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Abstract

Fuzzy logic aims at modeling logical reasoning with vague or imprecise statements, which may contain linguistic hedges. In fact, 
many hedges, e.g., very, highly, rather, and slightly, can be used simultaneously to express different levels of emphasis. Moreover, 
each hedge might have a dual one, e.g., slightly can be seen as a dual hedge of very. Thus, it is necessary to extend systems of 
fuzzy logic with multiple hedges. This work proposes two axiomatizations for multiple hedges as an expansion of a core fuzzy 
logic. In one axiomatization, hedges do not have any dual one while in the other, each hedge can have its own dual one. It is 
shown that the proposed logics not only cover a large class of hedge functions but also have all completeness properties as the 
underlying logic w.r.t. the class of their chains as well as distinguished subclasses of their chains, including standard completeness. 
The axiomatizations are also extended to the first-order level. Furthermore, we present a method to build linguistic fuzzy logics 
based on the axiomatizations and a hedge algebra, whose corresponding algebras use a linguistic truth domain taken from the hedge 
algebra, for representing and reasoning with linguistically-expressed human knowledge, where truth values of vague sentences are 
given in linguistic terms.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Previous works on adding hedges to logical systems of mathematical fuzzy logic (MFL) [9] include those by Hájek 
[18], Vychodil [37], and Esteva et al. [14]. In MFL, hedges are called truth-stressing or truth-depressing depending 
on whether they strengthen or weaken the meaning of the proposition. The intuitive interpretation of a truth-stressing 
(resp., truth-depressing) hedge on a chain of truth values is a subdiagonal (resp., superdiagonal) non-decreasing func-
tion preserving 0 and 1. Such functions are called hedge functions. Hájek [18] introduces an axiomatization of a 
truth-stressing hedge vt as an expansion of Basic Logic (BL) [17], and the resulting logic is called BLvt . Vychodil 
[37] extends BLvt to a logic BLvt,st with a truth-depressing hedge st dual to vt. The logics are shown to be algebraiz-
able and enjoy completeness w.r.t. the classes of their chains, but are not proved to enjoy standard completeness in 
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general. Moreover, Hájek and Vychodil’s axiomatizations do not cover a large class of hedge functions [14]. Hence, 
Esteva et al. [14] propose weaker axiomatizations over any core fuzzy logic for a truth-stressing hedge or/and a truth-
depressing one, which do not impose any more constraints on hedge functions, and the axiomatizations are proved to 
enjoy standard completeness.

This work proposes two axiomatizations over any propositional core fuzzy logic for multiple truth-stressing and 
truth-depressing hedges, one for non-dual hedges and the other for dual ones. The axiomatizations not only cover 
a large class of hedge functions but also have all completeness properties of the underlying core fuzzy logic w.r.t. 
the class of their chains and distinguished subclasses of their chains, including standard completeness. The axioma-
tizations are also extended to the first-order level. Moreover, we show how to build linguistic fuzzy logics based on 
the axiomatizations and hedge algebras [32,33] for representing and reasoning with linguistically-expressed human 
knowledge.

The remainder of the paper is organized as follows. Section 2 gives an overview of MFL, previous axiomatiza-
tions for hedges, linguistic truth domains and operations on them. Section 3 presents an axiomatization for multiple 
non-dual hedges while Section 4 provides an axiomatization for multiple dual ones. Section 5 shows how to build 
linguistic fuzzy logics. Section 6 extends the axiomatizations to the first-order level. Section 7 discuses related work. 
Finally, Section 8 concludes the paper.

2. Preliminaries

2.1. Preliminaries on mathematical fuzzy logic

Let L be a logic in a language L, a set of connectives with finite arity. A truth constant r is a special formula 
whose truth value under each evaluation is r . Formulae are built from propositional variables and truth constants 
using connectives in L. Each evaluation e of propositional variables by truth values uniquely extends to an evaluation 
e(ϕ) of all formulae ϕ using truth functions of connectives, which are operations of an algebra used to interpret the 
language. A formula ϕ is called an 1-tautology if e(ϕ) = 1 for every evaluation e. A number of 1-tautology formulae 
are taken as axioms of the logic. A theory is a set of formulae called special axioms. An evaluation e is called a model
of a theory T if e(ϕ) = 1 for all ϕ in T . A proof in a theory T is a sequence ϕ1, . . . , ϕn of formulae such that each 
element of the sequence is either an axiom of the logic or an element of T or follows from some preceding elements of 
the sequence using the deduction rule(s) of the logic. The last member ϕ of a proof in T is called a provable formula, 
denoted T �L ϕ. If T = ∅, it is said that ϕ is provable in the logic [17,9].

It is said that L is a Rasiowa-implicative logic [35,10] if there is a binary (either primitive or definable by a formula) 
connective → in its language such that:

(R) �L ϕ → ϕ,

(W) ϕ �L ψ → ϕ,

(MP) ϕ,ϕ → ψ �L ψ,

(T) ϕ → ψ,ψ → χ �L ϕ → χ,

(sCng) ϕ → ψ,ψ → ϕ �L c(χ1, . . . χi, ϕ, . . . , χn) → c(χ1, . . . χi,ψ, . . . , χn)

for each n-ary c ∈ L and each i < n.

Every finitary Rasiowa-implicative logic L is algebraizable and its equivalent algebraic semantics, a class of L-
algebras, is a quasivariety [5], denoted L. The algebraic semantics enjoys the following completeness.

Theorem 1 (Strong completeness). [9] For every set T ∪ {ϕ} of formulae, T �L ϕ iff for every A ∈ L and every 
A-model e of T , e(ϕ) = 1.

Every L-algebra A is endowed with a preorder relation ≤ by setting, for every a, b ∈ A, a ≤ b iff a ⇒ b = 1, 
where ⇒ is the truth function of →. A is called an L-chain if ≤ is a total order, i.e., A is linearly ordered. L is 
called a semilinear logic iff it is strongly complete w.r.t. the class of L-chains or, equivalently, if every L-algebra is 
representable as subdirect product of L-chains [3,10].

In the literature, most logical systems referred to as fuzzy logics are, indeed, a finitary Rasiowa-implicative semi-
linear logic. They belong to a large class of systems which are axiomatic expansions of MTL (monoidal t-norm based 
logic) satisfying (sCng) for any possible new connective [13]. Such systems are called core fuzzy logics. Well-known 
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examples of them are BL, G (Gödel logic), Ł (Łukasiewicz logic) [18], and MTL [13]. The language of MTL is de-
fined from a countable set of propositional variables p1, p2, . . . , three connectives &, →, ∧, and the truth constant 0. 
Further definable connectives are:

¬ϕ ≡ ϕ → 0,

1 ≡ ¬0,

ϕ ∨ ψ ≡ ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ),

ϕ ↔ ψ ≡ (ϕ → ψ) ∧ (ψ → ϕ).

The only deduction rule of MTL (and of the core fuzzy logics) is (MP).

Lemma 1. [13] The following formulae are provable in MTL and core fuzzy logics:

(ϕ → ψ) → (¬ψ → ¬ϕ) (1)

ϕ → (¬ϕ → ψ),ϕ → ¬¬ϕ, (ϕ&¬ϕ) → 0 (2)

(ϕ → ψ) ∨ (ψ → ϕ) (3)

The connective ∨ defined above is called a disjunction. Given a disjunction ∨ and a finitary inference rule (R): 
� � ϕ (axioms are seen as rules with � = ∅), the ∨-form of (R), denoted (R∨), is defined as the rule � ∨ p � ϕ ∨ p, 
where p is an arbitrary propositional variable not appearing in � ∪ {ϕ}. Let L1 be a logic with a disjunction ∨ and L2
be an expansion of L1 by a set of finitary rules R. Then, ∨ is a disjunction in L2 iff (R∨) holds in L2 for each (R) ∈ R. 
Moreover, if L is a finitary Rasiowa-implicative logic with a disjunction ∨ satisfying (3), L is semilinear [11].

Core fuzzy logics are semilinear and, thus, strongly complete w.r.t. the class of their chains. This completeness is 
sometimes refined to distinguished subclasses of chains as follows.

Definition 1. [8] Let L be a core fuzzy logic and K a class of L-chains. It is said that L has the (finite) strong 
K-completeness, (F)SKC for short, if for every (finite) set of formulae T and every formula ϕ, it holds that T �L ϕ

iff e(ϕ) = 1 for every L-algebra A ∈ K and each A-model e of T . It is said that L has the K-completeness, KC for 
short, when the equivalence is true for T = ∅.

Clearly, the SKC implies the FSKC, and the FSKC implies the KC. When K is the class of all chains whose support 
is the unit interval [0, 1] with the usual ordering, the (F)SKC can be called the (finite) strong standard completeness, 
(F)SSC for short. The (F)SKC have traditionally been proved by showing an embeddability property as follows.

Theorem 2. [8] Let L be a core fuzzy logic and K a class of L-chains. Then, (i) L has the SKC iff every countable 
L-chain is embeddable into some member of K; (ii) if the language of L is finite, L has the FSKC iff every countable 
L-chain is partially embeddable into some member of K, i.e., for every finite partial of a countable L-chain, there is a 
one-to-one mapping preserving the operations into some member of K.

G enjoys SSC and SKC for any class K of G-chains, and Ł enjoys FSSC and FSKC for any class K of MV-chains 
[9]. Let ∗, ∩, ∪, − denote truth functions of &, ∧, ∨, ¬, respectively. For BL, G and Ł, ∩ and ∪ are min and max, 
respectively.

2.2. Hájek, Vychodil, and Esteva’s axiomatizations

The logic BLvt of Hájek [18] is an expansion of BL with a new connective vt , for a truth-stressing hedge, and the 
following axioms:

(VT1) vtϕ → ϕ, (VT2) vt (ϕ → ψ) → (vtϕ → vtψ), (VT3) vt (ϕ ∨ ψ) → (vtϕ ∨ vtψ),

and the necessitation deduction rule: (NEC) from ϕ infer vtϕ.
Axiom (VT2) is indeed the well-known modal axiom K in modal logics. BLvt -algebras are expansions of BL-

algebras with a new unary operator. BLvt is complete w.r.t. the class of BLvt -chains. This completeness is extended 
to any axiomatic extension of BL such as G and Ł, but standard completeness is left open, except for G.
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Vychodil [37] extends BLvt to BLvt,st with a new truth-depressing hedge st , dual to vt , by the following additional 
axioms:

(ST1) ϕ → stϕ, (ST2) stϕ → ¬vt¬ϕ, (ST3) vt (ϕ → ψ) → (stϕ → stψ).

BLvt,st is complete w.r.t. the class of its chains, but standard completeness is not mentioned. Vychodil also introduces 
two slightly different axiomatizations (systems I and II) over BL for only st. More precisely, system I is composed of 
Axiom (ST1) and the following additional axioms:

(ST4) ¬st (0), (ST5) st (ϕ → ψ) → (stϕ → stψ),

while system II consists of (ST1), (ST4) and the below axiom:

(ST6) (ϕ → ψ) → (stϕ → stψ).

In general, Hájek and Vychodil’s axiomatizations do not cover a large class of hedge functions due to the presence 
of (VT2), (ST3), (ST5) or (ST6), which put a lot of constraints on the hedge functions. In particular, for Ł, the only 
truth-depressing hedge function satisfying the conditions is the identity (see Example 1 of Esteva et al. [14]).

To overcome the drawback, Esteva et al. [14] propose weaker axiomatizations over any core fuzzy logic for a 
truth-stressing hedge s or/and a truth-depressing one d . Let L be a core fuzzy logic, Ls,d is an expansion of L with 
two new connectives s and d by the following additional axioms:

(VTL1) sϕ → ϕ, (VTL2) s1, (STL1) ϕ → dϕ, (STL2) ¬d0,

and the following additional deduction rule:

(MON) from (ϕ → ψ) ∨ χ infer (hϕ → hψ) ∨ χ for h ∈ {s, d}.
We can have the axiomatizations Ls and Ld for s and d alone, respectively. The axiomatizations allow a very large 
class of hedge functions, which are only required to be subdiagonal (resp., superdiagonal) non-decreasing functions 
preserving 0 and 1 for the truth-stressing (resp., truth-depressing) hedge on a chain of truth values. It is proved that if 
L enjoys one of the completeness properties in Definition 1, including standard completeness, so does Ls,d .

2.3. Linguistic truth domains and operations

2.3.1. Linguistic truth domains
Let V, H, R, S, T, and F stand for very, highly, rather, slightly, true, and false, respectively. In hedge algebra (HA) 

theory [32,33], values of the linguistic variable Truth, e.g., VT and VSF, can be regarded as being generated from a 
set of primary terms G = {F, T } using hedges from a set H = {V, S, . . . } as unary operations. There exists a natural 
ordering among the values, e.g., ST < T. Thus, a term domain of Truth is a partially ordered set (poset) and can be 
characterized by an HA X = (X , G, H, ≤), where X is a term set, G is a set of primary terms, H is a set of hedges, 
and ≤ is a semantic order relation (SOR) on X preserving the natural ordering of the values.

There are natural semantic properties of hedges and terms. Hedges either increase or decrease the meaning of 
terms, i.e., ∀h ∈ H, ∀x ∈ X , either hx ≥ x or hx ≤ x. It is denoted by h ≥ k if a hedge h modifies terms more than or 
equal to another hedge k, i.e., ∀x ∈ X , hx ≤ kx ≤ x or x ≤ kx ≤ hx. Since H and X are disjoint, the same notation 
≤ can be used for different order relations on H and X without confusion. A hedge has a semantic effect on others. If 
h strengthens the degree of modification of k, i.e., ∀x ∈X , hkx ≤ kx ≤ x or x ≤ kx ≤ hkx, then h is positive w.r.t. k. 
If h weakens the degree of modification of k, i.e., ∀x ∈ X , kx ≤ hkx ≤ x or x ≤ hkx ≤ kx, then h is negative w.r.t. k. 
Let H(u) denote the set of all terms generated from u using hedges, i.e., H(u) = {σu|σ ∈ H∗}, where H∗ is the set 
of all strings of symbols in H including the empty one. An important semantic property of hedges, called semantic 
heredity, is that hedges change the meaning of a term, but somewhat preserve its original meaning. Thus, if hx ≤ kx, 
then ∀y ∈H(hx) and ∀z ∈H(kx), we have y ≤ z.

For Truth, primary terms F < T are denoted by c− and c+, respectively. H can be divided into two disjoint subsets 
H+ and H− by H+ = {h|hc+ > c+} and H− = {h|hc+ < c+}. For example, H = {V, H, R, S} is decomposed into 
H+ = {V, H } and H− = {R, S}. In fact, H+ and H− are the sets of truth-stressing and truth-depressing hedges, 
respectively. Hedges in each of H+ and H− may be comparable. So, H+ and H− become posets. Let I /∈ H be 



JID:FSS AID:7362 /FLA [m3SC+; v1.279; Prn:9/02/2018; 10:38] P.5 (1-13)

V.H. Le, D.K. Tran / Fuzzy Sets and Systems ••• (••••) •••–••• 5
an artificial hedge, called the identity, defined by ∀x ∈ X , Ix = x. I is the least element in each of H+ ∪ {I } and 
H− ∪ {I }. An HA is said to be linear if both H+ and H− are linearly ordered. The term domain X of a linear HA is 
also linearly ordered. In this work, we restrict ourselves to linear HAs.

A linguistic truth domain (LTD) taken from a linear HA X = (X , {c−, c+}, H, ≤) is the linearly ordered set X =
X ∪ {0, W, 1}, where 0 (AbsolutelyFalse), W (the middle truth value), and 1 (AbsolutelyTrue) are respectively the 
least, the neutral and the greatest elements of X, and ∀x ∈ {0, W, 1}, ∀h ∈H, hx = x [28,27].

2.3.2. Truth functions of hedge connectives
An extended order relation ≤e on H ∪ {I } is defined by [27,28]: ∀h, k ∈ H ∪ {I }, h ≤e k if one of the following 

conditions is satisfied: (i) h ∈ H−, k ∈ H+; (ii) h, k ∈ H+ ∪ {I } and h ≤ k; (iii) h, k ∈ H− ∪ {I } and h ≥ k. It is 
denoted by h <e k if h ≤e k and h �= k.

Definition 2. [27] Let X = (X , {c+, c−}, H, ≤) be a linear HA. Truth functions h• : X → X of all h ∈H∪ {I } satisfy 
the following:

∀x ∈ {0,W,1}, h•(x) = x (4)

∀x ∈ X,I •(x) = x (5)

h•(hc+) = c+ (6)

if x ≥ y,h•(x) ≥ h•(y) (7)

∀k ∈H ∪ {I } such that h ≤e k, h•(x) ≥ k•(x) (8)

Condition (4) says that the truth functions preserve 0 and 1 while by (7), they are non-decreasing. Since for all 
truth-stressing hedges h ∈ H+, we have h ≥e I , thus by (8), h•(x) ≤ I •(x) = x, i.e., h• is subdiagonal. Analogously, 
truth functions of all truth-depressing hedges are superdiagonal. Condition (6) ensures that if the truth value of the 
statement “Lucia is young” is very true, then that of the statement “Lucia is very young” is true. This result is also 
obtained when the fuzzy predicates and truth values are expressed by fuzzy sets [39,4]. It is shown in [28] that truth 
functions of hedges always exist.

2.3.3. Gödel operations
Gödel t-norm, its residuum, and negation are defined on an LTD X as follows:

x ∗ y = min(x, y), x ⇒ y =
{

1 if y ≥ x

y otherwise,
−x =

{
1 if x = 0
0 otherwise.

2.3.4. Łukasiewicz operations
To have well-defined operations, we consider only finitely many truth values. An l-limit HA, where l is a positive 

integer, is a linear HA in which all terms have a length of at most l + 1. An LTD taken from an l-limit HA is finite 
[28,27]. Łukasiewicz t-norm, its residuum can be defined on a finite LTD X = {v0, . . . , vn} with v0 ≤ v1 ≤ · · · ≤ vn as 
follows:

vi ∗ vj =
{

vi+j−n if i + j − n > 0
v0 otherwise,

vi ⇒ vj =
{

vn if i ≤ j

vn+j−i otherwise.

The negation is defined by: given x = σc, where σ ∈ H∗ and c ∈ {c+, c−}, y = −x, if y = σc′ and {c, c′} = {c+, c−}, 
e.g., V c+ = −V c−, V c− = −V c+.

3. Fuzzy logics with multiple hedges

This section proposes an axiomatization over any core fuzzy logic for multiple hedges, in which hedges do not have 
a dual one. A hedge may modify the meaning of propositions more than another [38,32], so in the axiomatization, 
there should be axioms expressing their comparative modification strength. To ease the presentation, let s0, d0 denote 
the identity connective, i.e., ∀ϕ, ϕ ≡ s0ϕ ≡ d0ϕ, and their truth functions s• and d• are the identity.
0 0
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Definition 3. Let L be a core fuzzy logic. A logic Lp,q
s,d , where p, q are positive integers, is an expansion of L with 

new unary connectives s1, ..., sp (for truth-stressers) and d1, ..., dq (for truth-depressers) by the following additional 
axioms, for i = 1,p and j = 1, q:

(Si) siϕ → si−1ϕ, (Sp+1) sp1, (Dj ) dj−1ϕ → djϕ, (Dq+1) ¬dq0,

and the following additional deduction rule:

(DRh) from (ϕ → ψ) ∨ χ infer (hϕ → hψ) ∨ χ, for every hedge h.

Axiom (Si) (resp., axiom (Dj )) expresses that si (resp., dj ) modifies meaning of propositions more than si−1
(resp., dj−1), e.g., V (resp., S) modifies truth more than H (resp., R) since T < HT < VT (resp., ST < RT < T). Rule 
(DRh) coincides with Rule (MON) for each h ∈ {s1, ..., sp, d1, ..., dq}. Using the same examples as in [14], it can be 
shown that our axiomatization cannot be readily simplified, e.g., by replacing Rule (DRh) with a simpler rule: either 
from ϕ → ψ infer hϕ → hψ or from ϕ infer hϕ.

Lemma 2. The following deductions are valid, for i = 1, ..., p and j = 1, ..., q:

�L
p,q
s,d

siϕ → ϕ (9)

�L
p,q
s,d

ϕ → djϕ (10)

�L
p,q
s,d

¬si0 (11)

�L
p,q
s,d

si1 (12)

�L
p,q
s,d

dj 1 (13)

�L
p,q
s,d

¬dj 0 (14)

ϕ → ψ �L
p,q
s,d

siϕ → siψ (15)

ψ �L
p,q
s,d

siψ (16)

ϕ → ψ �L
p,q
s,d

djϕ → djψ (17)

djϕ,ϕ → ψ �L
p,q
s,d

djψ (18)

siϕ,ϕ → ψ �L
p,q
s,d

siψ (19)

siϕ, si(ϕ → ψ) �L
p,q
s,d

siψ (20)

Proof. (9) follows from (Si), ..., (S1), and (T). (10) follows from (D1), ..., (Dj ), and (T). (11) follows immediately 
from (9) by taking ϕ = 0. (12) �L

p,q
s,d

spϕ → siϕ (for i < p, by (Sp), ..., (Si+1) and (T)); �L
p,q
s,d

sp1 → si1 (by taking 

ϕ = 1); �L
p,q
s,d

si1 (by (Sp+1) and (MP)). (13) follows immediately from (10) by taking ϕ = 1. (14) �L
p,q
s,d

djϕ → dqϕ

(for j < q , by (Dj+1), ..., (Dq), and (T)); �L
p,q
s,d

¬dqϕ → ¬djϕ (by (1) and (MP)); �L
p,q
s,d

¬dq0 → ¬dj 0 (by taking 

ϕ = 0); �L
p,q
s,d

¬dj 0 (by (Dq+1) and (MP)). (15) follows directly from (DRh) by taking χ = 0, h = si . (16) follows 

from (15) by taking ϕ = 1 and using (12). (17) follows directly from (DRh) by taking χ = 0, h = dj . (18) follows 
immediately from (17) and (MP). (19) follows immediately from (15) and (MP). (20) follows from (9), (MP) and 
(19). �

Note that (9), (12), (10), and (14) coincide with Axioms (VTL1), (VTL2), (STL1), and (STL2) in the axioma-
tization of Esteva et al., respectively. Properties (11)–(14) imply that truth functions of si and dj preserve 0 and 1. 
Properties (16) and (20) are the necessitation deduction rule and a deduction version of the K-like axiom used in 
Hájek’s and Vychodil’s axiomatizations, respectively. Properties (18) and (19) are a stronger version of (MP): if ϕ
implies ψ , then very (resp., slightly) ϕ implies very (resp., slightly) ψ .

Since (15) and (17) express that (sCng) is satisfied for each si and dj , Lp,q
s,d is a finitary Rasiowa-implicative logic, 

and its equivalent algebraic semantics is the class of Lp,q-algebras.
s,d
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Definition 4. An algebra A = 〈A, ∗, ⇒, ∩, ∪, 0, 1, s•
1 , ..., s•

p , d•
1 , ..., d•

q 〉 of type 〈2,2,2,2,0,0,1, ...,1〉 is an 
L

p,q
s,d -algebra if it is an L-algebra expanded by unary operators s•

i , d
•
j : A → A that satisfy, for all x, y, z ∈ A, i = 1,p

and j = 1, q ,

s•
i (x) ≤ s•

i−1(x) (21)

s•
p(1) = 1 (22)

d•
j (x) ≥ d•

j−1(x) (23)

d•
q (0) = 0 (24)

if (x ⇒ y) ∪ z = 1 then (s•
i (x) ⇒ s•

i (y)) ∪ z = 1 (25)

if (x ⇒ y) ∪ z = 1 then (d•
j (x) ⇒ d•

j (y)) ∪ z = 1 (26)

where s•
i and d•

j are truth functions of connectives si and dj , respectively.

By (21), s•
i (x) ≤ s•

0(x) = x, i.e., s•
i is subdiagonal. By (23), d•

j is superdiagonal. In a chain of truth values, the 
quasiequations (25) and (26) turn out to be equivalently expressed by: if x ⇒ y = 1, then s•

i (x) ⇒ s•
i (y) = 1 and 

d•
j (x) ⇒ d•

j (y) = 1, respectively, i.e., s•
i and d•

j are non-decreasing. Obviously, if 〈A,∗,⇒,∩,∪,0,1〉 is an L-chain, 

and s•
i , d•

j satisfy (21)–(26), the expanded structure 
〈
A,∗,⇒,∩,∪,0,1, s•

1 , ..., s•
p, d•

1 , ..., d•
q

〉
is an Lp,q

s,d -chain.

Theorem 3. Let L be a core fuzzy logic, K a class of L-chains, and Kp,q
s,d the class of the Lp,q

s,d -chains whose 
s•

1 , ..., s•
p, d•

1 , ..., d•
q -free reducts are in K. Then: (i) Lp,q

s,d is a conservative expansion of L; (ii) Lp,q
s,d is strongly com-

plete w.r.t. the class of all Lp,q
s,d -chains, i.e., Lp,q

s,d is semilinear; (iii) L has the FSSC, FSKC, SSC, and SKC iff Lp,q
s,d has 

the FSSC, FSKC, SSC, and SKC, respectively.

Proof. (i) Let L be the language of L. We show that, for every set � ∪ {ϕ} of L-formulae, � �L
p,q
s,d

ϕ iff � �L ϕ. 
Obviously, if � �L ϕ then � �L

p,q
s,d

ϕ. If � �L ϕ, there is an L-chain A and an A-evaluation e such that e is A-model 

of � and e(ϕ) �= 1. A can be expanded to an Lp,q
s,d -chain A′ by defining s•

i (1) = 1; ∀a ∈ A \ {1}, s•
i (a) = 0; d•

j (0) = 0; 

and ∀a ∈ A \ {0}, d•
j (a) = 1, for all i = 1,p and j = 1, q . It can be easily checked that s•

i and d•
j satisfy (21)–(26). 

Thus, in the expanded language, we have � �L
p,q
s,d

ϕ. (ii) Since Rule (DRh) is in and closed under ∨-forms, the 

connective ∨ remains a disjunction in the logic Lp,q
s,d . Moreover, since Property (3) is already valid in L, Lp,q

s,d is 
also semilinear. Therefore, Lp,q

s,d is complete w.r.t. the semantics of all Lp,q
s,d -chains. (iii) We prove for the case of the 

SSC, and the others can be done analogously. Since Lp,q
s,d is a conservative expansion of L, if Lp,q

s,d has the SSC, so 
does L. Assume that L has the SSC. We show that any countable Lp,q

s,d -chain A can be embedded into a standard 
Lp,q

s,d -chain. By Theorem 2, the s•
1 , ..., s•

p, d•
1 , ..., d•

q -free reduct of A can be embedded into a standard L-chain B =
〈[0,1],∗,⇒,∩,∪,0,1〉 by an one-to-one mapping f preserving ∗, ⇒, ≤, 0 and 1. Let s ′

i : [0, 1] → [0, 1] be defined 
as follows: for all x ∈ [0, 1], s′

0(x) = x and for all i = 1,p, s′
i (x) = sup{f (si(xk))|xk ∈ A, f (xk) ≤ x}. It is not difficult 

to show that for all i = 1,p, s′
i is non-decreasing, s′

i (f (xk)) = f (si(xk)) for all xk ∈ A, and s′
i (x) ≤ s′

i−1(x) for all 
x ∈ [0, 1], i.e., all s′

i satisfy (21) and (25). Similarly, by defining d ′
j : [0, 1] → [0, 1] such that d ′

0(x) = x and for all 

j = 1, q , d ′
j (x) = sup{f (dj (xk))|xk ∈ A, f (xk) ≤ x}, we have all d ′

j satisfy (23), (26), and d ′
j (f (xk)) = f (dj (xk))

for all xk ∈ A. Hence, B expanded by all s′
i and d ′

j is a standard Lp,q
s,d -chain where A is embedded. �

4. Fuzzy logics with multiple dual hedges

It can be observed that each hedge can have a dual one, e.g., slightly and rather can be seen as a dual hedge of very
and highly, respectively. Thus, there might be additional axioms expressing dual relations of hedges. In the following 
axiomatization, each hedge can have its own dual one.
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Definition 5. Let L be a core fuzzy logic. A logic L2n
s,d , where n is a positive integer, is an expansion of L with new 

unary connectives s1, ..., sn (for truth-stressers) and d1, ..., dn (for truth-depressers) by the axioms (Si), (Sn+1), (Di), 
(SDdh

i ) diϕ → ¬si¬ϕ, for i = 1, n, and the deduction rule (DRh).

The logic L2n
s,d is L expanded by 2n hedges, where hedges are divided into pairs of dual ones. This axiomatization 

differs from the one for multiple hedges without duality in that (Dq+1) is replaced with (SDdh
i ), expressing a dual 

relation between hedges si and di . Axiom (SDdh
i ) coincides with (ST2) in Vychodil’s axiomatization. For the case 

of very, slightly, and ϕ = short , it means “slightly short implies not very tall”. Interestingly, as shown in Lemma 3
below, siϕ → ¬di¬ϕ can be derived from this axiomatization. Hence, “very short” implies “not slightly tall” as well.

One could consider other similar dual relations such as ¬si¬ϕ → diϕ, ¬si¬ϕ ↔ diϕ, ¬siϕ → di¬ϕ, si¬ϕ →
¬diϕ, ¬diϕ → si¬ϕ, di¬ϕ → ¬siϕ, ¬di¬ϕ → siϕ, and ¬di¬ϕ ↔ siϕ. There are a number of researchers, to some 
extent, mentioning this kind of relationship. Cock et al. [12], Kerre and Cock [22] discuss a possible connection 
between a truth-stressing (therein called intensifying) hedge very and a truth-depressing (therein called weakening) 
hedge more or less as equality of “not very ϕ” and “more or less not ϕ” while Bolinger [6] describes the meaning 
of “not overly bright” as “rather underly bright, rather stupid”. Hersh and Caramazza [21] prove experimentally that 
“not very tall” is occasionally interpreted as “sort of short” (“more or less short”). Also, in Example 3 of Le et al. 
[28], we put h•

r (x) = −h•−r (−x), where if h•
r is the truth function of a truth-stressing (resp., truth-depressing) hedge 

hr then h•−r is that of a truth-depressing (resp., truth-stressing) hedge h−r .
It can be seen that in a case when there is one truth-stressing (resp., truth-depressing) hedge without a dual one, we 

just add the axioms expressing its relations to the existing truth-stressing (resp., truth-depressing) hedges according to 
their comparative modification strength.

Since in the proof of Lemma 2, (Dq+1) is not used for any items except (14), all items in Lemma 2 except (14) are 
valid for �L2n

s,d
. In fact, (14) also holds for �L2n

s,d
as follows.

Lemma 3. The following deductions are valid, for i = 1, ..., n:

�L2n
s,d

¬di0 (27)

�L2n
s,d

¬si−1¬ϕ → ¬si¬ϕ (28)

�L2n
s,d

siϕ → ¬di¬ϕ (29)

Proof. (27) �L2n
s,d

di0 → ¬si¬0 (by (SDdh
i ) with ϕ = 0); �L2n

s,d
di0 → ¬si1; �L2n

s,d
¬¬si1 → ¬di0 (by (1) and (MP)); 

�L2n
s,d

si1 → ¬di0 (by (2) and (T)); �L2n
s,d

¬di0 (by (12) and (MP)). (28) �L2n
s,d

si¬ϕ → si−1¬ϕ (by (Sdh
i )); �L2n

s,d

¬si−1¬ϕ → ¬si¬ϕ (by (1) and (MP)). (29) �L2n
s,d

di¬ϕ → ¬si¬¬ϕ (by (Sdh
i )); �L2n

s,d
¬¬si¬¬ϕ → ¬di¬ϕ (by (1) 

and (MP)); �L2n
s,d

si¬¬ϕ → ¬di¬ϕ (by (2) and (T)); �L2n
s,d

siϕ → ¬di¬ϕ (by (2), (15) and (T)). �
L2n

s,d is also a finitary Rasiowa-implicative logic, and its equivalent algebraic semantics is the class of L2n
s,d -algebras.

Definition 6. An algebra A = 〈A, ∗, ⇒, ∩, ∪, 0, 1, s•
1 , ..., s•

n, d•
1 , ..., d•

n〉 of type 〈2,2,2,2,0,0,1, ...,1〉 is an 
L2n

s,d -algebra if it is an L-algebra expanded by unary operators s•
i , d

•
i : A → A, for i = 1, n, that satisfy (21)–(23)

and (25)–(26) (note that p = q = n) and

d•
i (x) ≤ −s•

i (−x). (30)

Property (21) says that s•
i (x) and x are lower and upper boundaries of s•

i−1(x) for all i = 2, n, respectively. 
Also, (23) and (30) state that d•

i−1(x) and −s•
i (−x) are lower and upper boundaries of d•

i (x), respectively. Thus, 
given a non-decreasing, subdiagonal hedge function s•

n preserving 0 and 1, boundaries for the other hedge functions 
s•
n−1, . . . , s

•
1 , d•

1 , . . . , d•
n are one by one determined by preceding functions in the sequence as in Table 1. With such 

boundaries, the functions are only further required to be non-decreasing. In fact, given a hedge function of any hedge, 
boundaries for the other hedge functions can be determined in a similar manner.
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Table 1
Boundaries of hedge functions.

Hedge function Lower boundary Upper boundary

s•
n−1(x) s•

n(x) x

. . .

s•
1 (x) s•

2 (x) x

d•
1 (x) x −s•

1 (−x)

. . .

d•
n(x) d•

n−1(x) −s•
n(−x)

Theorem 4. Let L be a core fuzzy logic, K a class of L-chains, and K2n
s,d the class of the L2n

s,d -chains whose 
s•

1 , ..., s•
n, d•

1 , ..., d•
n -free reducts are in K. Then: (i) L2n

s,d is a conservative expansion of L; (ii) L2n
s,d is strongly complete 

w.r.t. the class of all L2n
s,d -chains, i.e., L2n

s,d is semilinear; (iii) L has the FSSC, FSKC, SSC, and SKC iff L2n
s,d has the

FSSC, FSKC, SSC, and SKC, respectively.

Proof. Proofs of (i) and (ii) are respectively the same as those of items (i) and (ii) of Theorem 3. For (iii), let s′
i and 

d ′
i be defined as in item (iii) of Theorem 3. It remains to prove that they satisfy (30). We have ∀xk ∈ A, f (d•

i (xk)) ≤
f (−s•

i (−xk)) = f (s•
i (xk ⇒ 0) ⇒ 0) = f (s•

i (xk ⇒ 0)) ⇒ f (0) = f (s•
i (xk ⇒ 0)) ⇒ 0 =(∗) s′

i (f (xk ⇒ 0)) ⇒ 0 =
s′
i (f (xk) ⇒ 0) ⇒ 0 = −s′

i (−f (xk)) ((∗) holds since (xk ⇒ 0) ∈ A). Hence, d ′
i (x) = sup{f (d•

i (xk))|xk ∈ A, f (xk) ≤
x} ≤ sup{−s′

i (−f (xk))|xk ∈ A, f (xk) ≤ x} ≤ −s′
i (−x) since all −s′

i (−f (xk)) ≤ −s′
i (−x). �

5. Linguistic fuzzy logics with multiple hedges

Let L be a core fuzzy logic. Given a linear HA X, we can build a linguistic fuzzy logic with multiple hedges, 
denoted Llh, and a linguistic fuzzy logic with multiple dual hedges, denoted Lldh, based on L and the HA for repre-
senting and reasoning with linguistically-expressed human knowledge. The algebras of the logics utilize an LTD X
taken from the HA.

For instance, let X be the HA (X , {c−, c+}, H = {V, H, R, S}, ≤). X is a linear HA since in H+, we have H < V , 
and in H−, R < S. Hence, S <e R <e I <e H <e V . By (8), we have ∀x ∈ X, V •(x) ≤ H •(x) ≤ x ≤ R•(x) ≤ S•(x). 
This is in accordance with fuzzy-set-based interpretations of hedges [38], which satisfy the semantic entailment [23]:

x is veryA ⇒ x is highlyA ⇒ x is A ⇒ x is rather A ⇒ x is slightlyA

where A is a fuzzy predicate.
The logic Llh is an expansion of L with new unary connectives V, H, R, S by the following additional axioms:

(Slh
1 ) Hϕ → ϕ,

(Dlh
1 ) ϕ → Rϕ,

(Slh
2 ) V ϕ → Hϕ,

(Dlh
2 ) Rϕ → Sϕ,

(Slh
3 ) V 1,

(Dlh
3 ) ¬S0,

and the following additional deduction rule:

(DRlh) from (ϕ → ψ) ∨ χ infer (hϕ → hψ) ∨ χ, for each h ∈ {V,H,R,S}.
The equivalent algebraic semantics of Llh is the class of Llh-algebras. An Llh-algebra is an L-algebra expanded by 
unary non-decreasing operators V •, H •, R•, S• : X → X satisfying, ∀x ∈ X,

H •(x) ≤ x,

R•(x) ≥ x,

V •(x) ≤ H •(x),

S•(x) ≥ R•(x),

V •(1) = 1,

S•(0) = 0.

Similarly, the logic Lldh is an expansion of L by Axioms (Slh
1 ), (Slh

2 ), (Slh
3 ), (Dlh

1 ), (Dlh
2 ), (SDldh

1 ) Rϕ → ¬H¬ϕ, 
(SDldh

2 ) Sϕ → ¬V ¬ϕ, and the deduction rule (DRlh). The equivalent algebraic semantics of Lldh is the class of 
Lldh-algebras. The definition of an Lldh-algebra can be obtained from that of an Llh-algebra by removing Condition 
S•(0) = 0 and adding S•(x) ≤ −V •(−x), R•(x) ≤ −H •(−x). Note that there always exist hedge functions satisfying 
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all the above conditions. For example, the hedge functions given in Example 3 of Le et al. [28] (therein called inverse 
mappings of hedges) for a general linear HA. The HA X given here can be obtained from that general linear HA by 
putting p = q = 2, h−2 = S, h−1 = R, h0 = I , h1 = H , and h2 = V .

Obviously, Theorem 3 (resp., Theorem 4) holds for Llh (resp., Lldh).
In particular, given Gödel and Łukasiewicz operations respectively defined in Subsections 2.3.3 and 2.3.4, we can 

have linguistic fuzzy logics based on G or Ł.

6. First-order fuzzy logics with multiple hedges

In order to save space, we do not recall several notions and results of first-order core fuzzy logics here. For more 
detail, the reader is referred to Cintula et al. [9]. Given a propositional core fuzzy logic L, the language PL of the 
first-order core fuzzy logic L∀ is built from the propositional language L of L by extending it with a non-empty set of 
predicate symbols Pred , a set of function symbols Func (disjoint with Pred), a set of object variables Var, and two 
quantifiers ∃ and ∀. For first-order core fuzzy logics, in order to obtain completeness w.r.t. linearly ordered algebras 
for semilinear logics, several additional axioms are added, e.g., Axiom (∀3) in the sequel. Hence, it is usual to restrict 
the semantics to chains only. The axioms for L∀ are obtained from those of L by substituting formulae of PL for 
propositional variables and adding the following axioms for quantifiers:

(∀1) (∀x)ϕ(x) → ϕ(t), where the term t is substitutable for x in ϕ

(∃1) ϕ(t) → (∃x)ϕ(x), where t is substitutable for x in ϕ

(∀2) (∀x)(ψ → ϕ) → (ψ → (∀x)ϕ), where x is not free in ψ

(∃2) (∀x)(ϕ → ψ) → ((∃x)ϕ → ψ), where x is not free in ψ

(∀3) (∀x)(ψ ∨ ϕ) → (ψ ∨ (∀x)ϕ), where x is not free in ψ

The deduction rules of L∀ are (MP) and generalization: (Gen) From ϕ infer (∀x)ϕ.
The syntax and semantics of first-order core fuzzy logics are bounded together by the following completeness 

theorem.

Theorem 5. [8] For any first-order core fuzzy logic L∀ with a predicate language PL, any PL-theory T , and any 
PL-formula ϕ, the following are equivalent: (a) T �L∀ ϕ; (b) 〈A, M〉 |= ϕ for each model 〈A, M〉 of T with A being 
a countable L-chain.

The notions SKC, FSKC, and KC can be defined similarly to the propositional case. Theorem 5 states that every 
first-order core fuzzy logic enjoys the SKC, where K is the class of all countable chains.

Definition 7 (First-order fuzzy logic with multiple non-dual hedges). Given a first-order core fuzzy logic L∀, let Lp,q
s,d ∀

be the expansion of L∀ with new unary connectives s1, ..., sp , d1, ..., dq , axioms (Si), (Sp+1), (Dj ), (Dq+1), and the 
deduction rule (DRh), for i = 1,p and j = 1, q .

Lp,q
s,d ∀ can be obtained by expanding Lp,q

s,d to the first-order level as above.

Theorem 6. Lp,q
s,d ∀ is a conservative expansion of L∀, i.e., for every set T ∪ϕ of PL-formulae, T �L

p,q
s,d ∀ ϕ iff T �L∀ ϕ, 

where PL is the language of L∀.

Proof. The proof is similar to that of item (i) of Theorem 3. �
Let A,B be two algebras of the same type with (defined) lattice operations sup, inf. It is said that an embedding 

f : A → B is a σ -embedding if f (supC) = supf [C] (whenever supC exists) and f (infD) = inff [D] (whenever 
infD exists) for each countable C, D ⊆ A, i.e., f preserves existing suprema and infima. A usual way to prove SKC 
is to show that every non-trivial countable L-chain can be σ -embedded into some chain of K. In this case, it is said 
that L has the K-σ -embedding property. This is a sufficient, but in general not necessary, condition for the SKC [8].
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Theorem 7 (Strong standard completeness). Let L be a core fuzzy logic, K the class of all standard L-chains, and 
K

p,q
s,d the class of all standard Lp,q

s,d -chains whose s•
1 , ..., s•

p, d•
1 , ..., d•

q -free reducts are in K. Then: (i) If L has the 
K-σ -embedding property, then Lp,q

s,d ∀ has the SKp,q
s,d C, i.e., SSC. (ii) If L does not have K-embedding property, then 

Lp,q
s,d ∀ does not have the SKp,q

s,d C.

Proof. (i) It suffices to prove that any non-trivial countable Lp,q
s,d -chain A can be σ -embedded into some standard 

chain of Kp,q
s,d . The proof is similar to that of item (iii) of Theorem 3 taking into account that the mapping f preserves 

suprema, infima, and thus the order relation. (ii) Since L does not have the K-embedding property, L∀ does not enjoy 
the SKC. Moreover, since Lp,q

s,d ∀ is a conservative expansion of L∀, Lp,q
s,d ∀ does not have the SKp,q

s,d C either. �
Theorem 7 can be generalized to arbitrary classes of L-chains and their s•

1, ..., s•
p, d•

1 , ..., d•
q -expansions as follows.

Corollary 1 (Strong K-completeness). Let L be a core fuzzy logic, K a class of L-chains, and Kp,q
s,d the class of the 

Lp,q
s,d -chains whose s•

1 , ..., s•
p, d•

1 , ..., d•
q -free reducts are in K. Then: (i) If L has the K-σ -embedding property, then 

Lp,q
s,d ∀ has the SKp,q

s,d C. (ii) If L does not have K-embedding property, then Lp,q
s,d ∀ does not have the SKp,q

s,d C.

Definition 8 (First-order fuzzy logic with multiple dual hedges). Given a first-order core fuzzy logic L∀, let L2n
s,d∀

be the expansion of L∀ with new unary connectives s1, ..., sn, d1, ..., dn, axioms (Si), (Sn+1), (Di), (SDdh
i ), and the 

deduction rule (DRh), for i = 1, n.

Similar to the case of Lp,q
s,d ∀, the following theorem can be proved.

Theorem 8. Let L be a core fuzzy logic, K a class of L-chains, and K2n
s,d the class of the L2n

s,d -chains whose 
s•

1 , ..., s•
n, d•

1 , ..., d•
n -free reducts are in K. Then: (i) The logic L2n

s,d∀ is a conservative expansion of the logic L∀. 
(ii) If L has the K-σ -embedding property, then L2n

s,d∀ has the SK2n
s,dC. (iii) If L does not have K-embedding property, 

then L2n
s,d∀ does not have the SK2n

s,dC.

In the case that K is the class of all standard L-chains, we have the corresponding result for the SSC of L2n
s,d∀.

7. Related work

In addition to [18], Hájek has other works on adding hedges to logical systems of MFL. In [20], the authors show 
that the Yashin strong future tense operator, a closure operator satisfying Axiom K, can be interpreted as a hedge 
over G. In [19], two unary connectives L (for truth-stresser) and U (for truth-depresser), which are idempotent w.r.t. 
the monoidal operation, are added to BL� (BL expanded with the projection operator �) to obtain the logic BL!

LU .
In [2,15,16], G is expanded with a monotone unary operator ◦ interpreted as monotone functions f : [0, 1] → [0, 1]

preserving 1, but not necessarily preserving 0. The proposed logics in [15] can be regarded as an expansion of G with a 
truth-stresser since ◦ satisfies a stronger version of Axiom K, namely, ◦(ϕ → ψ) ↔ (◦ϕ → ◦ψ), and the necessitation 
rule.

Another work on logics with truth-stressers is by Ciabattoni et al. [7]. In the study, a unary modality s, which is 
an operator satisfying Axiom K and the necessitation rule, is added to extensions L of the logic MTL, e.g., MTL, BL, 
SMTL, and IMTL, by the following axiomatizations:

L-KTr = L + (VT1) + (VT2) + (VT3) + (NEC)

L-S4r = L-KTr + (VT4) s(ϕ) → s(s(ϕ))

Proof systems for the new logics are developed, and their algebraic and completeness properties are studied. Indeed, 
the logic BL-KTr is Hájek’s BLvt . For the logic L-S4r , s becomes a closure operator. The authors also prove standard 
completeness of the logics L-S4r for different underlying logics L.
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Montagna [31] studies the system obtained by adding to a fuzzy logic L a unary connective called storage operator
acting as an idempotent truth-stresser closed over its image.

Antoni et al. [1] study the relationship between heterogeneous concept lattices and concept lattices with hetero-
geneous hedges, where hedges are interpreted as a unary operator which is subdiagonal and closed over its image, 
satisfies axiom K, preserves 1, but not necessarily preserves 0.

In [25], we expand fuzzy logic in a narrow sense with graded syntax [34] with multiple hedges, in which every 
hedge h satisfies the following axiom, among others:

(ϕ → ψ) → (hϕ → hψ),

which is indeed Axiom (ST6) and stronger than the rule (MON). The resulting logics are proved to also have the 
Pavelka-style completeness.

In spite of the significant contributions of the above papers, hedge functions that are either a closure operator or 
an idempotent operator, or satisfy Axiom K have a very limited behavior and can represent for some special cases of 
truth-stressing hedges [14].

In [28,27], fuzzy logic programming [36,30] is extended with hedge connectives to obtain fuzzy linguistic logic 
programming for representing and reasoning with linguistically-expressed human knowledge. The framework uses an 
LTD taken from a linear HA. It turns out that the truth functions of hedges therein are required to satisfy all conditions 
of a hedge function according to Esteva et al. [14]. The papers [29,24,26] contain preliminary results which are 
presented in complete form in the present work.

8. Conclusion

This paper proposes two axiomatizations for multiple hedges as an expansion over a core fuzzy logic. In one 
axiomatization, hedges do not have any dual relations while in the other, each hedge can have its own dual one. These 
axiomatizations can be seen as an expansion of those of Esteva et al. [14], which are an expansion of a core fuzzy logic 
with a truth-stressing hedge and/or a truth-depressing one. It is shown that the proposed logics not only cover a large 
class of hedge functions but also have all completeness properties of the underlying logic w.r.t. the class of its chains 
and distinguished subclasses of its chains, including standard completeness. The axiomatizations are also extended to 
the first-order level. Moreover, we show how to build linguistic fuzzy logics based on the axiomatizations and a linear 
hedge algebra for representing and reasoning with linguistically-expressed human knowledge, where truth values of 
vague sentences are given in linguistic terms, and many hedges are often used simultaneously to express different 
levels of emphasis.
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