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A B S T R A C T

Bankruptcy prediction models that rely on ensemble techniques have been studied in depth over the last
20 years. Within most studies that have been performed on this topic, it appears that any ensemble-based
model often achieves better results than those estimated with a single model designed using the base
classifier of the ensemble, but it is not uncommon that the results of the former model do not outperform
those of a single model when estimated with any other classifier. Indeed, an ensemble of decision trees is
almost always more accurate than a single tree but not necessarily more than a neural network or a support
vector machine. We know that the accuracy of an ensemble used to forecast firm bankruptcy is closely
related to its ability to capture the variety of bankruptcy situations. But the fact that it may not be more
efficient than a single model suggests that current techniques used to handle such a variety are not com-
pletely satisfactory. This is why we have looked for a method that makes it possible to better embody this
diversity than current ones do. The technique proposed in this article relies on the quantification, using
Kohonen maps, of temporal patterns that characterized the financial health of a set of companies, and on
the use of an ensemble of incremental size maps to make forecasts. The results show that such models lead
to better predictions than those that can be achieved with traditional methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Models that have been studied in the financial literature and
that are used to forecast bankruptcy are primarily default models:
a firm goes bankrupt when it lacks sufficient resources to meet
its financial obligations, hence when it becomes insolvent. Most
empirical studies that have focused on bankruptcy prediction have
therefore attempted to find measures that characterize a risk of
default. The first models developed in the 1960s, following the
study by Altman [4], have sought to assess this risk by estimat-
ing the distance between the financial situation of a given firm
and a standard bankruptcy situation. Virtually all data-mining tech-
niques that have been developed for classification purposes have
been used to design failure models that share almost all the same
characteristics: models are dichotomous, have good forecasting abil-
ities and are easy to estimate. However, what can be considered the
main factor of their success is also their main weakness. They essen-
tially rely on a single rule and are estimated using financial data that
solely characterize a unique period of firm life. This type of model-
ing reflects a rather rudimentary view of bankruptcy; it is considered
the result of a a-historical process [39] that does not depend on time
and that is reducible to a limited number of measures. But reality
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is a bit different. One knows that firms that apparently share the
same financial profile, from the point of view of a model, may in
reality have a very different probability of failure. Over time, some
of them may have gained a certain resilience that gives them the
ability to withstand failure. Some others may have received from
their environment a sort of carrying capacity that has changed their
fate at the very moment where their situation worsened, or have
managed to recover even though nothing suggested they were able
to do so [11]. All these factors, which can solely be analyzed over
time, cannot be properly embodied by traditional models.

The historical dimension of failure and the multiplicity of the
situations that lead to bankruptcy have given rise to a large body
of literature. We can find, on the one side, studies that focused on
the temporal dimension of financial failure. They analyzed the way
variables that measure firm activity over several years [22] may
influence model accuracy, assuming that taking time into account
with multi-period data would be sufficient to embody the dynamics
of the phenomenon. We can also find, on the other side, studies that
were interested in modeling the different financial situations that
lead to bankruptcy. They especially analyzed how to embody at-risk
situations using ensemble-based models, this time assuming that the
multiplication of forecasting rules would make it possible to model
the diversity of failure symptoms [32,46,61]. In both cases, models
on the whole lead to better results than those estimated with single
models, but it seems that multi-rule models sound more promising
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than multi-period ones. Indeed, the sole use of historical data hardly
changes model physiognomy; they are still singular and still stum-
ble on the fact that they embody a unique measure of a distance to
bankruptcy which is too simple to be truly effective. In fact, ensemble
models make it possible to represent the different facets of the deci-
sion boundary that separate failed from non-failed firms [9,49] and,
to a certain extent, are able to embody the different patterns of
decline that may lead to failure and that traditional models cannot
assess.

For all that, when one looks closely at the results achieved
with all these models and compares those estimated with ensemble
techniques to those calculated with the best single models, in
many cases, discrepancy between them does exist but it is
relatively low (between 2 and 3%) and is often is not statistically
significant [21,23,27,43,49,63]. Of course, a model designed with an
ensemble of decision trees is often more accurate than one estimated
with a single tree, but not necessarily much more powerful than a
single model estimated with a support vector machine. This shows
that ensembles represent a source of performance that is related to
the way they are able to capture the variety of bankruptcy situations.
But the fact that ensembles are not systematically more accurate
than single models suggests that they do not handle variety in a
completely optimal way. These are the reasons why we have stud-
ied a method that makes it possible to better embody the different
bankruptcy situations, using what we call “failure patterns”, and to
use these “patterns” to make forecasts. It relies on the quantification,
with Kohonen maps, of temporal patterns that characterize both
failed and non-failed firms, and on the use of an ensemble of
incremental size maps to make forecasts.

2. Literature review

The very first bankruptcy prediction models that were developed,
following that of Altman [4], represent failure as if it were a critical
situation that might be captured using a measure of the discrepancy
that separates the financial situation of a given firm from that of a
standard critical situation. These models also make the assumption
that failure is a phenomenon that can be estimated using a unique
measure of firm financial health. Finally, they assume that failure
corresponds to a particular event that can be explained using a single
classification rule, and to a certain extent that bankruptcy is the
result of a unique process of decline. The limits of these models
are the direct consequences of their assumptions. We know that
bankruptcy has multiple causes and symptoms, and that a model
with variables that are solely measured over a single period would
probably not be able to embody such diversity. We also know that
failure does not depend on the sole situation of a firm at a given
period of its life, but is the result a protracted process that cannot be
captured properly by models that do not take into account a tempo-
ral dimension. Finally, we know that different paths to firm failure
exist [11,39,48], but their complexity cannot be properly assessed
with simple single-rule models.

In order to overcome these limitations, some research works have
sought to estimate and use the historical dimension of bankruptcy
through multi-period data, but still using traditional single-rule
models. They have shown that models designed with financial
variables measured over several years lead to better predictions
than those achieved with models designed with single period
variables [22,65]. But their structure can solely solve a part of the
issue: the uniqueness of the rule leads to models that still embody
a single standard bankruptcy situation. This is why some other
research works have attempted to model the variety of bankruptcy
situations using multiple classification rules. The techniques that
have been used for this purpose aim at designing a meta-model
where each component has a particular expertise on a certain

region of the decision space. If these components are sufficiently
diverse [38], they make it possible to estimate models that are on
average more accurate than single models.

The characteristics of ensemble-based techniques rely on the
way classification rules are developed and combined. With certain
techniques, rules can be estimated with the same modeling method.
This is the case of bagging, boosting, random subspace. . . where
all models are estimated using either a decision tree [23],
logistic regression [43], a feed-forward neural network [32], a sur-
vival model [16], k-nearest neighbors [49] or a support vector
machine [61]. Rules can also be computed with different methods:
for example, a model estimated with a logistic regression can be used
in conjunction with other types of models that are assessed either
with a support vector machine [25], or with both a support vector
machine and a neural network [70], or with a neural network com-
bined with a decision tree and discriminant analysis [46]. Sometimes,
combinations are more complex; a first set of models is computed
with different methods and their results are then used as inputs
of a final model estimated with a neural network [7]. Finally, rules
can be estimated after a prior segmentation of the decision space.
The technique consists of grouping observations into a few classes
and then calculating models where each of them fits the character-
istics of a given class, using the same methods as those presented
above [15,16,63].

On the whole, ensemble models present a better ability to make
accurate forecasts than single models do. However, the absolute gain
brought by these techniques is relatively low compared to that of
traditional models, even if it remains real. We have measured the
average gain calculated over 31 studies published between 2000 and
2017, and presented in Table 11. If one calculates the difference,
for each study, between the correct classification rate of the best
ensemble-based model and that of the best single model from among
those that have been estimated while taking into account the sample
size used for their validation2, the average gain does not even
reach 2.4%. And, above all, if one estimates whether the differences
between these models are significant, one can notice that among
the 31 differences calculated in Table 1, only 10 are statistically
significant.

The literature shows that the ability of a model to capture
the whole variety of bankruptcy situations is a key factor of its
performance. But it also shows that usual ensemble-based models
are not able to easily embody this variety because, each rule, solely
represents a boundary between two groups, although we might
likely consider more subtle modeling. Literature has long shown
the existence of different profiles or failure “patterns” which rep-
resent prototype situations that firms may experience over their
life, and where some of them may lead to bankruptcy. But it has
mainly focused on very general patterns that are shared by the
largest number of firms. Those that were estimated by D’Aveni [11],
Laitinen [39] or by Lukason et al. [48] illustrate this finding. However
one may think that these patterns are far too general and could be
refined. A widespread cause of bankruptcy, such as a lack of liquid-
ity, can be embodied in many different financial situations that are
very unequally distributed within a population of firms. A firm may
not be liquid because of a lack of cash, a lack of permanent capital,
a problem of balance between payables and receivables. . . This sug-
gests that non-liquid firms can be represented through a wide variety
of profiles and that a large number of illiquidity patterns should

1 Table 1 lists the main studies that have been published since 2000 and that
have studied the accuracy of ensemble-based models when it comes to forecasting
bankruptcy. For each study, this table presents the results achieved with the best
ensemble-based models (maximum 3) and those achieved with the best single model
from among all single models that have been estimated.

2 When the size of the test sample was not indicated, we estimated the gain using
the size of the learning sample, despite the positive bias introduced in the estimation.
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Table 1
Best results of the main studies that have estimated ensemble-based models to forecast financial failure.

Studies Ensemble-based
models

Accuracy
(1)(%)

Single
models

Accuracy
(2)(%)

Difference
(1–2)(%)

Forecasting
horizon*

Sample size

F** NF

Alfaro et al. [3] AdaBoost (DT) 91.10 BPNN 87.29 3.81 1 Y 590 590
Alfaro et al. [2] AdaBoost (DT) 89.16 DT 88.56 0.60 1 Y 1365 1365
Cho et al. [7] (DA+LR+BPNN+RI)+BPNN 78.92 DA 78.15 0.77 900 900
Chuang [9] RS-CBR 94.10 LR 85.30 8.80 42 279

DT-CBR 90.40 5.10
du Jardin [15] SOM-Random subspace (BPNN) 87.04 BPNN 83.97 3.07 1 Y >8000 >8000

SOM-Boosting (BPNN) 85.93 1.96
SOM-Bagging (BPNN) 84.98 1.01

du Jardin [16] SOM-Boosting (SVM) 91.13 ELM 89.11 2.02 1 Y >95000 >1800
SOM-Rotation forest (SVM) 90.87 1.76
SOM-Random subspace (Cox) 90.85 1.74

Fedorova et al. [19] AdaBoost (BPNN) 88.80 BPNN 87.80 1.00 444 888
Geng et al. [21] DT+SVM+BPNN 78.40 BPNN 78.80 −0.40 3 Y 107 107
Heo and Yang [23] AdaBoost (DT) 78.52 BPNN 77.08 1.44 1 Y 1381 1381
Hua et al. [25] LR+SVM 94.66 SVM 91.38 3.28 60 60

Bagging (SVM) 86.82 0.21
Huang et al. [27] MultiBoost (DT) 88.13 SVM 86.61 1.52 50 100

AdaBoost (DT) 86.74 0.13
Hung and Chen [28] DT-BPNN-SVM 72.50 BPNN 72.37 0.13 112 128
Karthik-Chandra et al. [30] Random forest+SVM+BPNN 93.33 DT 75.83 17.50 120 120

Random forest 81.67 5.84
Kim et al. [34] AdaBoost (SVM) 95.20 1 Y 500 2500
Kim and Kang [32] Bagging (BPNN) 75.97 BPNN 71.02 4.95 1 Y 728 729

AdaBoost (BPNN) 75.10 4.08
Kim and Kang [33] Boosting (SVM) 77.53 SVM 72.45 5.08 1 Y 600 600

Bagging (SVM) 77.23 4.78
Kim and Upneja [35] AdaBoost (DT) 97.70 DT 96.73 0.97 1 Y 42 779
Li et al. [43] Random subspace (LR) 83.97 DA 82.98 0.99 1 Y 135 135
Li and Sun [44] CBR-based ensemble 89.33 CBR 89.16 0.17 1 Y 135 135
Liao et al. [45] SVM+BPNN 96.94 BN 94.82 2.12 1 Y 63 2680

Random forest (DT) 94.91 0.09
Lin and McClean [46] DA+LR+BPNN+DT 89.60 DT 88.70 0.90 1 Y 154 979
Lopez-Iturriaga and Pastor-Sanz [47] MLP-SOM 96.15 BPNN 93.27 2.88 1 Y 386 386
Marques et al. [49] Rotation forest (k-NN) 79.17 k-NN 75.42 3.75 2 Y 112 128

Bagging (BPNN) 78.75 3.33
Decorate (k-NN) 77.50 2.08

Sun et al. [61] AdaBoost (SVM) 86.29 SVM 79.77 6.52 2 Y 466 466
Sun et al. [62] AdaBoost (SAT) 97.22 DT 96.54 0.68 1 Y 346 346
Tsai [63] SOM-(LR+BPNN+DT) 90.14 DT 85.96 -8.43 2 Y 112 128
Tsai and Hsu [64] Meta-classifier (BPNN) 97.33 BPNN 69.58 27.75 2 Y 112 128

Stacking (BPNN) 70.83 1.25
Wang et al. [66] Boosting (DT) 81.50 DA 74.04 7.46 2 Y 112 128

Bagging (DT) 76.21 2.17
Wang and Wu [67] SOM-based ensemble 94.54 2 Y 108 108
West et al. [68] Bagging (BPNN) 87.37 BPNN 86.86 0.51 93 236

Boosting (BPNN) 87.24 0.38
BPNN-based ensemble 87.08 0.22

Xiao et al. [70] DSE+(LR+BPNN+SVM) 87.80 SVM 85.43 2.37 2 Y 92 161
LR+BPNN+SVM 86.25 0.82

BN: Bayes network; BPNN: back-propagation neural network; CBR: case-based reasoning; Cox: Cox’s model; DA: discriminant analysis; DSE: Dempster-Shafer evidence; DT:
decision tree; GRA: gray relational analysis; k-NN: k-nearest neighbors; LR: logistic regression; RI: rule induction; RS: rough set; SAT: single-attribute test; SOM: self-organizing
map; SVM: support vector machine. * Y: Years - ** F: failed; NF: non-failed.

also exist. The same reasoning applies to all causes of bankruptcy.
Therefore, we assume that there exists a large variety of pre-
bankruptcy situations we call failure “patterns” and that a model,
which would make it possible to represent the information that char-
acterizes each of these situations, would likely make better forecasts
than those made with traditional methods. In this study, we propose
to quantify these “patterns” using an ensemble of Kohonen maps and
financial data that characterize firms over several years. The particu-
larity of this ensemble lies in the fact that it is made up of incremental
size maps, where each map has one more neuron than the former.
Once the quantification is finished, neurons are labeled according to
the class (failed vs. non-failed) for which they can be considered a
prototype, and are used to make forecasts.

The way we use Kohonen maps breaks with usual practices.
In the field of business failure, Kohonen’s maps were first used,
as a clustering technique, to better understand what characterized

failed and non-failed firms [13] or to identify companies that would
eventually go bankrupt [1,57]. But they were also used to perform
classification tasks. Thus, Huysmans et al. [29] used a single map to
make forecasts; du Jardin and Severin [17] designed a map to esti-
mate a set of bankruptcy trajectories and used them as classification
rules, du Jardin [14–16] designed maps to cluster firms that share the
same bankruptcy trajectory, then built classification models that fit
each trajectory; Tsai [63] estimated a map to divide a sample of firms
into a few groups and then designed, using traditional methods, as
many prediction models as there were groups; Lee et al. [40] and
Lopez-Iturriaga and Pastor-Sanz [47] used a map in conjunction with
a neural network to make forecasts. In the field of classification,
Kohonen maps were also used to estimate prediction models, either
with single maps or with an ensemble of maps. When ensembles of
maps were considered, the generation of the different components
often relied on two basic techniques: each map was either trained
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using a subset of variables drawn from an initial set [8] or using a
re-sampling scheme applied to an original learning sample [56]. By
contrast, in this study, we use ensembles of incremental size maps
(each map has one more neuron than the former), assuming that
the way we produce variety among classifiers would improve model
accuracy.

In order to provide a robust estimation of the performance of our
method, we applied it to multiple samples and we compared the dif-
ferent results with those calculated with usual modeling techniques.
We used discriminant analysis, logistic regression, a decision tree,
Cox’s model, a feed-forward neural network, an extreme learning
machine and a support vector machine, and all these techniques
were used to design single models but also ensemble-based models
in conjunction with bagging, boosting, random subspace and rotation
forest. We also designed hybrid models that were estimated with
different modeling methods [7,14,30,46,64].

3. Samples and variables

3.1. Samples

Samples were collected using a database managed by bureau
Van Dijk, Diane (https://diane.bvdinfo.com), which provides balance
sheets and income statements of firms that filed their annual
accounts with the French commercial courts. Data were gathered
over different years, between 2006 and 2014, to control for the
economic environment effect on model performance. This period
of time is interesting since over these 9 years, the French economy
experienced several periods of growth (2007, 2010, 2011, 2013 and
2014) but also periods of downturn (2008) or recession (2009, 2012),
and we know that when variations occur within the firm environ-
ment, models tend to become less accurate than they are when the
environment remains stable [53]. For each year, we selected two
samples: one to estimate model parameters, the other to test model
accuracy. Learning and test samples do not share any common data
and were not collected over the same period, but with a lag of one
year, to estimate an out-of sample and out-of time error [60]. Table 2
presents the characteristics of each sample. Thus, for the first period
studied (2006–2007), firms from the learning sample were selected
in 2006 and those from the test sample were collected in 2007. Com-
panies were chosen at time t, if they were still operating at time
t + 1, or if they were liquidated or reorganized at time t + 1 by court
decision. None of the failed firms filed for bankruptcy protection.
Firms were drawn at random from among those for which at least
5 consecutive years of financial data were available in the database.
We chose 5 years because it is over the last 5 years of their life that
the differences between the two groups of firms truly widen.

Learning samples are made up of as many failed firms as non-
failed firms, as is commonly done in the literature (Table 1). It is true
that samples are (sometimes) randomly drawn to avoid a choice-
based sample bias. However, the failure patterns-based models we
propose in this study were designed using Kohonen maps. With
this method, if the proportion of firms belonging to one class is
very different from that of the other class, then the minority class
cannot be quantified properly. This is why we chose to balance the
proportions with each learning sample and each modeling method.
However, since the proportion of failed firms is, each year, on average
slightly lower than 2%, we estimated model accuracy using this
proportion. Test samples were then built in two steps. First, we
collected, for each period, as many failed as non-failed firms. Then,
to make the estimation of the error as independent from sampling
variations as possible, we bootstrapped each test sample 100 times
and we averaged the error over these samples, each of which is made
up of 6000 non-failed firms and 120 failed firms.

3.2. Explanatory variables

Variables were chosen within those commonly used in the
literature [41] using two criteria to avoid, as much as possible,
any arbitrary choice. First, variables must belong to one of the
different dimensions that are used in financial analysis to explain
bankruptcy. We chose 6 dimensions: activity, financial structure,
liquidity, profitability, solvency and turnover. Second, they must
present a good mid-term discrimination ability to make models as
robust as possible against any variations that may occur within
a firm’s macroeconomic environment. Variables are presented in
Table 3. They are all financial ratios estimated using firm balance
sheets and income statements.

4. Modeling methods

4.1. Single and ensemble-based methods

The accuracy of the models that were developed using Kohonen
maps, and that we call “failure pattern-based models”, was
benchmarked against that of models designed using common
methods [58]. We chose two types of methods: some used to build
single models – discriminant analysis [4], logistic regression [52],
a decision tree with Cart [6], Cox’s method [10], a feed-forward
neural network [69], a support vector machine [18] and an extreme
learning machine [26] – and also some used to design ensemble-
based models [38] – bagging [5], boosting [20,55] with AdaBoost,
random subspace [24], rotation forest [54]. We also estimated hybrid
ensemble-based models proposed in the literature and that were
built with different modeling methods: two of them rely on a combi-
nation of models [30,46], two others use a sequence of models [7,64]
and the last one relies on models based on an a priori segmentation
of data [14]3 The methods used in this study to design single models
but also most of those used to estimate ensemble-based models such
as bagging, boosting, random subspace and rotation forest are well-
known. This is the reason why they are not presented. We just give an
overview of the Kohonen algorithm to present the parameters used
to design maps4.

3 Lin and McClean [46] designed models with four methods (logistic regression,
discriminant analysis, a decision tree and a feed-forward neural network), then
estimated the correct classification rate of each model, and finally calculated the
accuracy of the combination of the four models by weighting each individual predic-
tion with the correct classification rate of its corresponding model. Karthik-Chandra
et al. [30] estimated five models (using random forest, logistic regression, a deci-
sion tree, a support vector machine and a feed-forward neural network), then chose
the three best models (assessed with the AUC of a ROC curve) and combined their
individual predictions using a majority vote. Cho et al. [7] designed four models (with
logistic regression, discriminant analysis, a decision tree and a feed-forward neural
network). With each model, they estimated the predicted class of each observation
and they weighted this prediction using the correct classification rate of the model.
The weighted predictions (one per model) were assigned to each observation. Then,
a feed-forward neural network was estimated with all explanatory variables and was
trained to estimate the weighted predictions. This network was used to calculate the
final forecasts. Tsai and Hsu [64] calculated a set of models (with logistic regression,
a decision tree and a feed-forward neural network) and selected the data that were
correctly classified by at least two models. Then, these data were used to estimate
a final model computed with a feed-forward neural network. Finally, du Jardin [14]
estimated the evolution of the financial situation of a set of firms over 3 years, then
quantified these individual evolutions into a set of prototype sequences of evolution,
using a Kohonen map, and finally designed as many models as there were different
sequences (using each time discriminant analysis, Cox’s method, a decision tree and a
feed-forward neural network).

4 We used Weka to design and test all models. We also developed several routines
with Eclipse that were then embedded into Weka. All computations related to the
estimation of the Kohonen maps were developed using Visual Basic. Computations of
financial ratios and their analysis were conducted with SPSS.

https://diane.bvdinfo.com
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Table 2
Characteristics of the different samples.

Firm status Periods

2006–2007 2007–2008 2008–2009 2009–2010 2010–2011 2011–2012 2012–2013 2013–2014

LS* ITS LS ITS LS ITS LS ITS LS ITS LS ITS LS ITS LS ITS

Failed 7400 7200 7200 7500 7500 7200 7200 7450 7450 6850 6850 7050 7050 7400 7400 7350
Non-failed 7400 7200 7200 7500 7500 7200 7200 7450 7450 6850 6850 7050 7050 7400 7400 7350

FTS** FTS FTS FTS FTS FTS FTS FTS

Failed 120 120 120 120 120 120 120 120
Non-failed 6000 6000 6000 6000 6000 6000 6000 6000

* LS: learning sample; ITS: initial test sample. ** FTS: final test sample. Final test samples are bootstrap samples: firms were randomly drawn 100 times from the initial test
samples using the same % of failed firms, which is on average slightly lower than 2%, as that which characterizes the different periods.

4.2. Self-organizing map

A Kohonen map [37] is made up of a set of neurons and each
neuron is represented with a set of weights: each weight corre-
sponds to a variable that characterizes a sample of observations. A
map is estimated using a learning process during which each weight
is adjusted gradually to finally reflect the initial structure of the
data. Over this process, each observation is first compared to each
neuron, through a distance calculation. Once the nearest neuron to a
given observation is found, its weights are adjusted to decrease the
distance between them. Then, the weights of the neurons located
in the neighborhood of the latter neuron are also adjusted, but
the magnitude of the modification is inversely proportional to their
distance on the map. The process is repeated a certain number of
times, which corresponds to a number of iterations that is to be set
up a priori. Weights are updated with the following rule:

wk(t + 1) = wk(t) + a(t)hck(t) [x(t) − wk(t)]

where t represents a given iteration, a(t) the learning step, x(t) the
input vector, wk(t) a neuron and hck(t) the neighborhood function
between the neuron wc(t), which is the closest to the input x(t), and
the neuron wk(t). We used the following decreasing function of the
learning step:

a(t) = a0/ (1 + 100 ∗ t/tmax)

with a0 the initial value of the learning step and tmax the length
of the learning phase that corresponds to the number of times a
learning sample is presented to the map.

To choose the length of the learning process (tmax), and set up
the initial value of the learning step (a0), we conducted a set of
experiments. With each learning sample, we drew at random 50 sets
of variables, and with each set, we designed several maps that ranged
in size from 20 to 200, with a step of 20. We tested different values of
tmax between 10 000 and 200 000, with a step of 10 000. With these
values, we also tested five different values of a0: between 0.1 and
0.5, with a step of 0.1. On average, the quantification error of each
map was the lowest when the number of iterations was around 600
times the number of neurons, and the learning step was set up using
0.1. These are the settings we used to design all maps.

And we used the following neighborhood function:

hck(t) = max
[
0, 1 − (s(t) − dck)2

]

where s(t) is the neighborhood radius with s(t) = s0 ∗
(sn/s0)t/tmax, s0 and sn are the initial and final value of the neigh-
borhood radius, and dck is the distance on the map between neuron
wc(t) and neuron wk(t). With each map, the initial value of the neigh-
borhood radius was set up using the number of neurons of the map,
and the final value using 1.

While observations are companies that are characterized by
financial variables, each neuron can be considered a pattern that
embodies the financial situation of a subset of firms.

Table 3
Initial set of variables.

Ratios Dimensions* Ratios Dimensions

AP/TS Accounts Payable/Total sales TO FE/TA Financial expenses/Total assets SO
C/CA Cash/Current assets LI FE/VA Financial expenses/Value added SO
C/CL Cash/Current liabilities LI I/TS Inventories/Total sales TO
C/TA Cash/Total assets LI LTD/TA Long Term debt/Total assets FS
CA/TS Current assets/Total sales TO NI/TS Net income/Total sales AC
CF/SF Cash flow/Shareholder funds PR NI/VA Net income/Value added AC
CL/TA Current liabilities/Total assets FS PBT/SF Profit before Tax/Shareholder funds PR
CL/TS Current liabilities/Total sales TO QA/CL Quick assets/Current liabilities LI
EBIT/VA EBIT/Value added AC R/TS Receivables/Total sales TO
EBITDA/PE EBITDA/Permanent equity PR SF/PE Shareholder funds/Permanent equity FS
EBITDA/TA EBITDA/Total assets PR SF/TA Shareholder funds/Total assets FS
EBITDA/TS EBITDA/Total sales AC TD/TA Total debt/Total assets FS
FE/CF Financial expenses/Cash flow SO TS/TA Total sales/Total assets TO
FE/EBITDA Financial expenses/EBITDA SO VA/FA Value added/Fixed assets PR
FE/NI Financial expenses/Net income SO VA/TS Value added/Total sales AC

EBIT: Earnings before interest and taxes; EBITDA: Earnings before interest, taxes, depreciation and amortization.
∗ AC: activity; FS: financial structure; LI: liquidity; PR: profitability; SO: solvency; TO: turnover.
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5. Experimental settings

5.1. Variable selection

“Failure patterns” correspond to prototypic forms that character-
ize different financial situations and where some of them embody
weak situations that may arise many years before bankruptcy occurs.
These patterns were estimated with financial ratios that were
measured over several consecutive years to take into account the
influence of firm history on their fate. A pattern thus represents a
temporal situation that is shared by a subset of companies. Patterns
and all models were built with the same variables. We made this
choice to control for the influence of the number of variables but
also for that of variable informational content on model accuracy.
We selected an initial set of 30 ratios (Table 3). Since we collected
firm financial data over 5 years, each ratio was computed with data
from each of these 5 years. We finally selected, from among the 150
variables we computed (30 ratios × 5 years), and with each sample,
the variables that we were going to use to create failure patterns and
models. For this purpose, we chose those with the best discrimina-
tory ability and the lowest possible correlations with others [31]. We
thus calculated a Mann-Whitney test for differences between failed
and non-failed firms and selected, for each dimension, two variables
with the best discrimination power among those for which the dif-
ference was significant at the threshold of 0.01%. We chose the same
number of variables from each dimension to be sure that each finan-
cial dimension would be taken into account. To select this number,
we designed models using four sets of variables with each learning
sample: one with one variable per dimension, one with two, then
one with three and the last one with four variables. With each set, we
removed the variables that had correlations with others that were
larger than 0.6. Then we estimated the forecasting ability of each set.
On average, the best classification rates were achieved by far with
the sets that were made up of two variables per financial dimension.
We thus used this setting to design our models. Table 4 presents the
p-values of a Mann-Whitney test calculated to assess the differences
between failed and non-failed firms for each variable used to design
failure patterns and models with data from 2006.

5.2. Model design

5.2.1. Single models
We designed as many single models as we collected samples

and chose modeling methods, and with each method, we used the
same variables. With discriminant analysis, logistic regression and
Cox’s model, we did not use any specific setup. With Cart, we did
not perform any pruning because we wished for all models to be
used with the same variables to avoid any informational distortion
and we used the Gini index as a measure of heterogeneity to split
each node. By contrast, we had to choose a few parameters with
the other techniques. With the feed-forward neural network and the
extreme learning machine, we used an architecture that was made

up of one hidden layer, the size of which was experimentally deter-
mined before models were estimated [42], and we also used the
hyperbolic tangent as an activation function of neurons. As such, we
tested several sizes of the hidden layer (between 5 and 30 neurons)
using different learning rates (between 0.01 and 0.5, with a step of
0.01). Model parameters were assessed using 50% of each learning
sample and model accuracy was estimated with the remaining 50%.
We computed the error achieved with each model and we chose the
architecture that led to the lowest error. With the support vector
machine, we used a radial basis function and we also conducted a set
of experiments to determine the values of the function parameters:
C and gamma. Here as well, each learning sample was divided into
two equal parts, one to estimate parameters, one to assess model
accuracy. We tested the values that ranged from 10- 5, 10- 4 . . .to 105,
and we chose the model that led to the lowest error.

5.2.2. Ensemble-based models
We also built as many ensemble-based models as we collected

samples and chose modeling methods. Hence, with discriminant
analysis and a given learning sample, we designed an ensemble with
bagging, one with boosting, another with random subspace and a
final one with rotation forest. With bagging and boosting, we used
all variables to design models. With random subspace, variables that
belonged to each model were selected by the algorithm itself. With
rotation forest, variables were also chosen by the algorithm, know-
ing that each model was made up of 5 variables. To choose the size of
each ensemble, we created a set of ensembles made up of between
2 and 200 models and then we tested their accuracy. As such, each
learning sample was divided into two equal parts, one to estimate
model parameters, and one to test their performance. Once the error
of all sets was assessed, we chose the ensemble that led to the lowest
error. With hybrid techniques, each single model was estimated as
mentioned previously, but the combinations of their results were
performed as presented in Section 4.1.

5.2.3. Failure pattern-based models
Pattern-based models were designed with ensembles of Kohonen

maps, the sizes of which were different from each other, but the
dimension of which was defined a priori: each map is a one-
dimensional map made up of a single row of neurons. We first
designed, with each learning sample, a set of maps with sizes ranging
from 2 to 200 neurons. Then, each set was pruned, by removing
maps one at a time. The estimation process was performed with 50%
of learning data and the pruning process was performed with the
remaining 50%.

Over the learning process, we ensured that the quantification of
each map had been performed properly. Indeed, the quality of the
quantification depends on the initial parameters which can some-
times lead to maps that are distorted due to twists, the butterfly
effect. . . [12], even if the dimension(s) of the maps match those of the
data. We therefore estimated 20 maps of the same size each time
and chose the one leading to the lowest quantification error esti-
mated with learning data. Once a map was estimated, neurons were

Table 4
P-values of a Mann-Whitney U test for differences between failed and non-failed firms calculated for each variable used to design failure patterns and models with data from 2006.

Year Variables

1 C/CA CL/TS TS/TA EBIT/VA FE/TA FE/VA TD/TA EBITDA/TA EBITDA/PE
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 QA/CL R/TS NI/TS VA/TS FE/VA EBITDA/TA EBITDA/PE
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 EBIT/VA FE/CF SF/PE EBITDA/TA EBITDA/PE
0.0000 0.0000 0.0000 0.0000 0.0000

4 AP/TS FE/VA FE/NI EBITDA/TA EBITDA/PE
0.0000 0.0000 0.0000 0.0000 0.0000

5 C/CA NI/TS FE/VA FE/EBITDA CL/TA VA/FA EBITDA/TA
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000



70 P. du Jardin / Decision Support Systems 107 (2018) 64–77

labeled according to the class (failed vs. non-failed) for which they
can be considered a prototype. For this purpose, we calculated the
number of firms of each group that were the closest to each neu-
ron (c1 and c2) and we assigned to each of them the label of the
majority class (-1 if c1 > c2, 1 if c2 < c1, 0 if c1 = c2). We also
assigned to each neuron a statistic d that represented the degree of
similarity between the neuron and the class it was assigned to. This
statistic was calculated by dividing the number of firms that were
the closest to a given neuron, and that belonged to the majority class,
with the total number of firms that were the closest to the same neu-
ron (d = c1/(c1 + c2) if the label = −1, d = c2/(c1 + c2) if the label
= 1). These two parameters (the label and d) were used to compute
forecasts made with each map.

Over the pruning process, several maps were removed from the
initial set of maps to select the best performing subset. As such, we
conducted two pruning sequences. First, maps were removed one at
a time, starting with a map with the largest number of neurons, until
no map remained available. At the end of this procedure, we chose
the ensemble with the lowest error. Second, with the previously
designed ensemble, maps were again removed one at a time, but this
time in the other direction, starting with the map with the smallest
number of neurons. And we selected the ensemble that led to the
lowest error. The estimation process can be presented as follows.

Design sequence:

• Step 1: select a sub sample L = (L1, L2, . . . , Lp) made up of 50%
of a learning sample;

• Step 2: set up the number n of neurons of the map to be
designed using n = 2;

• Step 3: repeat k times, with k = 1, 2 . . . 20;
• Step 3.1: estimate a one-dimensional map Mn,k(l) with n

neurons using sample L;
• Step 3.2: estimate the quantification error of the map Mn,k(l);
• Step 4: choose the map Mn(l) with the lowest quantification

error;
• Step 5: compute the distance between each neuron and each

firm l;
• Step 6: calculate the percentage of firms in each class that are

the closest to each neuron: c1 and c2. The neurons kl∗ that are
the closest to each firm satisfy the following condition:

‖ x − kl∗ ‖= min
l

‖ x − kl ‖

• Step 7: label each neuron with the label of the class that has the
highest percentage: −1 if c1 > c2, 1 if c2 < c1, 0 if c1 = c2;

• Step 7: repeat Step 3 to Step 7 with n = n + 1 until n = 200.

Pruning sequence:

• Step 1: select the remaining 50% of a learning sample;
• Step 2: set up the maximum size of the maps to be removed to

s = 200;
• Step 3: remove all maps with a size that is >s;
• Step 4: with each map, calculate the predicted class of each

firm;
• Step 4.1: for firm l, compute its weighted distance D to each

neuron nw and find the closest neuron nc;

D = d ∗ ||l − nc|| = d ∗ min||l − nw||

with d = c1/(c1 + c2) if the label = −1, d = c2/(c1 + c2) if
the label = 1;

• Step 4.2: assign to firm l the label of the class of neuron nc: this
label becomes the predicted class made by the map, the size of
which is n;

• Step 5: calculate the final predicted class of all firms by com-
bining the forecasts of all maps Mp(l) of the set under consider-
ation using a majority vote;

Prev(l) = arg max
g∈−1;1

s∑
p=t

dsign(Mp(l)),g

• Step 6: estimate the correct classification rates achieved with
all maps made up of between 2 and s neurons by comparing
the predicted class of each observation to its current class;

• Step 7: repeat Step 3 to Step 6 with n = n − 1 until n = 2;
• Step 8: choose the subset of maps leading to the lowest error

with 2 the size of the smallest map and s the size of the largest
one;

• Step 9: set up the minimum size of the maps to be removed to
t = 2;

• Step 10: remove all maps with a size that is ≤ t;
• Step 11: repeat Step 4 to Step 5;
• Step 12: estimate the correct classification rates achieved with

all maps made up of between t and s neurons by comparing the
predicted class of each observation to its current class;

• Step 13: repeat Step 10 to Step 12 with t = t + 1 until t = s;
• Step 14: choose the subset of maps leading to the lowest error

with t the size of the smallest map (2 ≤ t ≤ s), and s the size of
the largest one (t ≤ s ≤ 200).

5.3. Estimation of model performance

The estimation of single model accuracy was performed by
comparing the label of the true class of each firm to that which
was forecasted by a model. With ensemble-based models, the same
comparison was performed and we used a majority vote, with
bagging, random subspace and rotation forest, or a weighted major-
ity vote, with boosting, to perform the final forecast. With hybrid
models, the predictions were estimated as mentioned in Section 4.1.
With ensembles of maps, the predictions were done as follows. First,
with each map, we calculated the weighted distance between each
firm of a sample and each neuron of a map using the d statistics esti-
mated previously. Then, we looked for the neuron that showed the
lowest weighted distance to each firm and we assigned to the firm
the label of this neuron: this label was considered the label of the
predicted class made by a given map. Then, when the forecasts of
all maps of an ensemble were calculated, we used a majority vote
to combine them and calculate the final prediction. We used differ-
ent measures to estimate model performance. First, we calculated
the overall error achieved by models in order to assess their general
discrimination ability. Then, since this error can be divided into type-
I and type-II errors, the respective costs of which are far different
from each other, we calculated the area under the receiver oper-
ating characteristic curve (AUC) that makes it possible to estimate
a measure of performance which is totally independent from these
costs. Finally, to get a precise overview about the main factors that
may explain an error, we decomposed type-I and type-II errors using
the method designed by Kohavi and Wolpert [36], who suggested
decomposing the error of a model into bias, variance and noise terms.
Since, in practice, the bias and the noise terms cannot be estimated
separately, we solely computed the bias and the variance of each
error5.

5 The bias represents the part of the error that is due to the distance between the
performance of a given classifier and that of the best one within the same class of
classifiers. The variance represents the part that is due to the different samples that
were used. And the noise is the statistical uncertainty.
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Table 5
Model accuracy (%) achieved with traditional models.

Periods Single rule-based models Bagging-based models

DA LR DT Cox SVM FNN ELM DA LR DT Cox SVM FNN ELM

2007 79.74 80.28 78.49 81.66 81.57 81.67 80.70 79.28 80.64 81.06 82.99 81.92 82.18 82.75
2008 78.17 80.11 75.61 81.77 81.80 83.75 81.25 77.29 80.57 80.70 80.14 81.73 81.23 80.81
2009 76.30 77.53 76.14 79.46 76.25 77.46 79.36 75.45 78.50 78.97 78.35 79.43 78.69 79.81
2010 77.59 78.62 79.52 78.60 79.98 80.60 80.57 77.49 76.10 78.17 80.11 80.31 81.04 82.38
2011 77.33 78.36 79.56 78.88 81.14 79.33 81.48 80.54 83.47 84.24 83.38 82.43 81.92 81.11
2012 75.71 77.24 76.89 77.62 79.44 80.61 80.23 77.43 80.96 80.61 79.70 80.58 82.14 80.67
2013 74.09 76.90 76.32 74.11 76.64 75.76 77.16 77.30 77.32 75.02 76.37 80.15 77.71 79.07
2014 75.54 77.13 75.06 75.89 78.11 78.75 79.59 81.72 80.18 82.54 81.96 79.67 83.03 82.43
Mean 76.81 78.27 77.20 78.50 79.37 79.74 80.04 78.31 79.72 80.16 80.38 80.78 80.99 81.13

Periods Boosting-based models Random subspace-based models

DA LR DT Cox SVM FNN ELM DA LR DT Cox SVM FNN ELM

2007 80.09 80.07 79.37 80.10 81.50 82.65 83.42 80.16 81.31 80.34 81.83 79.55 81.65 84.42
2008 80.17 82.49 80.02 83.49 82.62 82.17 80.67 79.94 80.58 80.74 78.10 81.66 80.49 83.96
2009 77.31 78.84 80.65 80.15 78.18 81.85 79.06 78.22 77.35 79.69 80.42 80.04 79.84 80.07
2010 76.83 82.20 81.43 82.44 80.55 78.46 82.74 78.13 78.56 78.29 79.86 81.27 78.30 81.41
2011 80.21 81.55 82.50 81.28 82.75 81.58 83.53 79.69 81.22 82.49 81.70 83.42 82.57 82.73
2012 80.19 78.82 79.24 78.25 78.06 80.78 82.85 79.58 82.62 81.58 80.07 82.07 83.93 81.09
2013 80.36 82.57 82.56 81.36 80.60 80.41 80.07 79.16 82.40 80.56 79.41 80.69 84.08 80.17
2014 82.04 79.09 81.64 82.67 81.09 83.74 82.16 79.31 81.40 80.82 80.77 78.42 80.22 78.20
Mean 79.65 80.70 80.93 81.22 80.67 81.45 81.81 79.27 80.68 80.57 80.27 80.89 81.38 81.51

Periods Rotation forest-based models Hybrid ensemble-based models

DA LR DT Cox SVM FNN ELM CO1 CO2 SE1 SE2 SG

2007 83.31 82.67 83.36 84.67 83.93 84.37 84.76 81.55 80.65 79.21 82.27 82.92
2008 83.27 84.12 83.05 85.24 82.26 84.64 84.63 80.05 80.29 80.94 81.33 83.43
2009 76.43 78.55 77.68 79.35 77.69 79.08 79.35 78.56 79.59 78.38 79.11 80.51
2010 78.95 79.56 79.29 80.86 81.31 81.35 80.29 77.79 78.30 79.20 80.44 81.58
2011 82.67 80.35 80.30 81.61 81.80 82.01 81.08 80.97 80.81 80.58 81.51 82.53
2012 79.81 81.65 78.17 80.11 81.49 82.48 80.68 81.28 81.58 80.38 79.80 81.39
2013 79.94 78.26 78.12 79.38 77.77 79.60 79.24 80.69 79.22 78.85 80.78 81.07
2014 80.62 81.39 80.64 81.50 79.08 78.71 80.51 80.41 80.02 80.51 82.05 81.30
Mean 80.63 80.82 80.07 81.59 80.67 81.53 81.32 80.16 80.06 79.76 80.91 81.84

DA: discriminant analysis; DT: decision tree; Cox: Cox’s model; ELM: extreme learning machine; FNN: feed-forward neural network; LR: logistic regression; SVM: support vector
machine. CO: combined models (CO1 represents models designed with Lin and McClean [46]’s method and CO2 models designed with Karthik-Chandra et al. [30]’s method). SE:
sequential models (SE1 represents models estimated with Cho et al. [7]’s method and SE2 models estimated with Tsai and Hsu [64]’s method). SG: segmentation-based models
(represents models assessed with du Jardin [14]’s method).

6. Results and discussion

6.1. Results by period

We first calculated the correct classification rates achieved by
period with each model estimated using a traditional method: single
rule-, bagging-, boosting-, random subspace-, rotation forest-based
models and hybrid models. The classification rates were estimated
using a cut-off value that minimized the overall classification error
and were averaged over the 100 samples used for their estimation.
The results are presented in Table 5. We complemented Table 5 with
Fig. 1 which shows the distribution of the correct classification rates
estimated over 100 samples6.

Three conclusions can be drawn from these results. First, one
clearly notices that all models are sensitive to changes that occurred

6 We do not present all results that were achieved with hybrid models, but solely
the best ones when different combinations of models or different methods were used.
As such, with the method designed by Karthik-Chandra et al. [30], we present the
results estimated with the combination of three techniques: random forest, a support
vector machine and a feed-forward neural network. With that by Tsai and Hsu [64],
we present the results estimated using a combination of logistic regression, a decision
tree and a feed-forward neural network. And with that by du Jardin [14], we show the
results computed with a feed-forward neural network.

within the firm macroeconomic environment because the error
increases over periods of trouble and reaches a maximum over the
two critical years of the period studied (2009 and 2013), which
correspond to recession phases. Obviously, none of the models
appear to be better at achieving stable forecasts over time than
others. This situation was often noticed in the literature [53]. Second,
among all models, the extreme learning machine leads, on the whole,
to the best results, whether it was used to design single models
(mean = 80.04%, with the lowest variance among all results achieved
with single models) or ensemble-based models (their means range
from 81.13% to 81.81%). The extreme learning machine is followed
by the feed-forward neural network and the support vector machine,
whereas discriminant analysis leads to the worst results. This indi-
cates the advantage of the extreme learning machine over tradi-
tional optimization techniques used to estimate neural network
parameters. Third, one may notice that ensemble-based models are
more accurate than single models but none of them seem to be
radically better than others, even when one analyzes the distribution
of classification rates presented in Fig. 1.

Then, we compared all results that have just been presented
to those estimated with failure pattern-based models. They are
presented in Table 6. We added to these results those computed
with the best single models, that is to say those achieved with the
extreme learning machine. Table 6 shows that failure pattern-based
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Table 6
Model accuracy (%) by type of model and by period.

Periods SM BA BO RS RF HM bSM* FM

2007 80.59 81.55 81.03 81.32 83.87 81.32 80.70 82.92
2008 80.35 80.35 81.66 80.78 83.89 81.21 81.25 83.74
2009 77.50 78.46 79.43 79.37 78.30 79.23 79.36 79.94
2010 79.35 79.37 80.66 79.40 80.23 79.46 80.57 84.56
2011 79.44 82.44 81.91 81.98 81.40 81.28 81.48 83.54
2012 78.25 80.30 79.74 81.56 80.62 80.88 80.23 84.91
2013 75.85 77.56 81.13 80.93 78.90 80.12 77.16 81.34
2014 77.15 81.65 81.78 79.88 80.35 80.86 79.59 84.78
Mean 78.56 80.21 80.92 80.65 80.95 80.55 80.04 83.22

BA: bagging-based models; BO: boosting-based models; bSM: best SM (corresponds
to ELM); FM: failure pattern-based models; HM: hybrid ensemble-based models; RF:
rotation forest-based models; RS: random subspace-based models; SM: single models.

models are also sensitive to macroeconomic fluctuations, like other
models are, but in a somewhat different way. When there is a sharp
decline within the economic situation between the period when a
model is estimated and when it is used, its accuracy decreases more
significantly than for other models. By contrast, when the economic
situation improves between the estimation period of a model and
its period of use, failure pattern-based models are more likely to
better forecast firm fate since the increase of their accuracy is larger
than that of other models. This is the case between 2009 and 2010,
but also between 2013 and 2014.

To deepen the analysis, we computed the differences between
the results calculated with failure pattern-based models and those
estimated with all other models, by period. They are presented in
Table 7, Panel A. In this table, Panel A is complemented with Panel
B which presents the p-values of a test for differences between
proportions to assess the statistical significance of the discrepancies
mentioned in Panel A. The results indicate that, whatever the period,
failure pattern-based models are more accurate than all single
models but also than most (82%) of ensemble-based models. This
underlines that the hypotheses we made in the introduction about
failure pattern-based models and their informational added value
seem to be verified. Because failure pattern-based models propose a
subtle way of modeling firm financial situations, they are more likely
than others to properly typify the symptoms that lead to failure.

We also calculated the average correct classification rate by type
of model, then the difference between each pair of rates and finally
the significance level of these differences. Results are shown in
Table 8. In this table, Panel A indicates the average rates, Panel B the
differences between these rates, and Panel C the p-values of a test
for differences between proportions that make it possible to estimate
the statistical significance of the discrepancies mentioned in Panel B.

These figures show that correct prediction rates achieved with
failure pattern-based models are significantly higher than those
calculated with any other model (at the threshold of 0.001), with
differences that range from 2.27 percentage points to 3.01. They
also show that ensembles of Kohonen maps are more accurate
than traditional models but also than the best single model, with
an average significant difference of 3.17 percentage points, and of
course more accurate than all single models, with a difference of 4.66
percentage points which is also significant.

These findings shed light on a characteristic of failure pattern-
based models that is ultimately not commonly shared by failure
models. The literature shows that ensemble-based models are often
more accurate than a single model when it is designed with the base
classifier of the ensemble, but much less frequently when the single
model is designed with another classifier. However, here, Kohonen
maps manage to be more efficient than ensemble models as well as
very good single models such as those designed with an extreme
learning machine. In addition, these findings show how large the

discrepancy is between the accuracy of failure pattern-based models
and that of models that are used by banks and financial companies.

6.2. Model predictive power

We have also estimated model performance using the area
under the ROC curve (AUC) which is a measure that is completely
independent from any misclassification costs. Table 9 presents the
AUC calculated by type of model and by period but it also shows the
p-values of a test for differences between AUCs, making it possible to
assess the statistical significance of the differences between the AUCs
estimated with failure pattern-based models and those computed
with traditional models.

This table shows that the differences are significant in more than
85% of the cases, at the threshold of 0.05. Of the remaining 15%,
more than 3/4 are significant at the threshold of 0.1, since p-values
range from 0.06 to 0.088, whereas 1/4 are not at all significant: this
is the case of rotation forest with data from 2007 and of bagging
with data from 2011. This finding is rather interesting because finan-
cial institutions may experience very different misclassification costs
and, whatever these costs, our models provide a modeling frame-
work that leads to less costly errors than those that can be estimated
with any kind of model, and especially with single models. Indeed,
financial companies mainly use discriminant analysis or logistic
regression to build failure models, and with these two methods all
differences we computed between their results and those achieved
with failure pattern-based models are significant.

6.3. Results by firm status and decomposition of type-I and type-II error

Finally, we wanted to know whether the error due to failure
pattern-based models was mainly made up of bias or of variance
and how these two components compared with those achieved with
traditional models. Indeed, failure pattern-based models require the
estimation of a number of parameters far larger than that required by
any other model used in this study, and one knows that the variance
of an estimate is partly related to this number. In order to obtain a
precise view of the influence of a given model on the components
of the error, we decomposed type-I and type-II errors. For the sake

Table 7
Differences (% point) between correct classification rates achieved with failure
process-based models and those achieved with other models.

Panel A: Differences

Periods FM-SM FM-BA FM-BO FM-RS FM-RF FM-HM FM-bSM

2007 2.34 1.38 1.90 1.60 −0.94 1.60 2.22
2008 3.38 3.38 2.07 2.95 −0.15 2.53 2.49
2009 2.44 1.49 0.51 0.57 1.64 0.71 0.58
2010 5.20 5.19 3.90 5.16 4.33 5.10 3.99
2011 4.10 1.10 1.63 1.57 2.14 2.27 2.06
2012 6.66 4.61 5.17 3.34 4.28 4.02 4.68
2013 5.48 3.78 0.21 0.41 2.44 1.22 4.17
2014 7.62 3.13 3.00 4.90 4.43 3.92 5.19

Panel B: P-values of a test for differences

Periods FM-SM FM-BA FM-BO FM-RS FM-RF FM-HM FM-bSM

2007 0.001 0.046 0.006 0.021 0.161 0.021 0.001
2008 0.000 0.000 0.002 0.000 0.820 0.000 0.000
2009 0.001 0.043 0.483 0.433 0.026 0.327 0.424
2010 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2011 0.000 0.105 0.017 0.022 0.002 0.001 0.003
2012 0.000 0.000 0.000 0.000 0.000 0.088 0.000
2013 0.000 0.000 0.770 0.560 0.001 0.000 0.000
2014 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 8
Average correct classification rates by type of model and differences between correct
classification rates.

Panel A: Average correct classification rates (%)

SM BA BO RS RF HM bSM FM

78.56 80.21 80.92 80.65 80.95 80.55 80.04 83.22

Panel B: Differences (percentage point)

BA BO RS RF HM bSM FM

SM 1.65 2.36 2.09 2.38 1.98 1.48 4.66
BA 0.71 0.44 0.74 0.34 −0.17 3.01
BO −0.27 0.03 −0.37 −0.88 2.30
RS 0.29 −0.11 −0.61 2.56
RF −0.40 −0.90 2.27
HM −0.50 2.67
bSM 3.17

Panel C: P-values of a test for differences

BA BO RS RF HM bSM FM

SM 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BA 0.005 0.080 0.004 0.185 0.514 0.000
BO 0.291 0.915 0.139 0.001 0.000
RS 0.245 0.671 0.992 0.000
RF 0.113 0.000 0.000
HM 0.048 0.000
bSM 0.000

of simplicity, we solely report the decomposition of these errors by
type of model. The results are given in Table 10. It presents, for each
error, its value, its bias and its variance as well as the ratio between
the variance and the bias.

It emerges from Table 10 that failure pattern-based models barely
reduce type-II error compared to single models but also compared
to ensemble-based models. The variance/bias ratio is 24.14% with
failure pattern-based models, 23.65% with single models, and that
of all other models ranges only from 23.31% to 24.08%. By contrast,

the variance/bias ratio of type-I error achieved with failure pattern-
based models is lower than that calculated with all other types
of model: the ratio is 41.16% with failure pattern-based models
whereas it ranges with all others from 34.89% to 37.39%. This demon-
strates the contribution of the modeling technique we propose in this
article: it seems to better decode the information that derives from
financial accounts and that embodies different symptoms of failure
than other techniques do.

All measures we used to characterize the performance of failure
models lead to the same conclusion. Our modeling technique leads
to more accurate predictions than those performed with current
advanced methods such as extreme learning machines or support
vector machines, as well as more accurate predictions than those of
ensemble methods. And the gain is partly due to its ability to better
forecast the fate of firms that are likely to go bankrupt, and thus the
fate of those that may lead to the highest misclassification costs a
bank may face.

6.4. Analysis of failure patterns

To study failure patterns, we clustered all maps that were
estimated with a given sample using a hierarchical ascending
classification and a Ward criterion. Each time, we looked for the most
homogenous partition, using the three best indices mentioned in the
research done by [51], among a set of initial partitions that ranged
in size between 2 and 15 clusters. We intentionally studied small
partitions because it would have been extremely difficult to ana-
lyze the characteristics of large sets of clusters. Clusters were mainly
analyzed based on the way they quantified the different financial
dimensions that explain failure (profitability, solvency. . . ). On the
whole, in each sample, we can find three general survival patterns
and four general failure patterns.

Among survival patterns, the first one characterizes companies
that are very solvent and profitable, with a good financial structure,
somewhat good solvency, a low debt level and a relatively low level
of supplier and trade credits. The second one consists of firms that
are also very profitable, but are less solvent and liquid than the
former, with an average financial structure, a rather low level of
long-term debt and an average level of short-term debt. The third
pattern represents companies with average financial health, rather

Table 9
AUC (Area under the ROC curve) by type of model and by period.

Panel A: AUC

Periods SM BA BO RS RF HM bSM FM

2007 0.781 0.764 0.776 0.793 0.811 0.782 0.788 0.829
2008 0.746 0.755 0.767 0.761 0.766 0.769 0.762 0.808
2009 0.740 0.728 0.724 0.736 0.742 0.743 0.734 0.792
2010 0.778 0.755 0.768 0.765 0.755 0.738 0.776 0.837
2011 0.753 0.798 0.754 0.761 0.751 0.744 0.758 0.805
2012 0.749 0.763 0.761 0.768 0.764 0.761 0.757 0.812
2013 0.712 0.708 0.744 0.740 0.738 0.740 0.684 0.789
2014 0.739 0.751 0.745 0.735 0.752 0.745 0.740 0.801

Panel B: P-values of a test for differences

Periods FM-SM FM-BA FM-BO FM-RS FM-RF FM-HM FM-bSM

2007 0.024 0.003 0.013 0.088 0.381 0.028 0.049
2008 0.008 0.022 0.071 0.041 0.065 0.080 0.045
2009 0.034 0.011 0.007 0.023 0.040 0.045 0.019
2010 0.005 0.000 0.001 0.001 0.000 0.000 0.004
2011 0.027 0.739 0.029 0.060 0.023 0.011 0.042
2012 0.007 0.032 0.027 0.050 0.036 0.027 0.018
2013 0.002 0.001 0.063 0.045 0.038 0.043 0.000
2014 0.009 0.034 0.018 0.006 0.036 0.018 0.011
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Table 10
Decomposition of type-I and type-II error (%) by type of model.

Type-II Type-I

Error Bias Variance Variance/Bias Error Bias Variance Variance/Bias

SM 21.33 17.25 4.08 23.65 26.71 19.80 6.91 34.89
BA 19.68 15.96 3.72 23.31 25.48 18.75 6.74 35.95
BO 18.94 15.31 3.63 23.67 26.12 19.05 7.07 37.14
RS 19.21 15.48 3.73 24.08 26.38 19.20 7.18 37.39
RF 18.93 15.28 3.65 23.86 25.29 18.64 6.65 35.68
HM 19.33 15.62 3.71 23.72 25.87 19.03 6.84 35.94
FM 16.66 13.42 3.24 24.14 23.08 16.35 6.73 41.16

good liquidity, but low profitability, and a relatively fragile financial
situation because of a relatively high level of debt compared to their
assets.

Among failure patterns, the first one represents firms that are
rather profitable, have average solvency, a poor financial structure,
a low level of liquidity and a high level of long-term debt. The sec-
ond one consists of companies that are roughly in the same financial
situation as those of the first pattern, but that have a very low level
of liquidity, with a high amount of supplier and trade credits, and a
lack of shareholder funds. The third one corresponds to firms with
a much-deteriorated financial situation, with an average level of
liquidity, but with low profitability and solvency levels, and a very
fragile financial structure. The fourth and last one corresponds to
very unhealthy firms, with a huge amount of short-, mid- and long-
term debt, very weak solvency and profitability, and an extremely
low level of liquidity. Of course, all these general patterns could be
divided into a few sub-patterns, but their analysis is beyond the
scope of this article. We can, however, note that failure sub-patterns
are far more diverse than those of survival are. This is certainly the
reason why models that are not able to embody such diversity lead
to forecasts that are, on the whole, weaker than those achieved using
the method we present in this article.

6.5. Contributions to the literature and limits

The contribution of this study to the literature is threefold. From
a conceptual stand point, it shows that the way a model is likely
to embody both the variety and the historical nature of firm finan-
cial situations can significantly improve its performance. Some rare
studies have already observed that firms that are going bankrupt
do not follow the same path before failing, and that the ability of a
model to account for such differences could affect its accuracy. The
concept of “failure patterns” on which our models rely is rather sim-
ilar to the concept of “bankruptcy trajectories”, which can be found
in the literature. Indeed, the former makes it possible to model the
existence of groups of firms where each of them can be character-
ized with a particular temporal and financial profile. The latter makes
it also possible to represent different groups, but this time each of
them share the same dynamics that govern the way their financial
situation may change over time. The research works that have been
carried out to study bankruptcy trajectories but also our current
study reasserts that one of the key factors that can improve predic-
tions is to be sought in the way models are able to account for both
firm history and symptoms of failure.

From a methodological stand point, this study provides a means
of quantifying the diversity of firms’ financial situations and the way
these situations can be assessed over time, which breaks with usual
practices, and which illustrates how this variety can affect model
performance. Actually, failure patterns make it possible to capture
different variations of firms’ financial situations which cannot be
embodied by traditional ensemble-based models. Ensemble-based

models are able to account for some variations using an estimation
of the magnitude of changes that may affect a set of variables or
using different sets of variables. But in a way, these two calculations
make it possible to solely represent a unique level of representa-
tion of these variations. By contrast, failure patterns allow a model
to embody different levels: some patterns are very general and cor-
respond to common financial situations that are shared by a lot of
firms, some others are rarer and are solely shared by a few subgroups
of firms. This is where the difference lies between these two types of
modeling.

Finally, from an empirical point of view, it shows that the limits
of multi-period models, whatever the modeling techniques, can be
partially overcome using an appropriate modeling of bankruptcy
symptoms.

However, our study presents some limits. The first one is
conceptual. Failure patterns are not able to account for all types
of failure symptoms since they solely represent those that can be
detected using firm financial accounts. This suggests that they might
be well complemented with other factors that are related either to
the firm strategy, organization or management. The second one is
methodological. The error achieved with our models is rather unstable
over time, as is that of other models, despite the fact that models have
been estimated every year. This raises the question of their sensitivity
to economic conditions and requires a thorough study to analyze the
part of the error attributable to macroeconomic changes and find a
means to overcome this influence. The third and last one is practical.
Failure pattern-based models, such as any ensemble-based models,
are not understandable by any financial analyst. This situation can
be quite problematic [50], especially if the user of a model must be
able to justify a decision that relies on one of its forecasts.

7. Conclusion

In this study, we propose a new bankruptcy prediction model
that relies on the estimation of failure patterns that are quantified
with ensembles of Kohonen maps. The results show that this type
of model is, on the whole, more efficient than single or ensemble-
based models and this efficiency seems to be rather robust since it
was assessed using different samples collected over different time
periods. Moreover, failure pattern-based models embody a predic-
tive function that appears to be more complex than that embodied by
any type of model since the bias component of their error is markedly
lower than that of all other models. One may then think that their
performance is likely due to this complexity.

Our findings have two main implications. First, they reinforce
the idea that emerged in the literature a few years ago and which
suggests that model accuracy does not solely rely on data min-
ing techniques but also on the way one will use some knowledge
about the bankruptcy phenomenon during a modeling process;
incorporating domain knowledge into classification models may
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indeed improve model performance [59]. Here, domain knowledge
relies on the concept of “failure patterns”, which has been highlighted
in the literature that deals with financial or organizational issues,
but also on the limits of the techniques that have been used so far to
assess these patterns. Thus, a modeling framework can really benefit
from conceptual developments that make it possible to enrich the
knowledge that one can have about a firm failure. Our findings invite
the scientific community that is interested in this issue to renew the
conceptual basis used to design models. Second, they remind finan-
cial institutions of the true added value of ensemble-based models
by once again showing them the limits of their own models and
by providing them with a reliable modeling framework that may fit
their needs.
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