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h i g h l i g h t s

• The dilution and symmetry of a recurrent neural network affect its limit behaviors.
• There are two optimal regions that optimize the number of limit behaviors.
• The first region is symmetric and fully connected as predicted by Hebbs’ learning.
• The second region is asymmetric and diluted as found in the neocortex and hippocampus.
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a b s t r a c t

Westudywith numerical simulation the possible limit behaviors of synchronous discrete-time determin-
istic recurrent neural networks composed ofN binary neurons as a function of a network’s level of dilution
and asymmetry. The network dilution measures the fraction of neuron couples that are connected, and
the network asymmetry measures to what extent the underlying connectivity matrix is asymmetric.
For each given neural network, we study the dynamical evolution of all the different initial conditions,
thus characterizing the full dynamical landscape without imposing any learning rule. Because of the
deterministic dynamics, each trajectory converges to an attractor, that can be either a fixed point or
a limit cycle. These attractors form the set of all the possible limit behaviors of the neural network.
For each network we then determine the convergence times, the limit cycles’ length, the number of
attractors, and the sizes of the attractors’ basin. We show that there are two network structures that
maximize the number of possible limit behaviors. The first optimal network structure is fully-connected
and symmetric. On the contrary, the second optimal network structure is highly sparse and asymmetric.
The latter optimal is similar to what observed in different biological neuronal circuits. These observations
lead us to hypothesize that independently from any given learning model, an efficient and effective
biologic network that stores a number of limit behaviors close to its maximum capacity tends to develop
a connectivity structure similar to one of the optimal networks we found.

© 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Recurrent neural networks are able to store stimuli-response
associations, and serve as a model of how live neural networks
store and recall behaviors as responses to given stimuli. A discrete-
time deterministic recurrent N binary-neuron neural network is
completely characterized by its N2 edges, and its instantaneous
state is defined by a neuron activation vector σ, which is a binary
vector of size N . In this paper, we consider a specific kind of
recurrent neural network, which is initialized, analogously to a
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Hopfield network, by assigning to the network’s neurons an initial
pattern which is the network stimulus or input. The collection of
all possible neuron activation vectors contains 2N allowed vectors
σ, these vectors can be partitioned in three categories: steady
states, limit cycles, and transient states. Steady states are neuron
activation states that do not change in time, and limit cycles are
sequences of neuron activation vectors that repeat cyclically, with
a period that we call cycle length. From now on, we will consider
a steady state as a limit cycle of length 1. A network, given any
initial activation vector, always evolves to a limit cycle, which
for this reason we also refer to as attractor. In other words, a
network associates a limit cycle to any initial neural activation
state that is given as an input. For this reason, limit cycles can be
considered as behaviors stored as responses to initial stimuli. In
the case of length 1 cycles, limit behaviors are a single activation
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state which in the case of Hopfield networks correspond to the
recollection of amemory. In the case of cycleswith a length greater
than 1, stored limit behaviors are sequences of activation patterns
whichmay correspond to a stored dynamical sequence, such as the
performance of a complex motor task, or a dynamic sequence of
static memories. In principle, a recurrent neural network stores a
certain number of limit behaviors as vectors from a 2N set in a data
structure defined by N2 parameters. Furthermore, these vectors
can be recovered in responses to input stimuli. This clearly has
intriguing analogies with content-addressable memory systems
capable of indexing large strings of bits (Carpenter, 1989; Hopfield,
1987).

In the past, recurrent neural network, and specifically Hopfield
neural networks have been used to model memory storage and
recall, though more recently neurobiology models implemented
recurrent neural networks to describe brain activity in different
cognitive tasks. Mante, Sussillo, Shenoy, and Newsome (2013)
use recurrent neural networks to model the integration of con-
text information in the prefrontal cortex in discrimination tasks.
Similarly, Carnevale, deLafuente, Romo, Barak, and Parga (2015)
model with recursive neural networks the premotor cortex mod-
ulation of its response criteria in a detection task with temporal
uncertainty. Furthermore recurrent neural networks are used to
model phoneme acquisition (Kanda, Ogata, Takahashi, Komatani,
& Okuno, 2009), and language acquisition (Heinrich & Wermter,
2018). Neuroscience proposes two fundamental conceptual frame-
works that enable recurrent neural networks to store limit
behaviors: the connectionist hypotheses and the innate hypothe-
ses. Hebb (1949) proposed the connectionist hypothesis, which
assumes that a neural network starts blank and forms new links
or adjusts the existing ones each time it stores a new limit behav-
iors. In this framework limit behaviors are stable equilibria in the
neural network dynamics. A criticism of Hebbs’ networks is that as
new limit behaviors are added the corresponding generated stable
states start interfering with the stable states associated with older
limit behaviors. This limits themaximumstorage capacity C , which
is defined as the maximum number of limit behaviors that can be
stored. Notice that this definition is different from the usual defi-
nition used in associative memory networks, in which the storage
capacity is defined as the number of uniformly distributed random
vectors that can be stored in an associative memory (Hassoun,
1993; Hassoun &Watta, 1997). Amit, Gutfreund, and Sompolinsky
(1985a) show that a Hebbian network has a storage capacity of
C = pN with p ≈ 0.14. In contrast, innate networkmodels assume
that limit behaviors are stored using innate neural assemblies with
a given connectivity. Among other innate memory models, Perin,
Berger, and Markram (2011) propose that groups of pyramidal
neurons in the rats’ neocortex may be innate neuron assemblies
that may only partially change their overall connectivity structure.
Indeed, Perin et al. (2011) find that these assemblies have similar
connectivity proprieties among different animals, and argue that
these assemblies serve as building blocks for the formation of
composite complex memories.

Whether we assume a connectionist or an innate network
scheme as our working framework, we implicitly assume that a
recurrent neural network acts as a content-addressing memory
which given an input pattern (stimulus) returns a limit behavior.
This limit behavior can be a recovered memory or a more complex
neural sequence of neural activations that may be integrated into
a second neural network. To understand how well a recurrent
neural network acts as a content-addressingmemory, thememory
storage and retrieval literature uses discrete-time recurrent neural
networkswithMcCulloch–Pitts neurons (McCulloch & Pitts, 1943).
Each discrete-time recurrent neural network, which in this litera-
ture is sometimes referred to asHopfield neural network, is charac-
terized by its connectivitymatrix J, which schematically represents

the set of synapses and electrical junctions connecting couples of
neurons. Deterministic discrete-time synchronous recursive neu-
ral networks are deterministic discrete dynamical systems. This
implies three properties. First, each state in the neural network
uniquely transits to another one. Second, the reverse is not true,
different states can evolve to the same state. Third, each state
belongs to a path that connects it to a stable activity pattern, i.e. a
limit cycle. Given any initial neural state, or input, a discrete-time
recurrent neural network dynamically falls into an attractor. In
this framework, the attractor is the retrieved limit behavior (Amit,
Gutfreund, & Sompolinsky, 1985b; Bastolla & Parisi, 1998; Folli,
Leonetti, & Ruocco, 2017; Gutfreund, Reger, & Young, 1988; Hebb,
1949; McEliece, Posner, Rodemich, & Venkatesh, 1987; Sompolin-
sky, Crisanti, & Sommers, 1988; Wainrib & Touboul, 2013). Finally,
it is important to consider that a recurrent network associates
a limit behavior to each input from the set of all possible N-bit
inputs, since the number of limit behaviors C is such that C ≪ 2N ,
it performs a many-to-few mapping. Recurrent neural network,
and in particular the Hopfield model (Hopfield, 1987), show how
information can be stored via attractor states. Indeed, there is
some experimental support for discrete attractors in the rodents
hippocampus cells’ activity (Pfeiffer & Foster, 2015), and inmonkey
cells’ activity during tasks (Fuster & Alexander, 1971; Miyashita,
1988).

To understand how well and how many limit behaviors a fully
developed neural network can store, we explore how the structure
properties of an arbitrary connectivity matrix J influences the at-
tractor states of the network without imposing an a priori learning
rules. Given a connectivity matrix J, to characterize the network
structure, we define the network’s asymmetry degree ϵ, and dilu-
tion degree ρ. The most understood properties on fixed discrete-
time recurrent neural networks regard fully-connected Hopfield
neural networks. Fully-connected recurrent Hopfield neural net-
works are networks with dilution degree ρ = 0, in which any
couple of neurons is connected by two axons one in each direction.
In contrast, we define diluted recurrent Hopfield neural networks
as networks with ρ > 0, in which only a subset of all neurons cou-
ples are connected. The existing recurrent Hopfield neural network
literature mostly discusses symmetric neural networks in which
the weights of the two axons connecting neurons i and j in both
directions are the same, and in only few cases researchers inves-
tigate asymmetric neural networks ϵ > 0, in which the weights
are no longer equal. Furthermore, most of the recurrent Hopfield
neural network literature which studies the effect of asymmetry
assumes binary neurons with activations state that can take values
−1 and +1. Under these constraints, it is reported that symmetric
fully-connected networks, ϵ = 0, have several attractors, all of
which are formed by cycles of length 1 and 2. As the network
becomes less symmetric, ϵ > 0, the attractors are composed of
longer neural activation patterns. Increasing asymmetry in a fully
connected neural network introduces severe drawbacks. Indeed,
when the degree of asymmetry is increased above a certain thresh-
old a neural network is subject to a transition from an ordered
phase to a ‘‘chaotic’’ regime (Bastolla & Parisi, 1998; Gutfreund et
al., 1988). In the chaotic regime, almost identical initial patterns
can reach different attractors, and the network is characterized
by a high sensitivity to initial conditions. Moreover, this chaotic
regime causes exponentially longer recognition time, where the
recognition time is the average number of discrete transitions
required to reach the corresponding attractor from a generic point
in its basin of attraction. Toyoizumi and Huang (2015) analyze
asymmetric matrices ϵ = 0with neuron activation profile {−1, 1},
and show that under these conditions as the limit cycle length
scales exponentially with N , the number of attractor scales lin-
early with N . It is important to point out that Bastolla and Parisi
(1998), Gutfreund et al. (1988) and Toyoizumi and Huang (2015)
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discuss synchronous discrete-time recurrent neural networkswith
single neuron activation profile {−1, 1}. In this work, we show that
these results carry over to neurons with activation profile {0, 1}.
Neurons with activations states {0, 1} represent a more accurate
model of the single neuron behavior that is observed as either
firing or at rest, and how these states determine the excitatory or
inhibitory interactions among the neurons in a live neural network.
From these evidence, we would argue that symmetric networks,
ϵ = 0, are the optimal limiting state for a developing neural net-
work. Nevertheless, most natural neural networks are asymmetric,
ϵ > 0 (Perin et al., 2011). Therefore, a puzzling contradiction
emerges between the observed asymmetry in natural synaptic
connections, and the disastrous properties that emerge in fully
connected neural network models when the connectivity matrix
becomes more asymmetric. Furthermore, in almost all cases live
neural networks are not fully connected, ρ = 0, but tend to be
highly diluted ρ ∼ 0.9, which implies that not all but just a
fraction of neuron couples are connected in the matrix J. For this
reason, this paper analyzes not only how the storage properties
of neural networks change as we change the asymmetry degree
of fully connected connectivity matrices J, ϵ ∈ [0, 1] and ρ = 0.
It also studies how the storage properties change as asymmetric
connectivity matrices J are diluted, ϵ = 1 and ρ ∈ [0, 1].

Because under certain connectivity conditions we get recurrent
neural networks characterized by a minority of attractors with
huge attraction basins and a majority of attractors with small
attraction basins, almost the entire state space of the neural net-
work is absorbed by few attractors. Consequently, we decided to
map the corresponding attractor pattern for each initial network
condition. This allows us to explore the entire landscape generated
by the complete mapping of all the attractors’ basins for different
connectivity matrices J without losing the attractors with small
basins. In addition, we define a way to sample from the space
of all connectivity matrices a subset of connectivity matrices J
with a given asymmetry degree ϵ, and sparsity degree ρ. Thus,
we can chart how the attractor landscape properties change sam-
pling connectivity matrices J for different values of asymmetry
degree ϵ, and sparsity degree ρ. Unfortunately, the computation
of the complete transition landscape over all the 2N initial states
is computationally feasible for neural networks up to a certain N .
Nevertheless, given these limitations we find the non-trivial result
that the symmetric/fully connected region is not the only region
with optimal storage capacity, but a second optimal region, the
fully-asymmetric/high-dilution region, exists as well. The scaling
trends observed in simulations lead us to hypothesize that the
results are valid also for values of N larger than the numerical
computations we were able to perform. It is surprising to notice
that both regions exhibit a similar scaling of the storage capacity
even if they have very different connectivity.

Additionally, the values of sparsity and asymmetry, which op-
timize the number of limit behaviors in discrete-time recurrent
neural networks, are found to be remarkably similar to those found
in several regions of the mammalian brain that share crucial roles
in memory processes. Indeed, the neocortex and the CA3 region
of the hippocampus have been proposed as regions responsible
for memory storage (Rolls, 2012), and are clearly diluted (Wit-
ter, 2010). The probability of connection between two neocortical
pyramidal cells is in the order of 10%, and the probability of connec-
tionbetween twohippocampal CA3neurons is nearly 4%.While the
symmetric/fully optimal connected networks are consistent with
the observed live neural networks, the same networks contradict
a standard interpretation of Hebbs’ Learning, which are noted to
tend to the asymmetric/dilute optimal networks. Thus, we are
left with the question of why biological networks are found in
the fully-asymmetric/high-dilution region. There may be several
possible explanations that beg for further investigation. One possi-
bility is that fully connected networks are more costly to develop

and maintain in comparison with diluted networks, especially for
larger values of N , because for large N there could be important
constraints that limit the development of all possible couples of
neurons.

The role of dilution in natural neural networks was ignored
in past research with the exception of only a couple cases. The-
oretical mean field approaches on diluted recurrent neural net-
works showed weakly correlated firing patterns similar to the
patterns observed in the brain cortex (Monteforte & Wolf, 2012;
van Vreeswijk & Sompolinsky, 1998). Kim, Park, and Kahng (2017)
used simulation to show how, in contrast to fully connected re-
current networks, scale-free networks have an increased number
of final behaviors with the side effect of increased errors. Brunel
(2016) is an other work that comes to the conclusion that diluted
network have optimal storage capacity. This later work investi-
gates the connectivity structure of recurrent neural networks with
excitatory synaptic connectivity which are close to their storage
limit given a certain degree of retrieval robustness independently
from the learning rule. To this aim Brunel (2016) assumes that the
inhibitory interactions are fully-connected and finds the excitatory
matrices that store the greatest number of attractors both ana-
lytically with the cavity method and numerically with perceptron
learning. Then it investigates the statistical properties of these
optimal matrices in large networks. Brunel found that, the optimal
excitatory connectivitymatrix is diluted, it has several zero-weight
synapses, and that the number of neuron couples with reciprocal
connections are greater than in a random network, and that their
weight is larger than the average connection weight. Similarly, the
approach of this paper is independent of the learning rule, and it
searches for the properties of the networks that have optimal stor-
age capacity. Nevertheless, instead of calculating a neural network
that can store the maximum number of attractors, it assumes that
a network which has reached its storing capacity limit has certain
characteristic optimal structures. Thus to find this optimal con-
nectivity structures we can sample sets of connectivity matrices
J with given values of asymmetry ϵ and dilution ρ. Each of these
sets will have a characteristic asymmetry degree ϵ and dilution
degree ρ and be composed of connectivity matrices J with certain
memory storage properties. From these sets, we can find the values
of asymmetry and dilution which characterize the connectivity
matrices Jwith optimal memory storage properties. Discrete-time
recurrent neural networks areminimalmodels designed to capture
the fundamental nature of neural networks, and more realistic
models have been proposed (Galves & Löcherbach, 2013; Gerstner,
1998; Koch & Segev, 1998; Maass, 1999). Unfortunately, these
models have a necessary additional computational cost which
would not allow for such extensive exploration of the attractor
landscape associated to connectivitymatrices J at different degrees
of dilution and asymmetry.

2. Discrete-time recurrent neural networks

We consider a network of N binary neurons interacting via a
connectivity matrix J, with matrix elements Jij for i, j = 1, . . . ,N .
The matrix element Jij represents the strength of the connection
between the pre-synaptic neuron j and the post-synaptic neuron i.
The state of each neuron is represented by a binary state variable
σi ∈ {0, 1}, where i = 1, . . . ,N . A neuron σi takes values either 0
or 1 if it is respectively at rest (inactive) or firing (active).

2.1. Dynamics

In this section, we introduce a synchronous discrete-time re-
current neural network model with McCulloch and Pitts (1943)
neurons. At each time step, all neurons are updated synchronously
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according to the discrete-time recurrent neural network evolution
rule:

σi(t + 1) = θ

( N∑
j=1

Jijσj(t) − ηi

)
, (1)

where θ (x) is the Heaviside step function (θ (x) = 1 for x ≥ 0,
and θ (x) = 0 otherwise). At the next step t + 1, the neuron i fires,
σi(t + 1) = 1, if the summation of its synaptic inputs is above a
threshold ηi, otherwise the neuron is inactive, σi(t + 1) = 0. In the
results discussed in this paper we set ηi = 0 for all neurons. The
vector σ(t) = (σ1(t), σ2(t), . . . , σN (t)) represents the activation
profile of all neurons at time t . This activation function emulates
the all-or-none principle in neuronal activation potentials. The
input summation is performed without any scaling on N since the
threshold is equal to zero. The scaling factor does not influence the
network output that is indeed determined only by the sign of the
linear summation. In principle neurons update asynchronously,
but Gutfreund et al. (1988) and Nützel (1991) observed that syn-
chronous updating neurons are qualitatively equivalent to asyn-
chronous updating neurons when considering long time scales.
Because the objective is to map the full attractor landscape, we
have to explore all the possible initial conditions. For this reason,
it is fundamental to consider a simplified scheme, and we chose to
use a parallel synchronous evolution rule to simplify and speed-up
the numerical simulations.

2.2. Content-addressing memory model

A synchronous discrete-time recurrent neural network is a
deterministic dynamical system defined on a finite state space.
Given any initial neural activation profile σ(0) the discrete-time
recurrent neural network deterministically evolves in time until it
converges to an attractor, which can be composed of a limit cycle
composed of a certain number of neural activation states. When
a query is submitted to a content-addressing memory we input a
search entry and the device returns an address to matching stored
data. A discrete-time recurrent neural network works analogously
to a content-addressing memory. If the initial neural activation
profile σ(0) is set equal to an external stimulus, or search entry
in the content-addressing memory analogy, then the neural net-
work dynamically converges to an attractor, which represents the
retrieved response. Given this analogy, the limit behavior storage
capacity C of a discrete-time recurrent neural network is the num-
ber of attractors that are stored in the network.

According to Hebb’s rule, memories are added to a Hopfield
network by adding to the neural connectivity matrix J dyadics
of the form σTσ (Hebb, 1949). These dyadics generate attractors
formed by a length 1 cycle. Thus, in Hebbian learning a memory
is a limit behavior composed of a single neural activation profile
σ. Amit et al. (1985a) demonstrated that there is an upper limit to
the storage capacity of Hebbian learning networks, and this limit is
set to pN with p ≈ 0.14. This storage capacity upper limit emerges
because each time we add a new dyadic term a new attractor is
introduced in the Hopfield network dynamics, and at a certain
point the new dyadic terms associated with the latest observed
attractor interferes with the basin of the old attractors.

In this paper, we use an approach that is independent from
the specific learning rule. We assume that, independently from
the learning rule, when a discrete-time recurrent neural network
stores a number of limit behaviors close to its storing capacity then
it approaches characteristic optimal connectivity structures. Thus,
instead of packing as many memories as we can in a discrete-time
recurrent neural network, and then studying the emergent net-
work structure. We use the total number of attractors to count the
number of the network’s limit behavior storage capacity. Clearly,

some of these attractors may be spurious associations that were
not explicitly learned. Consequently, we search for connectivity
structures that form the recurrent neural network with the max-
imum number of attractors. More precisely, we study how many
attractors are present in a given arbitrary neural network with a
certain connectivity matrix J characterized by a specific degree of
asymmetry and dilution. Finally, we can study how a recurrent
neural network with an optimal connectivity matrix reduces the
complexity of the N-dimensional initial problem by clustering the
input data in a certain number C of attraction basins.

2.3. Synaptic matrix

J is the neural network’s connectivity matrix with matrix ele-
ments Jij. To analyze the relation between the full attractor land-
scape and certain global properties of J, we defined a way to
generate a random connectivity matrix J given two fundamental
network parameters, respectively the asymmetry coupling degree
ϵ, and the sparsity parameter ρ. This section first describes how
to generate a random connectivity matrix J with an arbitrary
asymmetry degree ϵ, and fixed sparsity parameter ρ = 1, then
it describes how to generate a random connectivity matrix J with
arbitrary values of ϵ and ρ.

The elements of a random connectivity matrix Jij with an ar-
bitrary asymmetry degree ϵ and fixed sparsity parameter ρ = 1
are generated as the convex sum of the matrix-elements from
a symmetric random matrix Sij, and the matrix-elements from a
antisymmetric randommatrix Aij:

Jij =

(
1 −

ϵ

2

)
Sij +

ϵ

2
Aij. (2)

Sij and Aij are generated with a three-step process. First, the lower
diagonal elements of Sij and Aij are randomly drawn from a uni-
form distribution with greater-than-zero probability in the closed
interval [−1, +1]. P0(x) =

1
2θ (1 − x2) is the distribution from

which both the lower diagonal elements of Sij and Aij are drawn,
P0(Sij) and P0(Aij). Second, the upper diagonal elements are set:
Sji = Sij andAji = −Aij. Lastly, the diagonal elements are set to zero:
Sii = 0 and Aii = 0. Jij = 0 corresponds to no-connection between
i and j, and an Jij element greater or smaller than zero corresponds
respectively to an excitatory or an inhibitory connection. For ϵ
= 0, neurons interact symmetrically with each other; at ϵ = 1,
Jij is fully-asymmetric. For ϵ ranging from 1 to 2, the strength of
antisymmetric couplings increases. In this work, we restrict the
analysis for ϵ ∈ [0, 1]. We set the diagonal elements to zero, Jii =
0 which implies no autapses (the term autapse indicates a synapse
connecting a neuron onto itself).

In order to generate a random connectivity matrix Jij with an
arbitrary asymmetry degree ϵ and arbitrary sparsity parameter ρ,
we first generate Sij and Aij, and then use Eq. (2) to form Jij. To
generate Sij and Aij we draw the elements of the respective lower
diagonal elements according to the distribution

P(x) = (1 − ρ)P0(x) + ρδ(x), (3)

where x takes the place of Sij and Aij, and δ(x) is the Dirac function.
P(x) ensures that the rate of zero-valued elements is determined
by the sparsity parameter ρ. Indeed, a randommatrix according to
this distribution can be generated by drawing Sij and Aij elements
from P0(x), and then setting each element with probability ρ to
zero. In (2), the left term determines the ratio and distribution of
non-null elements, and the right term determines the ratio of null
elements. Then, the upper diagonal elements are set to Sji = Sij
and Aji = −Aij, and the diagonal elements are set to zero. Finally,
we construct Jij accordingly to (2). This procedure preserves the
symmetry and the role of ϵ. Indeed, while ϵ = 0 represents a
symmetric matrix with a fraction of zeros on average equal to
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Table 1
Measured quantities.

Quantity Description

C Number of attractors per matrix
Lk Attractor length
Sk Basin of attraction size
Dk Average distance from the attractor

ρ + 1/N , ϵ = 1 indicates a generic, asymmetric, matrix with a
number of zeros on average equal to ρ2

+ 1/N , which on average
is approximately equal to 2ρ − 1 + 1/N for ρ close to one. ρ
determines how many elements of the matrix are null, and thus
the dilution of the neural network connectivity. For ρ = 0we have
a fully-connected neural network, in which any two neurons share
a synaptic connection in both directions. In the limit for ρ that gets
closer to 1, we get a neural network with constantly fewer neural
connections, and for ρ = 1 we have a network completely lacking
any synapses.

2.4. Neural network dynamics

Generated a connectivity matrix for a given pair (ϵ, ρ), we
evolve all 2N initial conditions. Being the configuration space finite
and the dynamics deterministic, each state σ(t) uniquely transits
to a state σ(t + 1). Necessarily, after a transient time, the system
relaxes on a limit cycle. Given a certain J, let G = (σ, T ) be a
directed graph with nodes given by the neurons profiles σ, and
edges T defined as directed couples such that (σ, σ ′) ∈ T if σ
transits to σ ′. All nodes in G have one and only one outgoing edge.
Let U be the undirected graph associated to the directed graph G,
such that for each (a, b) ∈ G there is an undirected couple {a, b} ∈

U . Furthermore, let a weakly connected component of a graph G
be a maximal set of nodes W such that for each couple of nodes
(a, b) ∈ W there is a path that follows the edges in U and connects
a to be b. Since in discrete-time recursive neural networks each
initial neuron profile of all the possible 2N patterns arrives at the
corresponding attractor, G is partitioned in a finite set of C weakly
connected components each leading to an attractor (Diestel, 2010).
An example of this decomposition is reported in Fig. 1 for a simple
N = 6 case. This specific network maps 64 possible states into four
attractors: two limit cycles with respectively L = 3, 4 and two
fixed points.

For each weakly connected component k, where k = 1 . . . C ,
and C is the number of attractors, we measure the following
observable variables: (i) the cycle length Lk is the number of states
in its attractor, if k is a fixed point Lk = 1 or if it is a limit cycles
Lk > 1; (ii) the basin of attraction size Sk corresponds to thenumber
of states in the kth weakly connected component; (iii) the average
distance Dk between a generic state in the kth weakly connected
component and the corresponding attractor (see Table 1).

We generate R replicas of the connectivity matrix J with given
ϵ and ρ (up to 100000), and average the values of C , Lk, Sk, and Dk.
Thenwe produce the histogramsN (C |ϵ, ρ),N (Lk|ϵ, ρ),N (Sk|ϵ, ρ),
N (Dk|ϵ, ρ).

2.5. Large N limit

All the quantities in Table 1 depend on the network size N .
Given a network sizesN , we compute the values of these quantities
from the complete transition graph G with all the 2N neural acti-
vation profiles. Thus wemeasure the scaling of these quantities for
different values of N . Because a statistical analysis would be biased
by the broad distribution of the basins sizes, we study the complete
graph G. Indeed, a few basins are large with size 2N−m where
m ≪ N , and several basins are very small in size. Thus, a statistical

analysis would highlight only the trajectories absorbed by the
largest basins, given that the probability of selecting the smaller
basins is very small. Thiswould result in an under estimation of the
number of independent limit cycles. For this reason, it ismandatory
to evolve all initial conditions to map the whole landscape of
the equilibrium properties of the network. We can complete the
analysis only up to a computationally feasible value of N , which
turns out to beN ≈ 22.Wehave this computational boundbecause
the number of initial conditions scales like 2N , and the time to
evolve all these states and to find the associated attractors scales
proportionally to 22N .

In the numerical results presented in the next section we show
that the scaling proprieties of N are mostly preserved across the
explored range. Moreover, the functional form and the eventual
exponents ormultiplicative factors depend on the network param-
eters (ϵ, ρ). A reasonable question is whether or not the scaling
exponents derived from these limited N values can be assumed to
be valid in the thermodynamic limit, for large N . To ensure that
there are no major changes as N diverges, we have performed a
preliminary investigation of thenumber of cycles of length 1,N1 for
ρ = 0 and ϵ in the range [0,1]. Tanaka and Edwards (1980) present
a theoretical prediction for this quantity, N1 = eγ (ϵ)N , with known
γ (ϵ) in the infinite size N limit. To test, if the scaling exponent
numerically obtained from our simulations with N < 18 matches
the theoretical infinite size exponent, we compared the estimated
γ (ϵ) value, γ̂ (ϵ), from our simulations, with the theoretical γ (ϵ)
found in Tanaka and Edwards (1980). We found that the two
exponents agree within one part per thousand. This result, though
not conclusive, gives us confidence that the finite size estimates of
the scaling exponents can be plausible approximations in the large
N limit, both in the dense and diluted cases.

Summarizing, this paper focuses on limited size neural net-
works, this gives us the possibility to exhaustively explore the
whole equilibrium landscape and map its changes as symmetry
and dilution are varied. A vast amount of literature has been con-
cernedwith the analysis of the statistical properties of large neural
networks in the thermodynamic limit, using mainly mean-field
theories, but little is known about diluted networks. The future
objective is to apply the cavity method (Mezard, Parisi, & Virasoro,
1987), or the replica method (Gardner, 1988), to analytically de-
termine the number of attractors for diluted connectivity matrices
with large N . Thus, we will be able to compare these analytical
results with the computational results presented here.

3. Results

In this section, we numerically investigate the attractors’ land-
scape of a discrete-time recurrent neural network for different
values of the network size N , the asymmetry degree (ϵ) and the
synaptic connectivity dilution (ρ). We report numerical results
obtained averaging over R ∼ 104 replica matrices. We start char-
acterizing fully-connectedmatriceswith a specific degree of asym-
metry (ρ = 0, ϵ). This class of matrices was already investigated
analytically, and numerically sampling over the initial conditions,
and assuming neuron activation state −1 and 1. Unfortunately, as
mentioned earlier sampling on the initial conditions may lead to
biased results thatmiss smaller attractors. Furthermore,weuse the
more realisticmodelwith neuron activation state 0 and 1. Next, we
characterize statistically high-dilution/asymmetric cases, a region
that so far has been unexplored.

3.1. Fully connected network: from symmetric to asymmetric net-
works

In Fig. 2, we report all the quantities listed in Table 1 measured
for varying ϵ with ρ = 0, and the corresponding scaling laws.
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Fig. 1. Example of weakly connected components of the transition graph G derived from a given connectivity matrix J. The 2N numbered circles represent the neural
activation profiles σ. In the present case, N = 6, and the connectivity matrix J is such that ϵ = 0 and ρ = 0. There are four weakly connected components (C = 4), each one
containing one attractor, two of them are fixed points, L1 = L2 = 1, the other are cycles with length L3 = 3 and L4 = 4. The sizes of their attraction basins are S1 = 1,
S2 = 19, S3 = 24, and S4 = 20 respectively. Green circles indicate the points belonging to attractors, while blue and red circles indicate respectively transient and starting
points.

Here, and in the following, ⟨X⟩ indicates an average on X taken over
all the attractors, k, and all R replicas of the connectivity matrix J,
where X is a quantity from Table 1. As it is shown in (a), increasing
asymmetry slows down the time required to convergence on the
attractor. Thus, as asymmetry increases the stimulus-response
time increases. Plot (b) shows how ⟨D⟩ scales with N and that
its trend is well reproduced by a polynomial law. For the mean
length of the limit cycles ⟨L⟩, we observe two distinct regimes,
as clearly presented in panel (c) where ⟨L⟩ shows a transition
around ϵ = 0.75. This transition for discrete-time recurrent neural
networks with neuron activation states σi ∈ {0, +1} is analogous
to the transition observed in recurrent neural networks with σi ∈

{−1, +1} (Gutfreund et al., 1988). Correspondingly, the scaling law
(d) displays a rather sharp transition from an ordered phase where

⟨L⟩ ∼ Nγp (4)

to a chaotic regime, in which the mean length of limit cycles
increases exponentially with the system size N:

⟨L⟩ ∼ 2γeN . (5)

An exponentially long limit cycle length means that for large N ,
the network displays longer attractors with seemingly aperiodic
behavior (the network dynamics appears to be chaotic).

In panels e and g , we report the mean values of the number of
attractors per matrix, ⟨C⟩, and of the basins of attraction size ⟨S⟩
for fully-connected matrices, ρ = 0. It is clearly evident how the
network loses the capacity to cluster the input data in sub-domains
as ϵ is increased: the number of attractors ⟨C⟩ is drastically reduced

and correspondingly the dimension of the basins increases. The
state space tends to be subdivided into a small number of large
regions, each with its attractor, and the network is no longer able
to distinguish different inputs. The average number of attractors
scales exponentially for ϵ = 0 (panel f ). For fully-connected
matrices, ρ = 0, and ϵ = 0, ⟨C⟩ ∼ 2γeN with γe = 0.28. For
ρ = 0, and ϵ = 1, the number of attractors scales polynomially, as
expected from Toyoizumi and Huang (2015) analysis. In ⟨C⟩, there
is probably a transition as for the attractor length ⟨L⟩. Panel (h)
shows the scaling of ⟨S⟩. For fully-connected matrices, ρ = 0, ⟨S⟩
has an inverse behavior compared to ⟨C⟩, ⟨S⟩ scales exponentially
for ϵ = 1, and it scales polynomially for ϵ = 0. Increasing
asymmetry causes the network to develop a glassy behavior, the
network is greatly slowed down and unable to quickly recognize
the attractor of a given input. The higher the asymmetry degree,
the higher theprobability that the systemadmits only one attractor
with a basin 2N states large, the network loses its capacity to deal
with ‘‘complexity’’. In conclusion, although asymmetry in synaptic
connection is a property of biological networks, asymmetry in
dense networks is not sufficient to realize a network capable of
storing and retrieving stimulus response associations. We now in-
vestigate the interplay between asymmetry and sparsity and how
the dilution helps asymmetric networks to store more memories.

3.2. From fully-connected to diluted asymmetric networks

A diluted and asymmetric discrete-time recurrent neural net-
work recovers an optimal storage capacity and stimulus-response
association time compared to a dense asymmetric recurrent neural
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Fig. 2. The panels on the left column report the averaged quantities in Table 1 as a function of the asymmetry degree ϵ for N = 8, 11, 14, 18. The panels on the right column
display the corresponding scaling laws with the system size N for ϵ = 0, 0.3, 0.7, 1. (a) Increasing the asymmetry slows down the convergence time ⟨D⟩ to the attractor, the
corresponding scaling law (b) is polynomial with N . (c) The asymmetry produces the emergence of limit cycles with length L > 2, at ϵ ∼ 0.75 the averaged ⟨L⟩ increases
exponentially ∼ 2γN with exponent γ = 0.1 (d), which indicates exponentially long limit cycles. (e–f) Increasing asymmetry in fully connected neural networks leads to a
drastic reduction of the number of attractors which develop larger basins (g–h). This implies a loss of computational ability, because for larger ϵ the network becomes unable
to cluster the input data in sub-domains.

network. Greater dilution increases the number attractors and
accelerates the retrieval process. Here, we analyze the same quan-
tities measured in the previous section, but we consider different
dilution values ρ ∈ (0, 1), and keep constant the asymmetry
coefficient ϵ = 1. Thus, we consider asymmetric networks at
different dilution levels. In Fig. 3, we report how the convergence
timeD changes with the dilution ρ (a) and how it scales withN (b).
Increasing dilution ρ drastically decreases the average stimulus-
response association ⟨D⟩ for pattern retrieval. In other words, the
dilution improves the ability of the network to converge to an
attractor. Fig. 3(c) shows how as dilution increases the length of
limit cycles is reduced. In highly diluted systems (ρ above 0.7), a
polynomial fit better predicts the observed data compared to an
exponential fit (d). The scaling coefficient is γp = 0.66 ± 0.07
for ρ = 0.95. In other words, for diluted networks the limit
cycles length does not scale exponentially with N anymore, and
the ‘‘chaotic’’ regime ceases.

Fig. 4 reports themain result of the presentwork. It provides di-
rect evidence of the nontrivial effect of dilution: increasing dilution
in an asymmetric network causes the appearance of an unexpected
maximum for the storage capacity ⟨C⟩ at ρ = 0.95 (a). This value
approximately corresponds to 90% of zeros in the synaptic matrix,
meaning only 10% of the neuron pairs are connected. The height
of the peak exponentially scales with the network size N (b) with
γe = 0.28 ± 0.02 for ρ = 0.95, which is approximately the
same scaling value estimated for ⟨C⟩ in fully-connected symmetric
networks with ϵ = 0, ρ = 0.

A caveat is due because finite size effects may determine the
emergence of the peak. Indeed, it is unclear, given the current

observations, if, for large N , the peak position around ρ = 0.95
is stable or if it drifts towards ρ = 1 (finite size effect). For this
purpose, possible future investigation could be the analytical esti-
mation of the peak position given the thermodynamic limit, which
may be obtained with the replica method or the more appropriate
cavity method (Mezard et al., 1987). It is important to point out
that if it is actually true that the peak drifts and disappears in the
thermodynamic limit, this implies that its maximum position gets
closer and closer to the ‘‘empty’’ matrix value ρ = 1. Given that
the peak height will most likely increase exponentially with N , we
would find that an exponential number of stimulus-response asso-
ciations could be stored in almost-connection-free large networks.

To qualitatively validate the persistence of the peak for large
networks, we implemented a Monte Carlo experiment that es-
timates the average number of attractors ⟨C⟩ for networks with
N = 45, ϵ = 1 and for 0 ≤ ρ ≤ 1. For each network, we
sampled 28 initial conditions out of 245, thus we explore a fraction
equal to 10−11 of the entire initial condition space. This estimate
is biased differently depending on the network’s specific values of
symmetry ϵ and dilution ρ, because for certain values of symmetry
ϵ and dilution ρ we have a different distribution of the size of the
attraction basins, which produces a disproportion in the sampling
probability of attractors with small attraction basins. For N = 45,
we find that the peak at ρ = 0.95 is preserved, but that the value of
⟨C⟩ relatively raises for ρ ≪ 0.8 compared to ρ ≫ 0.8, because for
ρ ≪ 0.8, ⟨C⟩ is overestimated with regard to the estimate at ρ ≫

0.8. This indicates the random sampling inapplicability and the
need for an exhaustive scan of the initial condition. Furthermore,
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Fig. 3. The panels on the left, (a) and (c), show respectively how the average convergence time ⟨D⟩ and the average limit cycle length ⟨L⟩ change over different ρ values given
N = 13, 14, 16, 18. The panels on the right, (b) and (d), show how ⟨D⟩ and ⟨L⟩ scale over different N values given ρ = 0, 0.4, 0.8, 0.95. Increasing sparsity in asymmetric
matrices reduces the convergence time and the attractor lengths. Thus, sparse matrices recover computation ability and lose exponentially long limit cycles characteristic
of the chaotic regime.

Fig. 4. (a) The plot shows how ⟨C⟩ changes with the dilution coefficient ρ for different values of N , N = 13, 14, 16, 18. (b) The plot shows how ⟨C⟩ scales with N for
ρ = 0, 0.4, 0.8, 0.95. The inset shows the exponential coefficients for different values of ρ. The figure reports the main result of the present work. As sparsity in fully
asymmetric matrix is increased, an optimal region appears: the non-monotonic peak in which the network architecture admits an exponentially large number of attractors.
Furthermore, as shown in Fig. 3, in the same regime, the network is able to quickly recall memories converging to the corresponding attractor, and the attractor is generally
a limit cycle with small L. All these features show an optimal asymmetric/diluted network regime that maximizes the storage capacity and the recovery efficiency.
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Fig. 5. (a) The plot shows how the average basin size ⟨S⟩ changes as a function of the dilution parameter ρ for different values of N , N = 13, 14, 16, 18. (b) Shows how
⟨S⟩ scales with N for ρ = 0, 0.4, 0.7, 0.95. The inset shows the exponential scaling coefficients for different ρ values. This figure shows that the region with the maximum
storage capacity is characterized by many small attraction basins.

this observation reinforces the hypothesis that for largeN the peak
persists around ρ = 0.95.

Fig. 5 shows how the average basin size ⟨S⟩ changes as a func-
tion of the dilution and of the network size N . In correspondence
of the peak in ⟨C⟩, the dimension of the attraction basins decreases
(see Fig. 5(a)). The state space tends to be subdivided in a large
number of small regions, each with its attractor. This and the fast
stimulus-response association tells us that the network is able
to quickly subdivide the inputs in clusters: in fact, at ρ = 0.95,
the average convergence time is strongly reduced with respect
to the chaotic regime and its scaling turns from exponential to
polynomial (see Fig. 3, (a)–(b)). All these observations allow us
to conclude that asymmetric-diluted recurrent neural networks
exhibit optimal information processing and memory storage for ρ
= 0.95 and ϵ = 1.

4. Discussion

This paper discusses how the dilution and asymmetry of a
discrete-time recurrent neural network connectivity matrix J in-
fluences the network’s limit behavior storage capacity and its
response time. More precisely, it explores the effect of dilution in
a discrete-time recurrent neural network of binary neurons with
an asymmetric excitatory/inhibitory connectivity matrix. Given an
arbitrary learning rule, and an incremental sequence of memo-
ries, a recurrent neural network, reaches a limit behavior storage
limit. We suppose that this limit is in general characteristic of the
particular learning rule. To go beyond the limitation of having to
assume a particular learning rule, we consider the recurrent neural
network limit behavior storage capacity as the upper bound of the
limit behavior storage capacity of any arbitrary learning rule. Fur-
thermore, we assume that the connectivity matrix of a recurrent
neural networkwhich has stored a number of limit behaviors close
to the storage limit must have a connectivity matrix character-
ized by a specific structure with certain values of asymmetry and
dilution. Clearly, this characteristic connectivity structure must
approach the structure of a recurrent neural network with the
largest number of attractors obtained from a pool of all possible
networks, because this should be equivalent to the network that

has potentially stored the largest number of memory vectors. To
find this characteristic storing structure, we sample random con-
nectivity matrices J of arbitrary asymmetry ϵ and dilution ρ, and
for each matrix we map the full attractor basin for all 2N initial
conditions. This allows us to examine the neural network’s storage
capacity, and measure how quickly it clusters 2N initial conditions
into the corresponding attractors. We considered the scenario in
which the network is potentially able to store memories both as
fixed point attractors and limit cycles attractors, without imposing
any a priori learning role.

We found two regions in the asymmetric/diluted space (ϵ, ρ)
of all possible sampled networks in which neural networks exhibit
optimal storage capacity. The first optimal storage capacity region
contains asymmetric ϵ = 1 and diluted ρ ∼ 0.95 connectivity
matrices. Thismeans that a large fraction (∼90%) of elements in the
connectivity matrix are zero. The second optimal region incorpo-
rates fully-symmetric ϵ = 0, and fully connected matrices ρ = 0,
in this region almost all connectivity matrix elements are non-
null. Similar connectivity as in the first region is observed in the
neocortex and in the CA3 region of the hippocampus (Perin et al.,
2011;Witter, 2010). These natural neural networks are implicated
in memory storage and retrial. These observations are coherent
with previous analytical and computational observations (Kim et
al., 2017; Monteforte &Wolf, 2012; van Vreeswijk & Sompolinsky,
1998), but it was unknown how this optimal connectivity changes
in the surrounding of the optimal value of ρ andwas considered as
substantial evidence againstHebbian learning. For this reasonHeb-
bian learning is considered as a poor model of learning in animal
neural networks. Contrarily, the second region is only predicted by
Hebbian learning but is not observed in natural neural networks.
Furthermore, we found that in the fully-connected ρ = 0 and
fully-asymmetric region ϵ = 1, the recurrent neural networks
exhibit a very low storage capacity, and large basins of attraction,
which implies that the network is no longer able to distinguish and
separate different external stimuli. In addition, fully-connected
and asymmetric regions have very long (glassy) recognition times,
which compromise the ability of the recurrent neural network to
respond to external stimuli. From a neurobiological prospective,
this means that when a recurrent neural network drifts out of its
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optimal state for some external cause such as a disease, then the
network becomes less effective in separating different stimuli, and
discriminating errors from signals. In addition, its response times
become longer. In line with these observations, Tang et al. (2014)
report that the brain of patients affected by autism spectrumdisor-
ders (ASDs) presents an altered connectivity, or dilution, compared
to healthy individuals, and specifically reports an alteration in the
neocortex connectivity. Suppose that the brain regions involved in
ASDs are displaced from their optimal asymmetric/diluted region,
we could argue, given our observations, that this displacementmay
cause a disruption of the ability to separate different stimuli in
distinct responses, and produce longer response times.

5. Conclusion

From our exploration of the role of connectivity and symme-
try in recursive neural networks, we find two regions that opti-
mize limit behavior storage and signal-response association. The
first region is composed of asymmetric/diluted networks, and the
second region is formed of symmetric/fully-connected networks.
Furthermore, we found a third region made of asymmetric/fully-
connected networks characterized by chaotic and glassy limit be-
haviors. From these results we are left with the question of why
adaptation and evolution selected the first region. Is this because
more non-zero elements in the connectivitymatrix corresponds to
more costly connections? Is it because fully-connected networks
imply the existence of two axons between any two neurons and
thiswould be spatially impossible if not technically implausible for
large network sizes N? Is it because the natural learning rules that
guide neural networks development force them to dynamically
evolve in the second region?

Lastly, to partly overcome the smallness of N , we have also
analyzed the scaling properties of the main measured quantities.
We have found that the scaling behavior for the averaged number
of length 1 cycles in fully-connected symmetric networks are per-
fectly in agreement with theoretical values found by Tanaka and
Edwards (1980). Thus the averaged number of length 1 cycles is
not biased by the finite size effects. In addition, in the analyzed
range for small N , all the scaling laws appear highly robust. These
observations do not guarantee that the same occurs for the scaling
laws of other observable quantities in diluted networks. Neverthe-
less, it gives us confidence in the extrapolation of the scaling laws
observed in this paper.
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