

2.3. Measurement of soil TN content

After air drying, grinding, and sieving, the TN concentrations of soil
samples were measured with a Kjeltec TM2300 azotometer (FOSS,
Sweden). Air-drying soil powder amounting to 2.0 g was mixed with
6.2 g of K2SO4/CuSO4•5H2O catalyst (30:1), 20ml of H2SO4 was then
placed into the mixture, and the digestion was conducted at 420 °C for
1.5 h. The azotometer was finally used to distill cooling liquid and
display nitrogen concentrations.

2.4. Data processing method

2.4.1. MI
MI is a key concept of information theory and used as a quantitative

index of the correlation between two variables. This concept is also a
quantitative index of the amount of information in one variable as that
contained by the other variables. The MI theory can effectively elim-
inate the irrelevant information to the target components (y) from the
spectral information (x). If x and y are continuous random variables
with the existence of joint density μ(x,y) and edge density (μx(x), μy(y)),
then MI can be defined as in Eq. (1).

∬= dxdyμ x y
μ x y

μ x μ y
MI(x, y) ( , ) log

( , )
( ) ( )x y (1)

In Eq. (1), x and y represent two variables. MI(x,y) is the MI be-
tween x and y, which expresses the reductive amount of uncertainty of y
after obtaining the information of x. Compared with other correlation
analysis methods, MI can consider both linear and nonlinear relation-
ship between variables.

A nonlinear relationship is ubiquitous among spectral information
and between spectral response and material concentration (Benoudjit
et al., 2004; Hu et al., 2011; Viscarra Rossel et al., 2006). In this re-
search, three MI-related indexes were calculated using Eq. (1). The first
index is the MI values (MI(f; c)) between the soil absorbance (f) in the
range of 800–2564 nm and TN content (c). The second index is the sum
of all MI values (MI(fi; fj)) between the absorbance (fi(fi∈ F)) and the
other absorbance (fj(fj∈ F− fi)). F is the set of all wavelength absor-
bance. The third index is the sum of MI values (MI(f; s)) between the
absorbance (f(f∈ F)) and the selected ones (s(s∈ S)). S is a set of se-
lected wavelengths.

2.4.2. ACO
Combining the characteristics of ACO algorithm and the evaluation

criteria for selecting feature variables proposed in this research, the
modified algorithm called ACO–MI is shown as Eqs. (2)–(3) for the soil
TN content-sensitive wavelength selection.

The probability of the kth ant to move from one wavelength to an-
other can be described as Eq. (2).

= × + ×

=

P t α τ t β η t

η
MI f s

( ) ( ) ( )
1
( ; )

ij
k

ij ij

ij
i j (2)
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In Eq. (2), τij(t) represents the pheromone concentration between
the wavelength i and the wavelength j at time t. ηij(t) represents the
intensity of heuristic information, whose value indicates the divergence
degree between wavelength i where the ants are and the objective
wavelength j. α and β are the parameters that characterize the im-
portance of pheromone concentration and heuristic factors. The greater
the probability is, the greater the ants' attractiveness is.

Eq. (2) demonstrates that ants mainly rely on two factors in se-
lecting wavelength, pheromone concentration τij(t), and heuristic in-
formation ηij(t). The value of ηij(t) does not change with time and the
iterative updating rules of pheromone concentration because it is only
related to the location of ants. Pheromone concentration τij(t) thus also
plays a major role in optimizing the global searching ability. After the
ant completes a search of the characteristic variable, the pheromone is
updated according to Eq. (3).

∑

+ = − +
= ×

= +
⎛

⎝
⎜

⎞

⎠
⎟

=

τ t ρ τ t τ t
τ t Q L

L Norm f c Norm f f

( 1) (1 ) ( ) Δ ( )
Δ ( )

(MI( ; )) MI( ; )
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ij k

k i
j

n

i j0
1

0
1

1 (3)

In Eq. (3), ρ∈ (0,1) is the factor of evaporation that represents the
disappearance speed of the pheromone. The selection of the value will
affect the convergence speed of the algorithm. Δτij(t) is the new pher-
omone concentration and is updated on the basis of the objective
function and pheromone intensity factor. Q is the new pheromone in-
tensity factor used to adjust the objective function and the convergence
rate. Lk is the objective function. In this study, Lk represents the sum of
relevance degree with the target material (TN) and the total re-
presentative capacity for the entire-spectrum information of the se-
lected wavelength by the current ant. The maximum of Lkwas then

obtained to update the pheromone concentration.

2.5. Model accuracy evaluation methodology

The model accuracy was quantitatively evaluated with three as-
pects: R2 calculated from Eq. (4), RMSE based on Eq. (5), and RPD
calculated from Eq. (6)(Chakraborty et al., 2017; Mcgladdery et al.,
2018; Williams, 1987).
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where, n indicates the number of samples, yi is the measured value of
sample i, yi is the predicted value of sample i, and yi are the mean
values of yi.

3. Results and discussion

3.1. Characteristic analysis of the original VIS/NIR spectra

All spectral curves of the soil samples were obtained by using the

Fig. 1. Location of the study area.
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spectrometer. Fig. 2 shows the spectral characteristic in the range of
800–2564 nm of the 36th soil sample and the 88th soil sample. The TN
contents of the two samples were 0.684 and 0.884 g/kg, respectively.
Fig. 2 reveals that the variation tendency of the soil spectral absorbance
of the two samples becomes similar with each other with the change of
soil TN content. In 800–930 nm, the spectral curve contained a con-
siderable amount of noise because of the vibration of the measurement
system. A slow downward trend was observed in the range of
930–1380 nm. An absorbance peak was observed in the range of
1380–1510 nm, which was caused by water absorbance. The soil
spectral absorbance was then regained smoothly and steadily until
1850 nm. The soil spectral absorbance then sharply increased and
reached its topmost peak at 1940 nm. A curve peak existed at around
2210 nm, which was different with the peaks around 1450 and 1940 nm
in peak amplitudes. Viscarra Rossel et al. (2006) revealed that this
spectral absorption band at around 2210 nm depended on the O–H
group of soil organic compounds.

Although the measured soil samples were air-dried, the absorption
peaks were still evident near the wavebands of 1450 and 1940 nm,
which were the absorption bands of the O-H functional group in water
molecule. Most of the bound water is still in the soil samples and ab-
sorbs the light at the wavelengths of 1940 and 1450 nm because the air-
dried treatment can only remove free water (Li, 2006).

3.2. Sensitive waveband selection based on MI

As mentioned above, this paper aimed to propose a novel evaluation
criteria for selecting feature variables and then develop a method ac-
cording to MI theory based on the criteria. Three kinds of relationships
were considered. The variable selection method focuses on maximizing
MI between the candidate spectral variable and the target material
(TN), minimizing the redundancy between the candidate and the se-
lected spectral variables, and maximizing the ability of the candidate
variables representing for the entire-spectrum variables. Based on the
above principles, this study developed a general expression formula
shown as Eq. (7).

∑ ∑= +
⎛

⎝
⎜
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⎠
⎟ − ⎛

⎝
⎜

⎞

⎠
⎟
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y Norm f c Norm f f Norm f s(MI( ; )) MI( ; ) MI( ; )i
j

n

i j
k

m

i k0
1

0
1

1
0
1

1

(7)

where F is the set of absorbance of candidate wavebands, and i∈ F. K is
the set of absorbance of all wavebands, j∈ K. S is the set of selected
wavebands, k∈ S. c is the dataset of soil TN contents. n is the number of
all wavelengths. m is the number of selected wavelengths.

The process of the feature selection is expressed as follows:

1) Initialization. F and K are sets of absorbance of all wavebands. S is a
null set.

2) Computing MI(fi;c) and ∑ = f fMI( ; )j
n

i j1 , and then conducting nor-
malization processing in the range of 0–1 between the two indexes.

3) Selecting the first sensitive waveband i1 to make the sum of

Norm0
1(MI(fi;c)) and ⎜ ⎟

⎛

⎝
∑ ⎞

⎠=
Norm f fMI( ; )

j

n

i j0
1

1
be the maximum, and

then F= F− i1, S= i1.

4) Calculating MI(fi;c), ∑
=

f fMI( ; )
j

n

i j
1

, and ∑sk∈SMI(fi; sk), and then per-

forming normalization processing among the three indexes.
5) The wavelength fi was used as the next sensitive wavebands, which

could make the result of Eq. (7) be maximum, and F= F− fi,
S= S ∪ fi.

6) Until the number of the selected wavelength reaches the maximum,
the sensitive wavelength selection ends, or it will move to Step 4.

As for the maximum number of needed wavelengths, if the number
is small, the selected wavelength could not represent the effective
spectral information comprehensively. Meanwhile, considering a future
possibility of constructing a multispectral device for soil TN content
detection, large number of selected wavelength would increase cost and
the complexity of structure. According to the prior trials (An et al.,
2014; Zhang et al., 2016; Zhang et al., 2015), the maximum of the
needed variables in this research is set as eight.

Fig. 3 shows two normalizing MI curves. “MI-c” represents the MI
between the absorbance and the TN content, which could indicate the
correlation degree of the waveband and TN content. Every point on
“MI-wav” represents the sum of MI values between the absorbance at
this wavelength and each absorbance of all other wavelengths. This
curve could represent the ability of different wavebands representing
full spectral information. Fig. 3 shows that the MI value between the
absorbance and TN fluctuated significantly at the beginning around
800–900 nm, because the spectral curve contained a considerable
amount of noise. Numerous local maximum points were observed
afterward. MI can express more spectral information of soil TN than the
regular linear correlation curve because it contains linear and non-
linear relationships between each spectral variable and TN content. The
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Fig. 4. Featured waveband selection processes.
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absorbance at 1895 nm possessed the strongest ability to represent full
spectral information.

On the basis of the principles of this selection method, eight sensi-
tive wavebands were selected individually as shown in Fig. 4. In the
first selection, 1895 nm was the maximum in the curve, which re-
presents the sum of MI-c and MI-wav. Therefore, 1895 nm was the first
selected sensitive waveband. In the second selection, 980 nm was the
maximum of the curve, which were calculated as Eq. (7). The same
procedure was repeated for the next selections. The first eight selection
processes were shown in Fig. 4. Then 1895, 980, 1323, 839, 2284, 978,
1767, and 972 were determined individually as the sensitive wave-
bands of soil TN content. From the entire featured waveband selection,
the MI characteristic curves in the second, sixth, and eighth selection
were almost in the similar trend, which lead to the selected wavebands
(972, 978, and 980 nm) in these processes to be all approximately
980 nm, which implied that several selected featured bands were in the
narrow range with high self-correlation and redundancy. Moreover,
980 nm is related to the O–H groups' stretching vibration from water
absorption (Leiva-Valenzuela et al., 2013; Pan et al., 2016). A typical
large absorption band is observed in the range of 960–980 nm for the
second O–H water overtone (Helgerud et al., 2012). A strong absorption
features was centered at 1900 nm which is related to O–H molecules
(Demattê et al., 2004). Therefore, using MI method alone for sensitive
wavelength selection could not effectively reduce the redundancy
among the selected feature wavelengths nor eliminate the interference
from soil water. Further research on soil TN content-sensitive waveband
selection is needed.

3.3. Sensitive waveband selection based on the ACO–MI method

Considering the outstanding advantages of ACO in feature selection,
this research combined ACO and the evaluation criteria based on MI to
optimize the results of soil TN content-sensitive waveband selection.
The maximum variable number was also set to 8. The flow chart of the
entire process of sensitive waveband selection based on ACO is shown
in Fig. 5.

1) Initialization. The parameters of ACO algorithm were set after
multiple experimental verifications. The maximum iteration time
was 3; the ant colony size was 1500; the importance degrees of
heuristic factor and pheromone were 0.8 and 0.2, respectively; the
evaporation factor was 0.5; and the pheromone intensity factor was
0.0003.

2) Calculate the MI(fi;c) of all wavelengths, and create an n× n matrix
of MI(fi; fj).

3) All the initial pheromone vector values were set to be 1, which
implied that each wavelength had the same attractiveness to the
ants.

4) Place ants on n wavelengths and activate the ants to select the
featured variable based on the probability function shown as Eq. (2).

5) Calculate the objective function using Eq. (3), which indicates the
entire-spectrum representative ability and the relevance with the
soil TN content of the selected wavelengths, and then update the
pheromone. If the number of selected variables does not reach its set
maximum, then it will move to Step 4, or it will move to the suc-
ceeding step.

6) Evaluate the iteration time to determine whether the set maximum
is reached or not. If the set maximum is not reached, then the
pheromone would be set as 1, and process is repeated starting with
Step 3, or it would go to the succeeding step.

7) Compare the objective function results after all iterations and
identify the group of selected wavebands with high objective func-
tion result as the sensitive wavebands to soil TN content.

After the selection shown in the flow chart (Fig. 5), eight wave-
lengths of 943, 1004, 1097, 1351, 1550, 1710, 2123, and 2254 nm were

Input Data

Initializing Parameters

Calculating MI(fi;fj), MI(fi;c) and 

MI(fi;s)
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Put ants on n wavelengths

All ants choose next wavelength 

based on the probability function

Calculating the objective function

Updating pheromone

End

Set pheromone to 1

Comparing the objective 

function results

Fig. 5. Flow chart of the sensitive waveband selection based on ACO–MI ap-
proach.
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determined as the sensitive wavebands. As shown in Fig. 6, the selected
wavelengths were distributed in the entire spectral curve. The in-
tegration of ACO and the selection criteria of sensitive wavebands based
on MI could therefore effectively avoid repeated selection in a narrow
waveband and eliminate the interference from soil moisture compared
with the method of adopting MI technology only.

The previous study revealed that the wavelength of approximately
940 nm was sensitive to soil OM, which was identified by stepwise MLR
and PLS (Kweon and Maxton, 2013). Palacios-Orueta and Ustin (1998)
found that the area of approximately 1000 nm was related to Fe and OM
content in soil. The reflectance at wavelength 1100 nm was also the OM
estimators (Daniel et al., 2004). Sun et al. (2009) selected 1350 nm as
one of the sensitive wavelengths of soil OM according to the correlation
analysis. TN is widely known to have a strong relationship with OM
content in soil, because N is a major component of OM. Among the
eight selected wavelengths, An et al. (2014) and Bansod and Thakare
(2014) adopted three wavelengths, namely, 940, 1100, and 1550 nm, to
develop portable soil nitrogen detectors. Both detectors are reliable in
soil nitrogen content measurement. Aside from 1000 nm, 1710 nm was
also related to Fe. A curvilinear relationship between Fe2O3 and the
reflectance at 1710 nm produces a large squared correlation coefficient
(r=−0.91 or r2= 0.85) (Galvão et al., 2001). Fe could help fertilizer
N transfer into available N in soil (Ali et al., 1998). In addition, 2120
and 2250 nm were crucial for TN estimation based on the correlation
analysis of differential spectral information (Shi et al., 2013; Zhang
et al., 2014).

All the eight wavelengths selected through the modified ACO al-
gorithm therefore had direct and close relationship with soil TN con-
tent, which verified the effectiveness of the ACO–MI method in wave-
length selection of soil TN content. The ACO–MI method also
successfully eliminated the interference from the soil moisture, which
was critical to TN content-sensitive wavelength selection.

3.4. Soil TN content modeling and validation

To further verify the TN predictive ability and universality of the
selected sensitive wavelengths, this study created a mixed dataset
containing the soil samples collected from different regions (i.e., North
China plain and Northeast China plain), in different soil types, in-
cluding sandy loam, meadow albic bleached soil, turfy soil, and black
soil. All the spectral curves were checked prior to the modeling. Three
samples were lost in the field experiment, and the spectral information
of one sample collected from Northeast China plain was abnormal,
which may have been caused by misoperation in the spectra measure-
ment. A total of 626 soil samples were thus used to establish the pre-
diction model. The TN contents of 626 soil samples in the mixed dataset
were in the range of 0.061–2.743 g/kg. The PLS models based on full-
spectral information, MLR and SVM regression models based on the
eight selected wavelengths for soil TN content were established sepa-
rately. Samples were divided into two groups, that is, 450 samples were
under the calibration group and the remaining 176 samples were under
the validation group. The input data of PLS models were the absorbance
in the range of 800–2564 nm. The MLR model was established as Eq.
(8). SVM regression models adopted parameter optimization method to
establish the model. The optimal penalty C was 955.43, and the optimal
kernel function g was 0.87.

= − + − − − +

− + −

y x x x x x

x x x

1.9 9.23 1.44 19.15 38.93 183.37

119.59 1.44 10.18
943 1004 1097 1351 1550

1710 2123 2254 (8)

Where y is the TN content of the soil samples, and xi is the absorbance
value of wavelength i.

According to the established model, the 1:1 relationship diagrams
were drawn between the prediction and observation to demonstrate the
reliability and consistency of the selected model. The results are shown
in Figs. 7–9.

The accuracies of the three models are shown in Table 1. Both of the
two models established by the selected wavelengths obtained higher
overall predictive abilities than the one based on the full spectral in-
formation. While for the MLR model, five soil samples in the whole
dataset (626 points) were predicted to be negative values. The TN
contents of the five points were in the range of 0.1–0.2 g/kg. It in-
dicated that the MLR model has a limitation in predicting soil TN with a
low content. For the SVM model, the accuracies of the calibration and
validation were increased significantly. And the drawbacks of predicted
negative values of TN contents of MLR model were mended. While for
the three models, when the soil samples with TN content around 2 g/kg,
some prediction TN values were higher than the measured values.
These soil samples mainly belonged to turfy soil and contained a high
amount of plant debris, humus, and several minerals, which were not
thoroughly broken down. The prediction TN values using spectral in-
formation, including the TN in soil and a part of TN in the
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undecomposed materials in soil, were thus higher than the measured
TN values. The values would be closer if the soil samples' spectra were
collected after grinding and sieving.

The TN contents of 528 soil samples were in the range of 0–1 g/kg,
which were the major part of all soil samples. Moreover, the majority of
soil in cultivated land were in this nutritional level. The PLS, MLR and
SVM models were therefore established among this part. The 378
samples were used for calibration and the remaining 150 samples were
for validation. The MLR regression model was established as Eq. (9).
The optimal penalty C and the optimal kernel function g of the SVM
regression models were 512 and 0.25 after the optimization.

= − − − + − +

− + −

y x x x x x

x x x

0.53 2.42 2.47 12.49 12.99 28.9

20.39 5.54 6.64
943 1004 1097 1351 1550

1710 2123 2254 (9)

Where y is the TN content of the soil samples, and xi is the absorbance
value of wavelength i.

The results of the three models were highlighted in Figs. 10–12.
The accuracies of the three models are shown in Table 2. No matter

for the linear regression model (MLR) or the non-linear regression
model (SVM), the predicting accuracies of soil TN contents in this range
all got better results than the PLS model, which demonstrated that the
selected eight sensitive wavebands could represent the full spectral
information effectively, and predict the TN, especially in farmland soil,
stability, universality, and veracity.

The verification of the samples under four soil types collected from
different farms revealed that although the eight sensitive wavelengths
were selected from 270 original soil samples collected from a specific
region with a single type, the wavelengths still performed with higher
universality and predictive ability than the full spectrum in TN content
detection of different soil types. The eight selected sensitive wavebands

had close mechanism correlation with the material of TN.

3.5. Discussion

Prior work has documented the advantages of soil nutrients esti-
mation using limited wavelengths. However, the selected wavelengths
had a weak mechanism interpretation about soil TN, which might lead
to the lack of universality and predictive ability of the established
models. In this study, we put forward to a novel method based on ACO
and MI to select the sensitive wavebands of soil TN content and verified
universality and estimation ability of the selected wavelengths from the
aspects of mechanism, model types and sample's composition.
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Table 1
Accuracies of PLS, MLR and SVM models.

PLS MLR SVM

Calibration R2 0.901 0.96 0.986
RMSE of calibration (g/kg) 0.238 0.153 0.078
Validation R2 0.92 0.94 0.96
RMSE of prediction (g/kg) 0.224 0.168 0.219
RPD 5.198 7.253 5.426
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(1) According to the final criterion of the sensitive wavelength selec-
tion proposed in this research, an innovative ACO–MI method was
proposed and used to conduct the spectral features extraction of the
absorbance values of 270 soil samples in the range of 800–2564 nm.
Some selected wavelengths are in general agreement with previous
researches (Jia et al., 2017; Kawamura et al., 2017). After the
comprehensive comparison, the ACO–MI method outperformed
others in reducing the autocorrelation and redundancy of the se-
lected wavelength and eliminating the interference from soil
moisture.

(2) The comparison among full spectral PLS models, Linear (MLR) and
non-linear (SVM) regression models demonstrated that the SVM
regression models got the best results in TN estimation of whole
626 soil samples and 528 samples with TN content in the range of
0–1 g/kg. According to the evaluation parameters (validation R2

and RMSE of prediction), our study obtains slightly high estimation
accuracies. It could be observed from Table 3, the validation R2 of
528 samples was lower than the one of 626 samples, which is be-
cause of a lower SSR with the narrow range of TN (0–1 g/kg). Even
though, the obtained validation R2 was still comparable to the si-
milar studies (as shown in Table 3). Besides, the RMSE of prediction
of the SVM model with 528 soil samples was much lower than the
others, which indicated this SVM model established by the eight
selected wavelengths was sensitive to the tiny change of soil TN
content. Moreover, it should be noted that the mixed sample set in
our study contains the soil samples in different soil types collected
from different regions and the number of samples is dramatically
larger than the rest, which would all lead to relatively low ac-
curacies. This research further verify the universality and predictive
ability of the sensitive wavelength in predicting soil TN content.

In light of the fact that for different TN ranges, there may exists
optimal estimation models with best accuracies, a further accuracy
improvement can be achieved by training at multiple range steps and
develop an automatic range-model selection instrument.

Given the recent advances in deep learning, another effort can be
invested by employing a separate part in the model for adaptation of
computing SVM model based on the “interrelations merit model” of the
eight bands. That is the SVM computing (or visible layer) may be af-
fected by another hidden layer that was trained to estimate the “re-
levance” of each band to the other seven and adapt the SVM parameters
accordingly. In that way, some small or even large “noisy” influence on
one or several bands (i.e. by water content or OM or other influential
constituents) could be eliminated or reduced, or even auto band reject,
and thus increase the accuracy of the estimate.

The research provide an innovative and flexible spectral feature
extraction method, which could be also applied into other areas. The
results of this study are significant for the processing of hyperspectral
information and the development of multi-spectral sensors in the fu-
ture.

4. Conclusions

To effectively extract the sensitive wavebands of soil TN content, a
selection criterion based on MI and ACO methods was innovatively
proposed to screen the sensitive wavebands of soil TN content. The
obtained bands were then used to predict the TN content in the soil
samples, which were collected from different farms and under four soil
types, also including the samples under different fertilization condi-
tions, to verify the universality and predictive ability. The main con-
clusions are as follows:

(1) After wavelength selection using ACO-MI method, 943, 1004, 1097,
1351, 1550, 1710, 2123, and 2254 nm were determined as soil TN
content-sensitive wavebands. According to the mechanism analysis,
all the eight wavelengths had direct and close relationship with TN
content of soil, which verified the effectiveness of the ACO–MI
method in wavelength selection of soil TN content.

(2) The overall accuracies of the MLR and SVM models based on the
selected wavebands achieved higher precision than the full spectral
PLS models. In addition, the SVM model reached a highest accuracy
in soil TN prediction. All the results of the models indicated that the
sensitive wavebands selected using ACO-MI method in this research
performed well with high universality and predictive ability in
predicting the soil TN content.
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Table 2
Accuracies of PLS, MLR and SVM models.

PLS MLR SVM

Calibration R2 0.748 0.872 0.922
RMSE of calibration (g/kg) 0.136 0.087 0.069
Validation R2 0.721 0.841 0.871
RMSE of prediction (g/kg) 0.145 0.1 0.099
RPD 2.626 3.896 3.864

Table 3
Validation results for soil TN content.

Nsample Range (g/
kg)

Method R2
v RMSE of

prediction
Authors

96 0.2/2.6 PLSR 0.58 0.35 Shi et al., 2013
130 0.3/4.7 PLSR 0.87 0.3 (Ji et al., 2014)
335 0.3/4.7 PLSR 0.77 0.32 Ji et al., 2016
140 0.59/1.42 LS-SVM 0.732 0.076 Morellos et al., 2016
62 0.6/4.4 ISE-PLS 0.949 0.19 Kawamura et al.,

2017
626 0.06/2.74 SVM 0.96 0.219 This study
528 0.06/0.98 SVM 0.87 0.09 This study

Note: Nsample is the number of samples; R2
v is validation R2.
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