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Abstract 

Previous studies of bankruptcy prediction in imbalanced datasets analyze either the loss of prediction due to 

data imbalance issues or treatment methods for dealing with this issue. The current article presents a 

combined investigation of the degree of imbalance, loss of performance, and treatment methods. It 

determines which imbalanced class distributions jeopardize the performance of bankruptcy prediction 

methods and identifies the recovery capacities of treatment methods. The results show that an imbalanced 

distribution, in which the minority class represents 20%, significantly disturbs prediction performance. 

Furthermore, the support vector machine method is less sensitive than other prediction methods to 

imbalanced distributions, and sampling methods can recover a satisfactory portion of performance losses. 

Accordingly, this study provides a better understanding of the data imbalance issue in the field of corporate 

failure and serves as a methodological guide for designing bankruptcy prediction methods in imbalanced 

datasets. 
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An investigation of bankruptcy prediction in imbalanced datasets 

 

Abstract 

Previous studies of bankruptcy prediction in imbalanced datasets analyze either the loss of prediction due to 

data imbalance issues or treatment methods for dealing with this issue. The current article presents a 

combined investigation of the degree of imbalance, loss of performance, and treatment methods. It 

determines which imbalanced class distributions jeopardize the performance of bankruptcy prediction 

methods and identifies the recovery capacities of treatment methods. The results show that an imbalanced 

distribution, in which the minority class represents 20%, significantly disturbs prediction performance. 

Furthermore, the support vector machine method is less sensitive than other prediction methods to 

imbalanced distributions, and sampling methods can recover a satisfactory portion of performance losses. 

Accordingly, this study provides a better understanding of the data imbalance issue in the field of corporate 

failure and serves as a methodological guide for designing bankruptcy prediction methods in imbalanced 

datasets. 

Keywords: bankruptcy prediction, imbalanced dataset, finance  

JEL: C53, G33 

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

3 

 

1. Introduction 

The most recent financial crisis exposed the vulnerability of the financial system; more than ever before, firms of all sizes 

are suffering financial difficulties that sometimes lead to bankruptcy. Such difficulties affect financial institutions, 

shareholders, managers, employees, and governments alike, and it is crucial to be able to predict corporate bankruptcy. In 

turn, this critical corporate issue has become a major research area in the corporate finance field.  

Although several corporate bankruptcy prediction models have been proposed, according to various prediction methods or 

variables (Balcaen and Ooghe, 2006), most have been designed using the classical paradigm of paired samples of 

available data (Chen et al., 2009; Olson et al., 2012). That is, the datasets contain the same number of bankrupt and non-

bankrupt firms. Such a practice ignores real-world conditions, where bankruptcy is rare. Although the number of non-

bankrupt firms is high, the proportion of bankrupt firms is very low, on an order ranging from 100:1 to 1,000:1. 

Therefore, in the real world, researchers face imbalanced datasets, in which bankrupt company observations are clearly 

outnumbered by non-bankrupt companies. 

Therefore, we explore the predictive capacity of bankruptcy models in imbalanced datasets. Data and their characteristics 

are the most crucial elements of any prediction model (Anderson, 2007), so the imbalanced class distributions in datasets 

are relevant and demand analysis. The issue of data imbalance has been documented from two perspectives. The first 

acknowledges that when a bankruptcy prediction model uses a dataset that represents the real-world population - that is, 

an extremely low frequency of firm of firm bankruptcies- model’s predictive performance is diminished, especially for 

bankrupt firms. The second offers a treatment technique for handling imbalanced datasets and improve the model’s 

classification accuracy. Although these perspectives provide a foundation for understanding this issue, fundamental 

questions remain. Which imbalanced class distribution disturbs a model’s predictive performance? What is the 

improvement capacity of treatment techniques? Datasets may present multiple imbalanced class levels that contain 

different proportions of bankrupt firms, because of the irregular bankruptcy rates in the population, the scarcity of 

bankrupt firms, and a lack of accessibility to these firms' information (Tian et al., 2015). To evaluate whether a 

bankruptcy prediction model’s forecast capacity is jeopardized, it is essential to address the imbalanced proportion that 

significantly disturbs the performance of the model. Moreover, given that bankruptcy is a critical corporate issue that has 

social costs, it is important to predict it accurately. We therefore conduct an analysis of the capacity of treatment methods 

to predict bankruptcy in a scenario marked by imbalanced datasets. 
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Although the imbalanced datasets issue has received attention by the scientific community (Lane et al., 2012,  Piri et al., 

2018), to date, the bankruptcy prediction field has lacked insights into the relationships among the degree of imbalance, 

loss of performance, and the recovery capacity of treatment methods. Accordingly, we account comprehensively for the 

aspects of imbalanced datasets that significantly affect the performance of bankruptcy prediction models. 

First, we explore the causal link between the data imbalance issue and bankruptcy prediction models’ loss of 

performance. We compare the results achieved using balanced-distribution prediction models with those achieved using 

different degrees of imbalanced distributions. Second, we investigate the capacity of treatment methods to recover from 

the loss of performance caused by imbalanced datasets. We evaluate four sampling techniques, as treatment methods, that 

are widely used in literature to handle imbalanced datasets: random oversampling, random undersampling, the synthetic 

minority oversampling technique (SMOTE), and EasyEnsemble. Third, we explore the levels of sensitivity of prediction 

methods to imbalanced datasets, as well as the levels of sensitivity of sampling techniques to various training data sizes. 

Our findings demonstrate the nature of the data imbalance issue and highlight its implications for the performance of 

bankruptcy prediction models. Most notably, we find that when a model uses a dataset that includes an imbalanced 

proportion of 4:1 (data that contains 80% non-bankrupt and 20% bankrupt firms) or higher, the model’s ability to predict 

bankruptcy is jeopardized. However, we also find that support vector machines (SVMs) represent the method that is least 

influenced by imbalanced proportions, because any significant differences in their performance are apparent (except for 

the most imbalanced distribution, with data that contain an imbalanced proportion of 90% non-bankrupt firms and 10% 

bankrupt firms). Furthermore, we find that all sampling techniques achieve a similar recovery, even though the recovery 

represents only a satisfactory part of the performance loss. Finally, our results show that the SMOTE outperforms other 

sampling techniques when different imbalanced proportions and data size are taken into account. 

Section 2 provides a review of literature review on the data imbalance issue and bankruptcy prediction models. Section 3 

describes our research methodology. Section 4 presents and discusses results and Section 5 concludes.  

2. Literature review   

2.1. Data imbalance issue 

Conceptually, a dataset presents a class imbalance if it contains unequal distributions between classes. However, literature 

generally accepts that a dataset is imbalanced when one class significantly outnumbers another (Kotsiantis et al., 2006). 

Although imbalanced datasets appear frequently in the classification field (as bankruptcy predictions), classification 

models tend to expect equal misclassification costs, because it is the prevailing scenario. The models are designed to 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

5 

 

optimize overall accuracy; they do not take into account the relative distribution of each class (Lopez et al., 2013). 

Therefore, they fail to represent properly the data characteristics of imbalanced datasets, which results in the development 

of suboptimal classification models that provide unfavorable predictions across data classes (Fernandez et al., 2010). Such 

degradation of prediction, caused by imbalanced distributions, occurs in the following way: During the learning phase 

(training set), classification models tend to concentrate on accurate classifications of the majority class, while ignoring the 

minority class, because classification rules maximize overall prediction accuracy. That is, the decision (classification) 

boundary of the majority class tends to invade the decision boundary of the minority class (Kim et al., 2015). As a result, 

in the prediction phase (test set), models often are biased toward the majority class; they accurately classify the majority 

classes but frequently misclassify the minority classes. Thus, the issue of imbalanced datasets originates in the learning 

phase, where the classifiers’ prediction performance is disturbed, especially with regard to the minority class.  

In the case of bankruptcy prediction, an imbalance scenario due to limited instances in the minority class is representative 

of the domain since bankruptcy firms are rare. Moreover, bankruptcy prediction domain presents two additional 

peculiarities that make it a rather challenging task. On the one hand, samples are described by financial attributes because 

they give a view of firms financial situation. However, even though such data presents major advantage to predict 

bankruptcy and their importance may not be neglected, the fact that they can be manipulated (Rosner, 2003; Charitou et 

al., 2007; Campa and Camacho, 2015) may lead to a distortion that can be detrimental for bankruptcy models 

performance. On the other hand, firms that follow similar paths in their deterioration may have different outputs. It is not 

uncommon that some firms acquire a sort of ability to allow them to survive more easily than others, while apparently 

their financial situation suggests no differences (D’Aveni, 1989). This fact might result in a problem of class overlapping, 

in which some data points may appear as (valid) examples for bankrupt and non-bankrupt firms. As it turns out, the 

dataset complexity in bankruptcy prediction field is a major factor for classification deterioration that may be amplified 

by the addition of the data imbalance issue. Thus, we proceed to explore jointly the complexity of bankruptcy prediction 

data in the context of imbalanced datasets. If we extrapolate the consequences of data imbalance issue, in which bankrupt 

firms represent the minority class, in combination with the complexity of bankruptcy prediction datasets, it has costly 

ramifications because the misclassification of bankruptcy cases produces loss in capital and “contagion-effects”. The 

bankruptcy misclassification may not only have individual consequences but, it may cause a downward spiral for the 

whole economy with respect to employment, related firms and economic welfare (Balcaen and Ooghe, 2006). These 

rationales motivate our specific study of the performance of bankruptcy prediction models in imbalanced datasets. 

2.2. Bankruptcy prediction models 
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Ever since Beaver (1966) and Altman (1968) first studied bankruptcy prediction, the classic paradigm of sample selection 

for bankruptcy models has been to choose balanced samples with available financial information, in which the 

proportions of bankrupt and non-bankrupt firms are equal. Balanced samples can be produced using a popular technique 

known as the paired sample, in which data containing firms that eventually failed are paired -usually according to size, 

industry, or age criteria- with firms that did not fail (Gordini, 2014; Kim and Han, 2003). This sample selection strategy 

provides a clear advantage, because it avoids class bias during the learning phase. The classifier maximizes the overall 

prediction regardless of the class distribution. However, the strategy also has a serious drawback: It does not represent the 

real-world proportion. Zmijewski (1984) demonstrates that if failed and non-failed proportions do not represent the real-

world population, sample-selection bias still may occur, leading to underestimations of failed firms and overestimations 

of non-failed firms. Moreover, Ooghe and Joos (1990) claim that samples of failing and non-failing firms should be 

representative of the whole population of firms so that failure prediction models can be used in a predictive context. 

Only a few studies explore bankruptcy prediction using real-world samples, that is, with datasets that contain imbalanced 

class distributions. Wilson and Sharda (1994) provide a primary example: They use three sample proportions on the 

training set: a balanced sample (composed of 50% failed and 50% non-failed firms) and two imbalanced proportions 

(20% failed and 80% non-failed firms; 10% failed and 90% non-failed firms) to analyze the prediction performance of 

discriminant analysis and neural network methods. These authors find that prediction methods achieve better results, 

especially in failed firms, when the training set presents a balanced sample. In addition, McKee and Greenstein (2000) 

investigate the capacity of three bankruptcy prediction methods in five highly imbalanced data sets and show that the 

imbalanced sample distribution in the learning phase causes poor classification performance, especially for bankrupt 

firms. 

Therefore, several studies seek treatment methods to deal with imbalanced data sets. Most focus on sampling techniques 

(Chawla et al., 2004) that rely on mechanisms to balance sample distributions. Zhou (2013) applies several sampling 

techniques (two oversampling techniques and two undersampling techniques) to balance two highly imbalanced datasets; 

all of the techniques allow bankruptcy prediction methods to achieve better results than predictions according to the 

original imbalanced datasets. Kim and Ahn (2015) use a sampling technique on a training set that contains 620 bankrupt 

samples and 7,398 non-bankrupt firms to confirm its capacity to improve the performance of bankruptcy prediction 

methods.  

Although these studies document the association between bankruptcy model performance and imbalanced datasets, they 

merely scratch the surface of the data imbalance issue. They examine the loss of performance caused by imbalanced 
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datasets but do not establish which degree of imbalance significantly affects the performance of various methods, even 

though datasets may present differently imbalanced distributions. Nor do they not evaluate the capacity recovery of 

sampling techniques according to different imbalanced proportions, even though several studies have used such 

techniques in the domain of bankruptcy prediction. This gap is paradoxical; these aspects are directly related. The 

capacity of sampling methods can be evaluated, once the loss of performance in imbalanced datasets has been established. 

Accordingly, we seek to provide a wider understanding of the performance of bankruptcy prediction methods in 

imbalanced datasets by examining the relationships among the degree of imbalance, loss of performance, and recovery of 

treatment methods.  

The purpose of this study is two-fold: First, it makes possible to study the extent to which prediction methods can be 

influenced by imbalanced datasets in the context of bankruptcy prediction. This is of significant importance because if 

specific prediction methods significantly outperform others, then a rigorous study of such methods would provide 

assistance to assess firms’ risk of default. Second, it makes possible to analyze the implication of sampling techniques on 

this issue. More precisely, it yields to how these techniques would be an efficient help so that they could materialize into a 

real solution to predict bankruptcy, and become the basis in which bankruptcy prediction models are made. Thus, the 

added-value of this paper has wide-ranging effects in the advancement of bankruptcy prediction field.  

3. Research methodology 

3.1. Data 

We collected our data from the Altares database, which contains the balance sheets and income statements of French 

firms, which by law are required to file annual reports in the French commercial courts. We carried out three steps. 

First, we selected four different samples of firms. We selected three according to industry sector criteria and particular 

sectors of activity. Because various types of firms have peculiar financial characteristics, their likelihoods of failure can 

differ depending on their industry sector. Therefore, we checked whether models shared similar results, regardless of 

firms’ activity sectors, and chose three sectors that, on average, have the highest concentration of failed firms in France: 

service, construction, and retail. In a fourth sample, we selected firms that belong to any sector of activity, so we could 

examine the model’s capacity to create good prediction rules.  

Second, we collected two sets within each sample: a training set that estimates model parameters and a test set that 

estimates model accuracy. The balance sheets and income statements of collected firms in the training set were published 

in 2013, whereas for those in the test, annual accounts were published in 2014. Thus, we estimated an out-of-sample and 
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out-of time error with a one-year gap (Stein, 2007), in which none of the firms in the training set was included in the test 

set. Moreover, the selected bankrupt firms were those that proceeded to be liquidated or reorganized, and non-bankrupt 

firms were those that continued their activity over the studied period. 

Third, to evaluate the performance of prediction methods in imbalanced datasets, we composed the training and test sets 

as follows: Because the data imbalance issue originates in the learning phase, we created six training sets of 1,500 firms,

with ratios of non-bankrupt to bankrupt firms of 50/50, 60/40, 70/30, 80/20, 90/10, and 95/5 respectively
1
.We also created 

a test set of 1,500 firms, in which the ratio of non-bankrupt to bankrupt firms was 95/5, that is, the same proportion as 

marked the period studied
2
. For the empirical study, we followed the procedure of Brown and Mues (2012), such that we 

started by randomly selecting 750 non-bankrupt and 750 bankrupt firms from the database
3
. Then, we randomly selected 

the number of bankrupt samples from the initial 750 bankrupt firms and randomly included non-bankrupt firms from the 

original database to create the next imbalanced proportion. By continuing this procedure, we created six imbalanced 

proportions for each sample. We repeated these steps 100 times to create 100 different training sets for each proportion 

and 100 different test sets. This procedure ensured the reliability of our results and avoided selection bias. Table 1 

presents the configuration of these samples that we followed for each the four samples (services, construction, retail, and 

all sectors).  

Table 1 Data by sample 

Samples Training set proportion Test set proportion 

 50/50 60/40 70/30 80/20 90/10 95/5 95/5 

Bankrupt 750 600 450 300 150 75 75 

Non-bankrupt 750 900 1050 1200 1350 1425 1425 

Total 1500 1500 1500 1500 1500 1500 1500 

 

3.2. Variables 

                                                 
1
 We established fixed total samples (1,500) so that we could test only the effect of different imbalanced proportions. In this way, we 

avoided the effect of different sample sizes on predictive performance.   

2
 According to different sources, the bankruptcy average rate in France for this period ranges from 5%–2%. We tested a set that 

includes 5% and 2% of bankrupt firms and found no significant differences. Accordingly, we remained conservative and selected the 

5% rate.    

3
 We randomly selected firms from the database. The database includes about 900 bankrupt and 5,000 healthy firms for each sample; 

we did not include any of the firms twice. 
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Using the collected firms’ balance sheets and income statements, we calculated 50 financial ratios to use as explanatory 

variables. We computed the same financial ratios as those used by du Jardin (2015), who provides five different ratios of 

firms’ financial characteristics: liquidity, solvency, profitability, financial structure, activity, and turnover (Table 2). 

However, including all 50 financial ratios would have led to a very high-dimensional feature space that could have 

reduced the model’s predictive ability. Thus, we performed a two-step variable selection process that allowed us to 

choose a reduced subset of the most relevant financial ratios.  

First, we evaluated correlation values between each variable to measure information redundancy. We analyzed the 

correlation values within each sample and removed any highly correlated values, which in turn reduced potential model 

instabilities, such as the need to solve badly conditioned inverse matrices (Mensah, 1984). No extant theory specifies at 

which value a variable is highly correlated, so we empirically selected variables with correlation values lower than 0.65, 

whereas Atiya (2001) and Leshno and Spector (1996) selected a 0.7 value in the same context. Our approach is more 

conservative, to avoid any redundancy. All correlations between excluded variables were significant at the 1% threshold. 

Table 2 Initial set of variables 

Activity  Liquidity  

Cash Flow/Total Sales CF/TS  (Cash + Mark. Sec.)/Current Liabilities  (C+MS)/CL 

Cash Flow/Value Added CF/VA  (Cash + Mark. Sec.)/Total Sales (C+MS)/TS 

EBIT/Value Added EBIT/VA  Cash/Current Assets C/CA 

EBITDA/Total Sales EBITDA/TS  Cash/Total Assets C/TA 

Gross Trading Profit/Total Sales GTP/TS  Current Assets/ Current Liabilities CA/CL 

Net Income/Total Sales NI/TS  Current Assets/ Total Assets CA/TA 

Net Income/Value Added NI/VA  Current Liabilities/ Total Assets CL/TA 

Value Added/Fixed Assets VA/FA  Current Liabilities/ Total Sales CL/TS 

Value Added/Total Assets VA/TA  Inventories/Total Assets I/TA 

Value Added/Total Sales VA/TS  Quick Assets/Current Liabilities QA/CL 

Profitability   Quick Assets/Total Assets QA/TA 

Cash Flow/Shareholder Funds CF/SF  Working Capital/Total Assets WC/TA 

Cash Flow/Total Assets CF/TA  Working Capital/Total Sales WC/TS 

EBIT/Shareholder Funds EBIT/SF  Solvency  

EBIT/Total Assets EBIT/TA  Financial Debts/Cash Flow FD/CF 

EBITDA/Permanent Equity EBITDA/PE  Financial Expenses/EBITDA FE/EBITDA 

EBITDA/Total Assets EBITDA/TA  Financial Expenses/Net Income FE/NI 

Net Income/Shareholder Funds NI/SF  Financial Expenses/Total Assets FE/TA 

Net Income/Total Assets NI/TA  Financial Expenses/Value Added FE/VA 

Profit before Tax/Shareholders Funds PBT/SF  Turnover  

Financial Structure   Accounts Payable/Total Sales AC/TS 

Long Term Debt/Shareholders Funds LTD/SF  Current Assets/Total Sales CA/TS 

Long Term Debt/Total Assets LTD/TA  Inventories/Total Sales I/TS 

Net Op. Work Capital/Total Assets NOWC/TA  Net Op.Work. Capital/Total Sales NOWC/TS 
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Shareholder Funds/Permanent Equity SF/PE  Receivables/Total Sales R/TS 

Shareholder Funds/Total Assets SF/TA  Total Sales/Total Assets TS/TA 

Total Debt/Shareholder Funds TD/SF    

Total Debts/Total Assets TD/TA    

Notes: EBIT = earnings before interest and taxes. EBITDA = earnings before interest, taxes, depreciation and 

amortization. Mark. Sec. = marketable securities. Net Op. Work. Capital = net operating working capital. All ratios were 

calculated using the balance sheet or income statement amounts. 

Source: du Jardin (2015). 

Second, the variable selection method may influence the performance of prediction models (du Jardin, 2010), so we 

selected explanatory variables to design prediction models with four different selection techniques, belonging to either the 

filter or wrapper category. Filter methods use statistical techniques to select the best sets of variables; we used a stepwise 

search procedure with the Fisher F-test as a stopping criterion and a stepwise search procedure with a 
2
 test as a stopping 

criterion. In contrast, wrapper methods are based on a heuristic technique that selects variables according to their 

usefulness for a given classifier. In our case, the other two variable selection methods relied on a backward search 

procedure. Finally, we retained, for each sample, the variables selected by at least two of the four methods used. Table 3 

lists the selected variables, by sector. 

Table 3 

Variables selected by sample 

Service  Construction  Retail  All 

C/TA  (C+MS)/CL  (C+MS)/TS  (C+MS)/CL 

CL/TA  CA/CL  CA/CL  C/CA 

WC/TA  FE/VA  CL/TA  QA/TA 

FE/TA  EBITDA/TA  FE/TA  EBIT/TA 

EBITDA/TA  LTD/SF  EBITDA/TA  LTD/SF 

SF/PE  SF/TA  LTD/SF  TD/TA 

TD/TA  EBIT/VA  SF/PE  CF/VA 

NI/TS  NI/TS  NI/TS  NI/TS 

AC/TS  TS/TA  NOWC/TS  NOWC/TS 

NOWC/TS       

See Table 2       

3.3. Classification methods 

Many methods are available to predict corporate failure, though none significantly outperforms the others (Balcaen and 

Ooghe, 2006). Accordingly, we selected five classification methods with different characteristics, traditionally used in 

literature, to analyze the prediction capacities of competing methods. The first two methods, linear discriminant analysis 

(LDA) and logistic regression (LR), arise from well-known concepts of statistical decision theory; they provide robust 

results even though they rely on linear functions. The other three methods, neural network (NN), support vector machine 
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(SVM) and, random forest (RF) focus on learning; they make predictions directly from the data, which makes them 

reliable. Moreover, by relying on nonlinear approaches, we extend the possibilities for testing complex data.  

3.3.1. Linear discriminant analysis 

The LDA method is among the first used to predict bankruptcy (Altman, 1968). It assumes that class-conditional densities 

follow Gaussian distributions and that the distributions have a common covariance matrix (Wald, 1944). When LDA is 

employed to discriminate between failed and non-failed firms, it needs only to estimate the distributions means and their 

common covariance; LDA creates a discrimination score (z-score) to distinguish two classes by combining explanatory 

variables on a linear function. The z-score is computed as follows: 

𝑧 = ∑(𝑥𝑖𝑤𝑖 + 𝑐)

𝑛

𝑖=1

 ,       

Where 𝑥𝑖 represents explanatory variables, 𝑤𝑖 indicates the discriminant weights, and c is a constant. 

Although LDA assumes Gaussianity on the class-conditional distributions and equal covariance matrices, and though 

these assumptions do not hold in corporate failure, it has been widely used because of its robustness (Balcaen and Ooghe, 

2006). 

3.3.2. Logistic regression 

Ohlson (1980) proposed LR to model the posterior probabilities of the classes, using linear functions of the independent 

variables, while ensuring that they sum to 1 and remain in [0,1] to provide a probabilistic interpretation. Similar to LDA, 

LR makes use of the log-likelihood ratio to assign a firm to either failed or non-failed classes; the log-ratio takes the form 

of a linear function. This method allows the use of non-linear maximum likelihood to estimate firms’ probabilities of 

failure using a logistic function, based on dependent variables, in this case, financial ratios. The LR method takes the form 

of: 

𝑧 =
1

1 + 𝑒−(𝑤0+𝑤𝑖𝑥𝑖)
  , 

Where 𝑥𝑖 are explanatory variables, 𝑤𝑖 are the weights estimated using maximum likelihood estimation, and z is the score 

for a given firm. 

 

Although both statistical methods, LR and LDA, have similar forms in their discriminant functions, the estimation of their 

parameters is quite different. The LR method makes fewer assumptions than the LDA method and is generally 

considered, in statistical literature, to be a safer method. 
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3.3.3. Neural networks 

The NN technique is a mathematical model that emulates the function of a human brain. It is an efficient model for 

statistical pattern recognition (Bishop, 2006), providing a general framework for representing non-linear functional 

mapping between sets of input variables and output variables. It is designed by establishing an architecture that connects 

neurons among layers. In this study, we focus on the multilayer perceptron (MLP), composed of three layers: an input 

layer composed of n neurons for input variables, a hidden layer composed of m neurons, and an output layer. Every 

neuron in the hidden layer is connected to every neuron in the input and output layers. We estimate the connectivity 

weights -that is, the parameters of the NN representing the relevance of the connections between neurons-by a back-

propagation learning method. An NN model computes a z-score that represents the failure probability of a given firm, as 

follows: 

𝑧 = 𝑔 (∑ 𝑤𝑘𝑗

𝑀

𝐽=0

𝑔 (∑ 𝑤𝑗𝑖𝑥𝑖

𝑑

𝑖=0

)) ,  

where 𝑔 is the activation function, 𝑥𝑖 are explanatory variables; 𝑤𝑗𝑖 corresponds to the weight matrix, including the bias 

term between the input node (i) and the hidden node (j); and 𝑤𝑘𝑗 corresponds to the weight matrix with bias connecting 

the hidden node to the output layer 

Since Messier and Hansen (1988) introduced the NN method to the study of corporate failure, may authors have applied it 

because of its ability to learn complex nonlinear relationships and adapt well to data.  

3.3.4. Support vector machines 

The machine learning community has widely adapted the SVM, as proposed by Boser et al. (1992), for data classification. 

An SVM classifier maps training vectors into a higher dimensional space, where it finds a separating hyperplane with a 

maximal margin. The attractiveness of the SVM method arises largely because there is no need to know the form of the 

high-dimensional mapping function; it is necessary only to know its inner product, such that any dissimilarity function, 

even a non-linear function that holds some mild condition can be used. This feature is known as the “kernel trick.” 

(Huang et al., 2004; Tay and Cao, 2001). 

The classification capacity of the SVM relies on the ability to transform the input space into a more elaborate feature 

space in which the separability of the classes is enhanced, in a margin-maximization condition that increases 

generalization capability by constraining the structure of the model. An SVM is defined as follows: 
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MINw,b,e   
1

2
 wtw + C ∑ ei ,      

N

i=1

 

subject to 𝑦𝑖(𝑤𝜑(𝑥𝑖) + 𝑏) + 𝑒𝑖 − 1 ≥ 0      𝑒𝑖 ≥ 0,      

where 𝜑(𝑥𝑖) maps training vectors to a high dimensional space; w is the weight vector; b is the bias term; C is the penalty 

for the error; and 𝑒𝑖 is the slack variable (Vapnik, 1998). When the optimal hyperplane separation between classes is built, 

a classification decision is given as follows:  

f(y) = sign (∑ yipiK(x, xi) + b

N

i=1

),     

where sign is the sign function; 𝑝𝑖 is the parameter; K is the function; and in our study, 𝐾(𝑥, 𝑥𝑖) = exp (−𝛿|𝑥𝑖 − 𝑥𝑗|
2

) is 

the kernel radial basis function. 

3.3.5. Random Forest 

The random forest classifier consists of an ensemble of decision trees, in which each classifier is generated using a 

random vector sampled independently from the input vector (Breiman, 2001). In RF, each tree is built from a bootstrap 

sample of the data and at each split; a random sample of predictors is examined. In the end, classification is determined by 

a majority vote for each case over the ensemble of classification trees. When constructing a tree, RF searches for a 

random subset of the input features (bands) at each splitting node and the tree is allowed to grow fully without pruning. 

Since only a portion of the input features is used and no pruning is required, random forest is computational fast and 

simple with a good performance.  

3.4. Sampling methods 

The original training set X is composed of 𝑋𝑚𝑎𝑗 (non-bankrupt firms) and 𝑋𝑚𝑖𝑛 (bankrupt firms), in which the proportion 

of Xmaj clearly outnumbers Xmin, that is, Xmaj >  Xmin.  

Sampling methods involve artificially re-sampling the training set, a procedure that is otherwise known as processing the 

data. Therefore, they amend the imbalanced distribution in the dataset by applying some mechanism that provides a 

balanced distribution, that is, modifies the original training set to obtain  𝑋𝑚𝑎𝑗 =  𝑋𝑚𝑖𝑛. The process of manipulating the 

distribution of the training samples thus allows a classifier to perform in the standard classification manner, in an effort to 

improve the methods’ performance (Batista et al., 2004). 

These methods have become an effective solution, because they provide better results than imbalanced distributions 

(Estabrooks et al., 2004). Thus, the concept of sampling techniques is to add or remove samples to reach the optimal 
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balanced distribution for prediction. There are two categories of sampling methods, depending on the data process 

applied: oversampling and undersampling. 

3.4.1. Oversampling approach 

The oversampling approach creates a balanced subset from the original dataset by duplicating samples of the minority 

class. We use two of the most common oversampling techniques: random oversampling and Synthetic Minority 

Oversampling Technique (SMOTE). 

3.4.1.1. Random oversampling 

Random oversampling, which is the most common technique and the easiest to implement, implies that the minority 

samples in the data are replicated randomly until the proportion of majority class is achieved. That is, given an X dataset 

where 𝑋𝑚𝑖𝑛 represents the minority class, 𝑋𝑚𝑎𝑗 represents the majority class. This technique randomly copies one sample 

of 𝑋𝑚𝑖𝑛 and adds it to the X dataset. This process repeats until a balanced proportion is obtained, that is, 𝑋𝑚𝑖𝑛 = 𝑋𝑚𝑎𝑗. 

3.4.1.2. Synthetic Minority Oversampling Technique  

The SMOTE, proposed by Chawla et al., (2002), is a powerful technique that has gained significant popularity because it 

has performed so well in various areas (Han et al., 2005; Saez et al., 2015). The technique generates artificial samples of a 

minority class by interpolating between several minority class examples that lie together (Kotsiantis et al., 2006). That is, 

for each minority sample, it introduces a synthetic sample along the line segment with any of its minority-class nearest 

neighbors. More precisely, it considers the data in which 𝑋𝑚𝑖𝑛 represents the minority class and 𝑋𝑚𝑎𝑗 represents the 

majority class. First, for each 𝑥 ∊ 𝑋𝑚𝑖𝑛, it finds the K-nearest neighbors, 𝑋𝑁𝑘
= {𝑋𝑘}𝑘=1

𝐾 , 𝑋𝑘 ∈ 𝑁𝑘(𝑥) ⊂  𝑋𝑚𝑖𝑛. Second, 

randomly select L ≤ K samples of 𝑋𝑁𝑘
 (L depends on the amount of oversampling desired). Third, it generates for each of 

the L selected neighbors a synthetic sample along the line joining the minority sample.  

3.4.2. Undersampling approach 

The undersampling approach creates a balanced subset from the original data set by removing samples from the majority 

class. In this study, we used random undersampling and EasyEnsemble. 

3.4.2.1. Random undersampling 

The undersampling approach generates a balanced subset from the original dataset by removing samples from the 

majority class. Random undersampling is easy to visualize and understand. In contrast with random oversampling, it 

removes samples from the majority class to achieve the minority class proportion. Given the original dataset X, it 
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randomly eliminates samples from the majority class until the minority and majority classes have the same amounts, that 

is, 𝑋𝑚𝑖𝑛 = 𝑋𝑚𝑎𝑗. 

3.4.2.2. EasyEnsemble 

EasyEnsemble is a straightforward procedure. Given the data, we independently extract several subsets from the majority 

classes 𝑋𝑚𝑎𝑗1, 𝑋𝑚𝑎𝑗2… 𝑋𝑚𝑎𝑗𝑁, with the same amount of samples as the minority class. Then, we train a classifier using 

each subset of 𝑋𝑚𝑎𝑗𝑖  (i=1,   ,N) and 𝑋𝑚𝑖𝑛. Finally, we combine all classifiers to make the final prediction by using a 

majority combiner. 

3.5. Evaluation metrics 

Unfortunately, some of the most common evaluation metrics used to measure classifiers’ performance on balanced 

datasets are inappropriate for imbalanced datasets, as is the case for the most commonly used evaluation metric in 

bankruptcy prediction, the accuracy rate. It does not take into account sample distribution, which is crucial for imbalanced 

datasets. Moreover, accuracy rates can lead to erroneous conclusions. Imagine a dataset in which 95% of the observations 

are in one class and the remaining 5% are in the other class. A trivial prediction method can achieve a prediction accuracy 

of 95% if it focuses on predicting only the majority class, because the method will tend to choose only the majority, given 

that the results will be better. This rate suggests that the classifier is accurate, but in reality, it has ignored the prediction 

of the minority class, which is the main concern in cases of imbalanced datasets. Accordingly, we need to adjust the 

evaluations of model performance and rely on an evaluation metric that is not sensitive to sample distribution. We 

selected four evaluation metrics, widely used for imbalanced datasets: sensitivity, specificity, G-mean, and area under the 

receiver operating characteristic (ROC) curve (AUC) (He and Garcia, 2009; Kotsiantis et al., 2006). We selected 

sensitivity and specificity metrics, which are intuitive and practical, because each focuses on evaluating a type of firm 

sensitivity for failed firms and specificity for non-failed firms. G-mean evaluates the effectiveness of a classification in 

terms of ratio of sensitivity and specificity; it provides a glimpse of a method’s overall performance. These metrics are 

calculated as follows:  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁  
 is the percentage of bankrupt samples correctly classified.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
    is the percentage of non − bankrupt samples correctly classified.  

𝐺 − 𝑚𝑒𝑎𝑛 =  √
𝑇𝑃

𝑇𝑃+𝐹𝑁  
∗

𝑇𝑁

𝑇𝑁+𝐹𝑃
, 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

16 

 

where TP = bankrupt firm correctly classified, FN = bankrupt firm misclassified, TN = non-bankrupt firms correctly 

classified, and FP = non-bankrupt firm misclassified. 

Finally, we used the AUC metric, which is adequate for assessing a method’s overall performance in imbalanced datasets, 

because it is insensitive to misclassification costs and imbalanced distributions. Moreover, AUC provides a representation 

of the trade-off between a true positive (failed firms that have been correctly classified) and a false positive (failed firms 

that have been incorrectly classified) (He and Garcia, 2009). The AUC can be easily used to compare two classifiers, 

given that different ROC curves indicate their performances. For a classifier, the ROC curve needs to be as far to the top 

left corner as possible, where its value will be close to 1. In the example in Figure 1, the classifier with the solid line 

performs better than that with the dashed line. 

 

Fig. 1. Example of the ROC curves (X-axis represents 1-specifity and Y-axis represents sensitivity). 

  

3. 6. Models setting 

Although discriminant analysis and logistic regression require no specific settings, for the other compared methods a set 

of hyperparameters has to be tuned. To that effect, the training set is randomly divided in two subsets without repetitions. 

80% of the training data is employed to estimate the parameters of the models, while the remaining 20% serves evaluate 

the performance of a model given some values of the hyperparameters. Here on, we will refer to the former subset as the 

training subset and to the latter subset as the validation subset. This division is done only for the model selection process, 

that is, to select the best hyperparameters values. Once the hyperparameters are set, the whole training set is employed to 

learn the actual model. 

The model selection process uses a grid search process with 50 independent training and validation subsets. For each 

evaluated set of hyperparameters values, the geometric mean of the performance obtained in each of the 50 repetitions is 

used to identify the best ones. Next, we describe the hyperparameters of the competing methods. 
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The neural network is designed using a single hidden layer and one output neuron, in which the Levenberg-Marquardt 

algorithm was used as the optimization technique and the hyperbolic tangent as activation functions. Here, the model 

selection process is used to select the best performing number of hidden neurons in a predefined range of 5 to 20 neurons.  

The radial-basis kernel SVM requires two parameters to optimize, the regularization parameter, C, is set as a value within 

10-100 and, the parameter of radial basis function, p, is set up to be a value within 1-3.  

The random forest requires to set just the number of trees in a predefined range of 100-250 trees.  

Moreover, to compute the performance metrics for certain prediction methods, a cut-off value has to be determined so 

that it can be compared to the score estimated using such methods. Indeed, the assignment of an estimation to a 

determined class (bankrupt or non-bankrupt) implies that a cut-off has been a priori established, delimiting the separation 

between classes. Nonetheless, this delimitation varies according to the cut-off calculation strategy. In general, the cut-off 

is set so that maximizes the overall correct classification as it is the widespread way in the bankruptcy prediction 

literature. In an imbalanced dataset scenario though, this procedure is inappropriate as it is likely to lead to a high correct 

classification of the majority class; while producing poor result for the underrepresented class because the focus on 

correctly predict the majority instances results on a highest overall accuracy. Therefore, we consider an alternative 

strategy to compute the cut-off value. In line with du Jardin (2015) and Tang and Chi (2005), the cut-off value was 

determined based on the minimization of the expected cost of misclassification, which  takes into consideration 

fundamental aspects concerning bankruptcy prediction such as misclassification cost and probability of failure, so that an 

efficient economical decision can be made.  The expected cost of misclassification is represented as follows:   

Expected cost of misclassification =  𝑐1

𝑒1

𝑛1
𝑝1 + 𝑐2

𝑒2

𝑛2
𝑝2 

where 𝑐1 and 𝑐2 are the respective costs of misclassification for bankrupt and non-bankrupt firms; 𝑒1 and 𝑒2 are the type-I 

and type-II error respectively; 𝑛1 represents the number of bankrupt firms, while 𝑛2 is that of non-bankrupt firms; and 𝑝1 

and 𝑝2 are the prior probabilities of bankrupt and non-bankrupt firms respectively.  

In this case, the misclassification cost was kept to 1 for both bankrupt and non-bankrupt firms
4
. Besides, the prior 

probabilities were established according with the current bankruptcy rates when they were collected
5
. 

                                                 
4
 Misclassified a failed firm (predict that a firm is healthy when it will fail) will cost a loss in capital, while misclassified a healthy 

firm (predict that a firm is failed when it is healthy) will only involve loss of commercial bargain. Nonetheless, financial institutions 

assess each firm in risk of default with a firm in condition to survive. It is for this reason that the cost was kept to 1 for both cases.   
5
 Source: http://www.insee.fr.  
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4. Results  

4.1. Results on different degrees of imbalance  

This experimental study explores the effect of various degrees of imbalanced training sets on bankruptcy prediction 

models. In this regard, we first analyzed the sensitivity and specificity evaluation metrics that measure the impact of 

imbalanced datasets on the prediction capacity of bankrupt (sensitivity) and non-bankrupt firms (specificity). We 

determined these metrics by a fixed default threshold value that defines the boundary value to classify the sample into 

bankrupt and non-bankrupt firms. Table 4 indicates the results obtained by the bankruptcy models built on the different 

samples, which allow us to compare performance associated with imbalanced training sets, relative to that achieved with a 

balanced proportion. 

 

 

 

Table 4 

Sensitivity and specificity rates achieved with prediction models on balanced and imbalanced training sets by sample (Test set 

contains a 95/5 proportion) 

 Training set: 50% healthy and 50% bankrupt  60% healthy and 40% bankrupt 

Method    Serv Reta Cons All  Serv Reta Cons All 
 

LDA Sens. 80.8% 80.8% 80.2% 80.5%  74.7% 75.0% 75.9% 74.4% 

 Spec. 82.8% 83.5% 81.8% 84.5%  85.5% 86.3% 85.3% 89.9% 

LR Sens. 80.1% 80.5% 81.2% 82.5%  76.1% 76.2% 78.0% 71.0% 

 Spec. 84.8% 82.6% 82.4% 83.3%  87.2% 89.2% 88.4% 88.6% 

NN Sens. 80.5% 80.0% 80.6% 84.4%  77.0% 75.2% 78.3% 76.3% 

 Spec. 84.3% 84.6% 81.1% 85.5%  87.8% 87.7% 86.7% 88.8% 

SVM Sens. 82.5% 82.6% 80.0% 84.0%  80.5% 80.8% 78.0% 82.5% 

 Spec. 84.1% 84.9% 82.9% 85.0%  87.7% 86.0% 85.8% 87.8% 

RF Sens. 81.2% 80.3% 81.6% 82.4%  79.4% 77.3% 78.7% 77.6% 

 Spec. 83.7% 84.4% 82.3% 83.7%  85.7% 84.9% 85.0% 85.9% 

Training set 70% healthy and 30% bankrupt  80% healthy and 20% bankrupt 

  Serv Reta Cons All  Serv Reta Cons All 
 

LDA Sens. 65.7% 65.0% 63.5% 68.0%  45.7% 45.0% 43.5% 48.0% 

 Spec. 94.5% 95.6% 94.6% 93.6%  96.1% 96.5% 95.8% 95.8% 

LR Sens. 66.8% 66.2% 63.3% 70.0%  46.8% 46.2% 43.3% 50.0% 

 Spec. 93.4% 94.3% 95.2% 93.9%  95.7% 96.7% 96.0% 96.5% 

NN Sens. 61.0% 60.7% 69.2% 61.5%  51.0% 50.7% 49.2% 51.5% 

 Spec. 93.3% 92.4% 93.3% 94.5%  95.6% 93.1% 94.6% 95.4% 

SVM Sens. 77.0% 76.5% 73.0% 79.5%  67.5% 65.5% 70.0% 72.5% 

 Spec. 90.2% 91.3% 89.5% 90.2%  92.0% 91.8% 90.4% 91.3% 

RF Sens. 74.6% 70.1% 75.9% 72.6%  63.8% 56.5% 64.3% 57.1% 

 Spec. 89.5% 88.7% 88.5% 90.6%  91.4% 92.1% 90.9% 91.8% 

Training set 90% healthy and 10% bankrupt  95% healthy and 5% bankrupt 

  Serv Reta Cons All  Serv Reta Cons All 
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LDA Sens. 29.5% 30.8% 27.0% 32.1%  11.0% 13.3% 10.0% 12.6% 

 Spec. 97.5% 96.8% 97.3% 97.8%  98.6% 98.0% 98.8% 98.3% 

LR Sens. 33.2% 36.2% 35.0% 31.8%  11.2% 7.9% 12.5% 10.7% 

 Spec. 96.5% 97.0% 97.0% 96.3%  97.6% 98.7% 97.9% 98.0% 

NN Sens. 32.2% 37.0% 35.4% 32.8%  13.3% 12.1% 16.5% 15.4% 

 Spec. 96.7% 96.5% 95.8% 97.4%  98.9% 98.0% 98.3% 98.7% 

SVM Sens. 45.0% 49.6% 52.5% 45.8%  20.0% 19.2% 17.5% 22.0% 

 Spec. 92.8% 93.4% 91.7% 92.4%  93.6% 94.4% 95.3% 93.2% 

RF Sens. 49.7% 41.5% 46.7% 38.5%  21.6% 22.3% 19.7% 19.4% 

 Spec. 93.4% 92.9% 93.4% 92.0%  94.7% 94.4% 95.0% 94.2% 

Notes: Sens. = sensitivity metric; Spec. = specificity metric. Serv = service sector; Cons = construction 

sector; Reta = retail sector; All = all sectors. LDA = linear discriminant analysis; LR = logistic regression; 

NN = neural network; SVM = support vector machine; RF = random forest. 

 

Table 4 shows that on the whole, prediction performance decreases for failed firms (sensitivity) and increases for non-

failed firms (specificity) when the training set presents an imbalanced distribution. It also confirms that prediction 

methods reward the classification of the majority class to the detriment of the minority class in imbalanced training sets. 

These results occur because in the presence of an imbalanced training set, the classification boundaries of the majority 

class tend to invade those of the minority class, thereby biasing the classification toward the majority class (Kim et al., 

2015). In this regard, we contextualize the results by analyzing sensitivity and specificity metrics by the degree of 

imbalance. We find that sensitivity, on average, achieves a rate of 81.3% balanced proportion, whereas for a training set 

that is slightly imbalanced (60/40), the prediction already represents a rate of 77.1%. Moreover, when the imbalance of 

the proportion becomes severe, it decreases to a rate of 69.0% in a 70/30 proportion and 54.4% in an 80/20 proportion. 

Finally, in the most extreme imbalanced scenarios (90/10 and 95/5 proportions), models achieve average rates of 38.1% 

and 15.4%, respectively. Thus, when a training set is slightly imbalanced (60/40), the prediction loss on failed firms is 

5.4%. However, the loss continues to increase as the imbalanced proportion grows more severe, losing one-third of its 

prediction accuracy for failed firms (33.5%) and 82% in the most extreme case (95/5 proportion). Any degree of 

imbalance thus may be significantly detrimental to the prediction of firm bankruptcy. With regard to non-bankrupt firms, 

however, the specificity value is 83.6% on a balanced proportion, increases to 87.0% in a 60/40 proportion, 92.4% in a 

70/30 proportion, and 94.0% in an 80/20 proportion. Finally, the rates are 95.2% and 96.7% in the two most imbalanced 

distributions (90/10 and 95/5). Therefore, specificity achieves an improvement that ranges from 6% in the least 

imbalanced training set to 11% in the most imbalanced scenario. However, bankruptcy prediction methods are not 

affected equally by imbalanced distributions, especially when used to predict firm failures. In this regard, though LDA 

achieves a sensitivity rate of 45.5% and LR and NN obtain sensitivity values of 46.6% and 47.8%, respectively, on 

average the SVM and RF methods significantly outperform the rest of the bankruptcy prediction methods, achieving 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

20 

 

58.7% and 59.7% respectively. In contrast, there is a difference of only 3.3 percentage points among prediction methods 

with regard to specificity rates (89.5% with RF, 92.8% with LR). Accordingly, the SVM and RF methods emerge as more 

efficient than other methods in imbalanced datasets, because it provides more accurate predictions of firm failures. 

However, their predictions with regard to non-failed firms are slightly inferior. 

To better explain and assess our previous results, in Table 5 we present the G-mean values that measure overall prediction 

in terms of a ratio of sensitivity and specificity. This table shows that losses in performance caused by less imbalanced 

proportions may be insignificant, because the average values are similar to those obtained with a balanced proportion 

(82.4% with 50/50, 81.9 with 60/40, and 79.7 with 70/30). Losses tend be more pronounced in the imbalanced 

distributions that follow, with an average loss of about 15% with an 80/20 proportion, about 30% with a 90/10 proportion, 

and greater than 50% with a 95/5 proportion. These results are not entirely unexpected; the G-mean takes into account the 

trade-off between sensitivity and specificity. All methods behave in similar ways until the distribution ranges around 

80/20, because the increase in the specificity rate compensates for the slight decrease in the sensitivity rate. Accordingly, 

we observe eight imbalanced cases with 60/40 and 70/30 proportions, in which there are small performance gains 

compared with the balanced results. In imbalanced distributions at that point and above, losses in sensitivity appear, 

whereas specificity remains almost steady implying a significant reduction of the G-mean value. In general, all methods 

show losses in performance in each of the non-balanced distributions, though the SVM and RF are less affected. These 

results corroborate our initial finding that SVM and RF seem to be more suitable methods for imbalanced datasets. 

Table 5 

G-mean values achieved with prediction models on balanced and imbalanced   training sets by sample 
Training set: 50% healthy and 50% bankrupt  60% healthy and 40% bankrupt 

 Serv Reta Cons All  Serv Reta Cons All 
 

LDA 81.7 82.1 80.9 82.4  79.9 80.4 80.3 81.7 

LR 82.4 81.5 81.7 82.8  81.4 82.4 83.0 79.3 

NN 82.3 82.2 80.8 84.9  82.2 81.0 82.3 82.1 

SVM 83.2 83.7 81.4 84.4  84.0 83.3 81.8 85.1 

RF 82.4 82.3 81.9 83.1  82.5 81.0 81.9 81.6 

Training set 70% healthy and 30% bankrupt  80% healthy and 20% bankrupt 

 Serv Reta Cons All  Serv Reta Cons All 
 

LDA 78.7 78.8 77.5 79.7  66.2 65.8 64.5 67.8 

LR 78.9 79.0 77.6 81.0  66.9 66.8 64.4 69.4 

NN 75.4 74.8 80.3 76.2  69.8 68.7 68.2 70.1 

SVM 83.3 83.5 80.8 84.4  78.8 77.5 79.5 81.3 

RF 81.7 78.9 81.9 81.1  76.4 72.1 76.4 72.4 

Training set 90% healthy and 10% bankrupt  95% healthy and 5% bankrupt 

 Serv Reta Cons All  Serv Reta Cons All 
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LDA 53.6 54.6 51.2 56.0  32.9 36.1 31.4 35.1 

LR 56.6 59.2 58.2 55.3  33.0 27.9 34.9 32.4 

NN 55.8 59.7 58.3 56.5  36.2 34.4 40.2 38.9 

SVM 64.6 68.0 69.3 65.0  43.2 42.5 40.8 45.2 

RF 68.1 62.0 66.0 59.5  45.2 45.8 43.3 42.7 

 

Although sensitivity, specificity, and G-mean rates clearly reveal the effect of imbalanced distributions on prediction 

performance, we cannot make a general conclusion from these rates, because the firm size group is very uneven and 

evaluated on a given default threshold. Therefore, we computed the AUC, because it does not account for the two types of 

firm size, which makes it the most suitable measure to analyze the overall performance of methods for imbalanced 

datasets. To address the research questions -that is, which degree of imbalance significantly affects the performance of 

bankruptcy prediction methods and whether all prediction methods are equally sensitive to imbalanced distributions- we 

calculated the AUC values achieved by bankruptcy prediction methods with balanced and imbalanced distributions (Table 

6). These results are complemented by results (Table 7) that indicate the degree of imbalance in which AUC values are 

statistically different at the 1% threshold, compared with the balanced proportion.  

On the whole, AUC values are similar when the training set is moderately imbalanced. With a balanced distribution, AUC 

achieves an average value of 0.883, whereas for a 70/30 imbalanced distribution, the average value is 0.862, which is not 

significant (p = 0.134)
6
. The next level of imbalance (80/20 proportion) represents the barrier at which the method’s 

performance is significantly disturbed, and the AUC decreases dramatically to an average value of 0.801. In the most 

extreme imbalanced scenarios, it achieves average values of 0.762 and 0.731on 90/10 and 95/5 proportions, respectively. 

Compared with the AUC of the balanced distribution, these values are significantly different at the 1% threshold. As a 

result, we establish that, starting with the 80/20 imbalanced distribution on the training set, the performance of bankruptcy 

prediction methods is significantly jeopardized.  

Finally, the performance of all bankruptcy prediction methods are equally affected by imbalanced distribution, except for 

SVM and RF, which exhibit greater AUC values and seems insensitive to all but the most severely imbalanced 

distributions. Table 7 shows that SVM and  RF are the least affected methods; the AUC differences are statistically 

significant at the 90/10 distribution in three of four samples and in two out of four respectively, and the other methods all 

show significant differences at the 80/20 distribution.  

                                                 
6
 We calculated the statistical differences between the two AUC values using Delong et al.’s (1988) non-parametric test. 
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The fact that RF and, especially, SVM can handle certain imbalanced datasets and lead to better performance is of a 

significant importance for business community because banks and financial institutions seem to be reluctant to these 

techniques; their bankruptcy prediction models mainly rely on parametric model (discriminant analysis and logistic 

regression). Thus, under certain imbalance property in real datasets for bankruptcy prediction, our results suggest that 

failure models currently used by banks lead to non-optimal performance and that non-parametric models would it make 

possible to better address for bankruptcy.  

With these results, we make two general conclusions. First, any degree of imbalance somewhat damages a method’s 

prediction capacity. Overall prediction performance is significantly affected starting with a 80/20 imbalanced distribution 

on the training set. Second, the SVM method is less sensitive to imbalanced distributions, which suggests its benefits as a 

way to deal with imbalanced datasets. Our finding that SVM leads to better results in imbalanced distributions is not 

entirely surprising; the data imbalance issue implies that classification rules are biased toward the majority class in the 

learning phase. The SVM follows a structural risk minimization strategy (Vapnik, 1998), compared to the conventional 

empirical risk minimization strategy followed by the other competing methods, relying not only on minimizing the 

number of classification errors in the learning process but on maximizing the margin between examples of both classes as 

well. This allows the SVM to avoid this majority class bias; and therefore, it is in general a more suitable and robust 

method for imbalanced datasets, as Wang and Japkowicz (2004) claim. 

Table 6 

AUC values achieved with prediction models on balanced and imbalanced training sets by sample 

Training set: 50% healthy and 50% bankrupt  60% healthy and 40% bankrupt 

 Serv Reta Cons All  Serv Reta Cons All 
 

LDA 0.873 0.881 0.865 0.883  0.857 0.873 0.849 0.866 

LR 0.884 0.890 0.876 0.878  0.863 0.877 0.861 0.859 

NN 0.887 0.889 0.868 0.898  0.873 0.871 0.854 0.882 

SVM 0.890 0.892 0.870 0.895  0.879 0.877 0.856 0.883 

RF 0.888 0.884 0.880 0.890  0.875 0.872 0.869 0.877 

Training set 70% healthy and 30% bankrupt  80% healthy and 20% bankrupt 

 Serv Reta Cons All  Serv Reta Cons All 
 

LDA 0.850 0.857 0.841 0.859  0.780 0.791 0.776 0.784 

LR 0.858 0.870 0.853 0.857  0.778 0.779 0.785 0.771 

NN 0.864 0.863 0.850 0.873  0.790 0.789 0.773 0.787 

SVM 0.868 0.873 0.851 0.876  0.862 0.818 0.845 0.871 

RF 0.870 0.859 0.864 0.862  0.843 0.804 0.830 0.807 

Training set 90% healthy and 10% bankrupt  95% healthy and 5% bankrupt 

 Serv Reta Cons All  Serv Reta Cons All 
 

LDA 0.758 0.736 0.755 0.734  0.718 0.701 0.697 0.719 

LR 0.733 0.741 0.760 0.758  0.706 0.688 0.721 0.710 
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NN 0.766 0.757 0.743 0.764  0.717 0.715 0.738 0.724 

SVM 0.789 0.784 0.793 0.790  0.747 0.752 0.769 0.764 

RF 0.795 0.770 0.787 0.768  0.758 0.759 0.772 0.746 

 

Table 7 

Imbalanced proportion at AUC values compared to balanced distribution values at significantly different 1% threshold 

 

 Serv. Reta. Cons. All 

LDA 80/20 80/20 80/20 80/20 

LR 80/20 80/20 80/20 80/20 

NN 80/20 80/20 80/20 80/20 

SVM 90/10 80/20 90/10 90/10 

RF 90/10 80/20 90/10 80/20 

 

4.2. Results of sampling techniques in imbalanced datasets 

After establishing that the bankruptcy prediction method’s loss of performance is significant starting with an 80/20 

imbalanced proportion, we explore the capacity of sampling methods to overcome this loss of extreme imbalanced 

proportions. The results were similar among the four samples used (service, retail, construction, and all sectors), so we 

averaged them to analyze the contributions of the sampling techniques
7
. We first computed the sensitivity, specificity, and 

G-mean values achieved when applying sampling methods to imbalanced training sets, to demonstrate the effect of these 

techniques in terms of predicting firm bankruptcy, non-bankruptcy, and overall outcomes. We present these values in 

Tables 8–10, in which Panel A of each table indicates the results achieved in the 80/20 imbalanced proportion with the 

four sampling techniques, Panel B indicates results of the 90/10 proportion, and Panel C indicates those of the 95/5 

proportion.  

 

Table 8 

Sensitivity rates achieved with sampling methods on imbalanced training sets (in percentages) 

                                                 

7
 To maintain conciseness and noting that 240 results (5 methods  4 samples  4 sampling techniques  3 imbalanced proportions) 

are not readable, the following results present the average of each sample. 

Models Panel A: 80NB/20B proportion Panel B: 90NB/10B proportion Panel C :95NB/5B proportion 

 R.O R.U SMO E.E  R.O R.U SMO E.E  R.O R.U SMO E.E 

LDA 77.1 75.2 73.6 75.6  75.0 71.8 70.0 72.1  73.1 69.3 70.8 68.5 

LR 77.7 75.9 72.4 76.5  75.6 72.5 73.9 74.6  73.0 70.3 71.5 71.1 

NN 76.6 78.9 73.0 79.2  72.5 76.5 75.9 77.1  70.4 74.9 74.0 75.7 

SVM 77.1 79.4 74.1 80.6  72.9 77.3 73.4 76.8  70.6 74.5 73.3 72.0 

RF 79.8 76.5 81.1 77.8  76.7 73.2 78.0 75.2  74.8 71.5 76.2 72.1 

Notes: R.O = random oversampling, R.U: = random undersampling, SMO = synthetic minority oversampling technique, E.E = 

EasyEnsemble.  NB = non-bankrupt, B = bankrupt. 
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Table 9 

Specificity rates achieved with sampling methods on imbalanced training sets (in percentages) 

 

 

 

 

 

 

Table 10 

G-mean values achieved with sampling methods on imbalanced training sets (in percentages) 
 

 

 

 

 

 

Applying 

sampling techniques increases sensitivity rates (failed firms) and decreases specificity rates, compared with the results of 

the imbalanced proportion (Table 4). If we evaluate the results on failed firms (sensitivity) -the class most affected by the 

data imbalance issue- sensitivity rates increase significantly when we apply sampling methods to the imbalanced sets 

76.9% of failed firms, on average, are now predicted correctly on the 80/20 imbalanced proportion, the 90/10 proportion 

achieves an average rate of 74.5%, and the 95/5 proportions achieve an average rate 72.4%. Thus, the effect of sampling 

techniques implies an average increment of 41.1 percentage points in the prediction of failed firms compared with results 

achieved in imbalanced distributions (Table 4). In contrast, with regard to non-failed firms (specificity), the models obtain 

an average rate of 79.2%, which is a 5.1 percentage point decrease relative to the original balanced distribution result. The 

effect of sampling techniques thus implies a trade-off between sensitivity and specificity, which is critical. The gain 

 

Models Panel A: 80NB/20B proportion Panel B: 90NB/10B proportion Panel C :95NB/5B proportion 

 R.O R.U SMO E.E  R.O R.U SMO E.E  R.O R.U SMO E.E 

LDA 80.5 79.3 81.2 77.5  80.0 76.7 79.5 78.2  79.3 75.5 78.6 73.6 

LR 80.9 78.7 81.0 78.3  80.5 76.1 78.7 76.8  79.8 75.3 77.9 74.5 

NN 79.1 80.7 84.7 80.0  77.3 80.6 82.9 78.9  77.6 79.1 81.7 76.0 

SVM 78.5 81.5 83.9 79.3  78.6 80.9 81.3 77.8  79.4 79.8 80.1 76.3 

RF 80.6 79.5 82.9 79.7  80.3 78.4 82.0 78.9  79.8 77.1 81.4 78.2 

Models Panel A: 80NB/20B proportion Panel B: 90NB/10B proportion Panel C :95NB/5B proportion 

 R.O R.U SMO E.E  R.O R.U SMO E.E  R.O R.U SMO E.E 

LDA 78.8 77.2 77.3 76.4  77.5 74.1 74.7 74.8  76.3 72.1 74.7 71.0 

LR 79.4 77.0 76.7 77.2  78.2 74.0 76.3 75.4  76.4 72.7 74.3 72.6 

NN 77.9 79.5 78.8 79.2  74.9 78.1 79.5 77.8  73.9 76.6 79.8 75.4 

SVM 78.0 80.1 79.1 79.7  75.8 79.0 77.6 77.0  74.8 77.0 76.6 74.0 

RF 80.1 77.9 81.9 78.7  78.4 75.7 79.9 77.0  77.3 74.2 78.7 75.1 
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obtained by correctly predicting failed firms is much greater than the loss of performance for non-failed firms. In reality, 

models that better predict fates of failed firms are preferred, due to the misclassification cost asymmetry between failed 

and non-failed firms. In turn, G-mean values increase significantly, approximating those obtained when the methods are 

designed with 70/30 proportions. Moreover, in almost all the cases, all methods behave similarly. That is, assuming that 

sampling techniques are used, one method does not outperform another. However, a method’s performance depends on 

the sampling approach adopted. The oversampling approach (random oversampling and SMOTE) exhibits higher average 

values (77.5), relative to undersampling (76.1).  

To provide conclusive results about the performance recovery capacity of sampling methods, we computed AUC values 

achieved in the various imbalanced proportions by sampling techniques (Table 11). These values complement those that 

indicate the performance recovery obtained by each model we designed (Table 12). Note that to analyze recovery 

capacity, it is necessary to account for its gain of performance by using a sampling technique with the loss of performance 

caused by imbalanced proportions. Therefore, we computed the recovery percentage as follows:  

𝑅𝑒𝑐 =
𝑆−𝐼

𝐵−𝐼
, 

where S represents the AUC value achieved using a sampling method, I is the AUC obtained in a given imbalanced 

proportion, and B denotes performance in a balanced proportion.  

These results, estimated with AUCs, show that even though sampling techniques obtain satisfactory recovery on method 

performance -that is, an average recovery of 43.9% the AUC values for the original balanced set are not reached (average 

AUC value of 0.815)
8
. However, the two most imbalanced samples (90/10 and 95/5 proportions) obtain the highest 

recoveries, 47.5% and 46.3%. Moreover, there are some discrepancies among both sampling techniques and prediction 

models. If we analyze recovery capacity by sampling techniques, the SMOTE technique achieves an average recovery of 

54.7%, whereas the EasyEnsemble technique achieves a 40.9% average recovery. Random oversampling and random 

undersampling obtain average recoveries of 40.4% and 39.0%, respectively. These results highlight the superiority of the 

most sophisticated sampling techniques, SMOTE and EasyEnsemble, in dealing with data imbalances. These techniques 

represent further developments of random oversampling and random undersampling techniques, designed specifically to 

overcome the drawbacks and increase the performance of models in imbalanced datasets. However, when we evaluate 

recovery by type of model, we find that NN achieves the highest average performance recovery (57.0%), whereas LDA, 

LR, SVM and RF achieve performance recoveries of 49.8%, 50.5%, 19.7% and 41.8%, respectively. Therefore, the NN 

                                                 
8
 If we consider only the recoveries achieved by LDA, LR, NN and RF, we uncover an average recovery of 50.3%. 
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prediction model clearly outperforms the recovery obtained by the other prediction models. Yet the SVM prediction 

model achieves two negative and two small recoveries that condition its low-percentage recovery. These results can be 

explained by noting that SVM can learn from certain imbalanced datasets (Imam et al. 2006; Li et al. 2008). Therefore, 

given that SVM seems insensitive to an 80/20 imbalanced proportion, better performance can be achieved by using SVM 

directly in the 80/20 imbalanced proportion rather than in combination with a sampling technique. Moreover, some 

studies document that classifier performance in a certain imbalanced dataset may be superior or comparable to 

performance on a balanced dataset using a sampling technique (Batista et al., 2004; Japkowicz and Stephen, 2002). Our 

results thus suggest that performance recoveries differ slightly, depending on the sampling technique and the prediction 

model used; in concrete cases, the application of sampling techniques is not always beneficial.  

 

Table 11 

 AUC values achieved with sampling techniques in imbalanced training sets  

  Model Panel A: 80NB/20B proportion Panel B: 90NB/10B proportion Panel C :95NB/5B proportion 

 R.O R.U SMO E.E R.O R.U SMO E.E R.O R.U SMO E.E 

LDA 0.844 0.831 0.840 0.824 0.823 0.798 0.804 0.813 0.800 0.771 0.789 0.763 

LR 0.847 0.827 0.843 0.834 0.836 0.802 0.806 0.820 0.803 0.774 0.793 0.769 

NN 0.818 0.840 0.856 0.853 0.806 0.834 0.843 0.837 0.793 0.826 0.832 0.809 

SVM 0.822 0.842 0.851 0.850 0.808 0.831 0.839 0.826 0.797 0.829 0.836 0.786 

RF 0.854 0.835 0.861 0.842 0.838 0.804 0.847 0.815 0.816 0.791 0.842 0.783 
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Table 12 

AUC recovery obtained with sampling techniques (in percentages) 

 

 

 

 

 

 

 

4.3. Model performance on different training set sizes 

The use of sampling techniques requires modifying the original training set by duplicating the minority class or removing 

the majority class, so sample size is important. Different numbers of samples are processed in training sets according to 

size and sampling technique, to achieve balanced distributions. Thus, the performance of sampling techniques may 

depend on both training set size (Weiss and Provost, 2003) and prediction methods’ performance (Back et al., 1997). To 

assess all models’ performance in imbalanced datasets, sample size should be considered along with sampling techniques, 

and we perform such an assessment in this section to contextualize our previous results. We created a set of training sets 

of different sizes
9
 (2,000, 3,000, and 4,000 firms) for all samples collected, using the same three imbalanced proportions. 

Although empirical sample size in bankruptcy prediction is diverse, most datasets contain fewer than 4,000 total samples 

(Kumar and Ravi, 2007). Thus, our samples offer a stratified representation. We randomly selected new samples from the 

database until we achieved the desired total of firms. Table 13 indicates their configuration. 

 

Table 13: Training set configuration by size 

 Training set proportions 

Nº firms in training set 80/20 90/10 95/5 

Size of 1,500 firms    

B 300 150 75 

NB 1200 1350 1425 

Size of 2,000 firms    

B 400 200 100 

NB 1600 1800 1900 

Size of 3,000 firms    

B 600 300 150 

NB 2400 2700 2850 

Size of 4,000 firms    

B 800 400 200 

NB 3200 3600 3800 

Notes: NB = non-bankrupt, B = bankrupt. 

                                                 
9
 We designed the training set size according to the firms available from our database, and 4,000 firms is the largest training set that 

we could create. 

Model Panel A: 80NB/20B proportion Panel B: 90NB/10B proportion Panel C :95NB/5B proportion 

 R.O R.U SMO E.E R.O R.U SMO E.E R.O R.U SMO E.E 

LDA 66.6 52.6 62.3 45.1 59.8 40.3 44.9 51.9 55.0 37.7 48.5 32.9 

LR 66.3 47.1 62.5 53.8 65.6 40.0 35.8 55.2 55.4 38.9 49.7 36.1 

NN 33.0 55.0 73.0 68.0 38.3 60.1 67.1 62.3 43.2 63.5 67.3 53.0 

SVM -71.0 -18.4 5.2 2.6 19.4 42.8 51.0 37.7 30.2 55.0 60.4 21.7 

RF 51.6 21.9 62.5 32.8 55.2 22.8 63.8 33.3 45.7 26.0 66.2 19.9 
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We then ran experiments to establish the relationships among model performance, sampling techniques, and training set 

size in imbalanced datasets. Figure 2 provides a graphical representation of the model’s evolution of performance 

(measured by AUC values) by type of sampling technique and training set size. Its performance always improves when 

training set size increases, which confirms the impact of this factor on the prediction of bankruptcy in imbalanced 

distributions. Although a change in training set size from 1,500 to 3,000 firms shifts the performance curve upward 

(significant performance improvement), the curve begins to flatten in the next training size level (from 3,000 to 4,000 

firms), such that performance remains almost steady. Thus, the relevance of training set size becomes less important as 

the set gets larger. 

Figure 2 also shows that models do not behave in similar ways. That is, maximum performance does not always occur 

with the same sampling techniques, which indicates their sensitivity. When we analyze statistical methods, we note that 

random oversampling leads to better performance for LDA and LR in all imbalanced scenarios. In contrast, NN and SVM 

provide diverse results. Although they display the highest and roughly the same performance with the SMOTE and 

EasyEnsemble in the 80/20 imbalanced proportion, their performance with the latter sampling techniques falls 

considerably in the other imbalanced proportions; the SMOTE provides maximum performance. Therefore, oversampling 

is the optimal strategy, because it provides better and steadier performance in diverse scenarios. These results are not 

entirely odd and sound consistent with the literature that has analyzed the data imbalance issue. The Oversampling 

approach augments the sample space in a manner that generally improves learning; leading to models with an enhanced 

discriminatory power. Besides, the fact that SMOTE generates artificial data interpolated between existing minority 

samples seems to be a better choice, which might serve as an efficient solution for a real bankruptcy prediction problem. 

The creation of synthetic samples not only enhances the model performance but, it also provides new information that as 

the time goes by, it may acquire informative meaning to understand and assess business failure processes. In contrast, the 

Undersampling approach is sub-optimal in almost all scenarios, except those with less imbalanced proportions and larger 

training sets. This can be explained by the fact that the random elimination of majority class samples performed by this 

approach may lead to discard potentially useful information that could be important for the induction problem (Kotsiantis 

et al., 2006). Besides, even though this procedure can handle imbalance datasets, it might produce a small sample size, in 

which the amount of information possessed may be insufficient to determine an optimal model generalization. Thus, this 

approach presents two major drawbacks for its materialization in a real solution for bankruptcy prediction. On the one 

hand, its performance seems dependable to the sample size which is a major condition due to the lack of bankruptcy firms 
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samples. On the other hand, the elimination of data may be undesirable due to bankruptcy investigation is generally 

expressed as a function of the data. 
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Fig. 2. Evolution of model performance by sampling technique and training set size (X-axis represents the sample size and Y-axis 

represents the AUC value). 

5. Conclusion 

We investigate the performance of bankruptcy prediction models in imbalanced datasets by analyzing three key notions: 

degree of imbalance, loss of performance, and sampling techniques. We establish which imbalanced distribution 

significantly damages prediction performance. Models built on training sets, in which bankrupt firms represent equal to or 

less than 20% of the total samples, suffer significantly diminished prediction performance. Although the performance of 

all classifiers is affected by imbalanced datasets, especially as that imbalance grows greater, the results that the SMV 

method is less sensitive. That is, it only suffers significant losses in performance in the most extreme scenarios (90/10 and 

95/5 class proportions).  

We also provide experimental results with regard to treatment methods and sampling techniques in imbalanced datasets. 

When we analyze the capacities of sampling techniques to recover prediction performance by balancing training sets, the 

results indicate an acceptable average recovery of 43.9%. Moreover, bankruptcy prediction models perform differently, 

depending on the sampling techniques used. In this regard, oversampling is a better choice, because it is most suitable for 

all type of prediction models and different training set sizes.  

We also take a novel perspective that investigates the intercorrelations among the degree of data imbalance, the 

bankruptcy models’ loss of performance, and sampling techniques. We thereby fill a significant knowledge gap and make 

two main contributions -one methodological and one empirical- to bankruptcy prediction literature.  

The data imbalance issue is relevant in the bankruptcy prediction field, because the scarcity of bankrupt firms means that 

researchers must design models with imbalanced datasets. As a methodological contribution, we establish the limits of 

imbalanced distributions in datasets as they relate to bankruptcy prediction models. Researchers must be cautious when 

designing bankruptcy prediction models, because a moderately imbalanced training set (80/20 proportion) can be 
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detrimental to prediction performance. We also highlight the relevance of sample distributions for the design of 

bankruptcy prediction models. This finding is important for banks and other financial institutions; even though 

institutions have information on thousands of firms, their datasets often are limited by the number of bankrupt firms, and 

few institutions have more than 1,000 or so. In such scenarios, datasets exhibit imbalanced distributions, and the models 

likely cannot predict bankruptcy well, resulting in severe financial consequences.   

With regard to our empirical contribution, our results confirm previous studies that show that applying sampling 

techniques to handle the data imbalance issue improves the performance of prediction methods. However, only about half 

of the performance loss generated by data imbalance can be recovered. Moreover, as the size of the training set increases 

(from 1,500 to 3,000 total samples), the performance curve of the sampling techniques moves upward and eventually 

begins to flatten. This empirical finding is crucial, because it shows that there is still much work to be done to overcome 

this significant concern.  

Little research has been conducted on analyzing imbalanced datasets in the bankruptcy prediction field, even though in 

the real world, bankruptcy prediction datasets present vastly imbalanced distributions that hinder bankruptcy prediction 

performance. The implications of our findings thus are pertinent to both academics and financial institutions. Nonetheless, 

it is important to remark that our results should be interpreted cautiously. They reflect the information included in the data 

and the characteristics of the input data. Further research should therefore investigate data imbalance issue in bankruptcy 

prediction domain in order to empower our results. Moreover, most models are validated in experimental conditions that 

do not represent real-world scenarios, such as imbalanced datasets. We speculate that even though more sophisticated and 

complex models are being designed, they will fail to prevent real bankruptcies, because they are rendered suboptimal by 

data issues. Thus, this study can serve as a guide for researchers and academics to design bankruptcy prediction models in 

imbalanced datasets and develop new solutions to overcome the problem of data imbalance. It can also serve as an 

inspiration for developing a bankruptcy prediction model that delivers steady performance, regardless of data imbalance 

distributions. This effort will represent our next research direction.  
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Research highlights: 

 

► An investigation of bankruptcy prediction in imbalanced datasets is proposed.  

►The prediction losses increase as the imbalanced proportion grows more severe.  

►Support Vector Machine method is less affected by imbalanced datasets than other prediction method.  

►SMOTE outperforms other sampling techniques for all type of prediction models and different training set 

sizes. 
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