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Abstract—Hyperspectral image (HSI) anomaly targets de-
tection has been widely used in disaster alarm and military
applications. Deep learning based HSI anomaly detector (AD)
performs better by learning high-level features. However, the
issues from heavy training computational burden and the model
mismatch bring new challenges for online applications in the
aspect of processing speed and detection accuracy. In this paper,
an online Maximum-Distance-Pixel-Library(MDPL) method is
proposed by using the most effective pixels to update deep auto-
encoder based HSI AD with less extra computation. Experimental
results on two recorded hyperspectral images show that the
proposed method outperforms the traditional real-time local
Reed-Xiaoli based detector in term of accuracy and processing
time. Compared with fully updating deep learning based HSI
AD, the proposed method performs higher time efficiency without
accuracy loss.

Index Terms—Hyperspectral image, anomaly detection, on-
board processing, online deep learning

I. INTRODUCTION

With hundreds of very narrow spectral bands, hyperspectral
image(HSI) can identify the material of objects [1]. Because
of the wide application scenarios, HSI anomaly detection has
gain growing interest from researchers [2].

In general, an anomaly target in HSI is defined as an object
or pixel which is different with most of the other pixels in
term of spectral signature [3], such as a ship on the sea. In
most of the monitoring applications, the detection along with
image collection is usually required. Because the earlier alarm
information is received, the more effective operations can be
taken before disaster bursting. Such as fire monitoring in the
forest, the detection result is expected to be received in a
negligible time after data collection. In general, a tolerable
delay may range from one to tens of seconds depending
on application requirements. So some of the HSI ADs are
implemented onboard to overcome the data link delay to
realize online or real-time detection. But the processing is
usually limited by onboard computer’s performance.

Among the HSI ADs, a widely studied algorithm is RXD,
which was proposed by Reed-Xiaoli [4] in 1990. The basic
assumption for RXD is that the image should follow n the
Gaussian distribution. By calculating the distance between
pixel under test (PUT) and the background, the anomalies can
be identified. RXD is widely used as baseline algorithm. As for

real-time anomaly detection mission, in 2014, Shih-Yu Chen
[5] proposed a real-time causal RXD based HSI AD (RT-CK-
RXD). Then, in 2017, Weiwei Deng [6] proposed a real-time
local RXD based HSI AD (BLRXD) which calculates causal
sample covariance matrix and updates the covariance matrix
with Woodburys lemma. However, the image distribution
assumption requirement from RXD based AD may not always
be well met in real HSI AD applications, which may decrease
the detection accuracy.

Recently, deep learning based HSI processing methods have
received more attention. They have been proved to better
extract the high level spectral and spatial features from HSI
data [7], [8]. In 2016, Emrecan Bat [9] proposed a deep
auto-encoder HSI AD which encodes the HSI pixel into a
sparse code to represent the high-level features of the complex
background. Then the reconstruction errors are calculated by
decoding the code image and regarded as anomaly score to
identify the anomalies. Based on similar principle, a DBN
reconstruction errors based HSI AD was proposed in Ref
[10] to improve accuracy as well. In 2017, Chunhui Zhao
[8] proposed a stacked denoising autoencoders based method
to learn high-level features from the hyperspectral image to
overcome the detection accuracy decline by the impact of noise
and nonlinear correlation on spectral information. However, in
real-time onboard detection applications, the camera platform
(such as satellite) flies over different kinds of ground scenes,
the HSI dataset features may change. For deep learning based
HSI AD, the change of features may lead to model mismatch
and cause the false alarms.

To fix model mismatch in real-time applications, following
challenges should be carefully considered.

1) The model should be updated according to the newly
input data to better adapt to the new features. In addi-
tion, for better accuracy, the previous samples’ features
should be contained in HSI AD during model updating
to keep global features of HSI.

2) To realize real-time detection, fewer samples are ex-
pected for model update. It is a contradiction to get
high detection accuracy with less samples. Therefore, an
efficient model update strategy needs to be elaborately
managed to balance them.
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In this paper, a deep auto-encoder based Maximum-
Distance-Pixel-Library (MDPL) algorithm is proposed to re-
alize an online HSI AD. With auto-encoder network, the
anomalies can be identified according to the reconstruction
error. A large reconstruction error usually means anomaly or
features change. That is the basic principle of our AD. Once
the feature change is detected, the model will be updated. In
order to reduce the update computation load, we only select
part of the newly input pixels by MDPL algorithm instead
of all the pixels. In MDPL, we judge a new pixel whether it
should be added to the update sample library according to its
distance with neighboring pixels. The main contributions of
this paper are summarized as follow:

1) To the best of our knowledge, we first proposed the deep
auto-encoder combined with maximum distance pixel
library(MDPL) algorithm to realize online HSI anomaly
dectection.

2) To reduce the computation burden without accuracy loss,
a continuous parameters update method is proposed for
SAE based HSI AD to keep the global features of HSI
dataset.

The remainder of this paper is organized as follows: In
section II, the basic methodology of SAE and weight based
HSI AD is described briefly. In section III, the proposed model
updating strategy is introduced in detail. Experiments on two
real HSI dataset are used to verify the proposed algorithm in
section IV. A brief conclusion is given in section V.

II. METHODOLOGY

In this section, an auto encoder based local HSI anomaly
detector is described briefly which is used to extract the feature
of HSI dataset and to give the reconstruction errors for each
pixel. Then, a local distance based discriminating method is
employed to identify the anomaly targets.

A. Deep Auto Encoder Network

A deep autoencoder network is stacked by several neural
networks with a symmetrical structure, such as deep belief
network(DBN), stacked auto-encoder(SAE). A basic structure
of the deep auto-encoder is given in the figure 1. The layers
which contain a certain number of neuron points are connected
by connection weights. For each neuron, it maps the non-linear
relation between its input and output by the activation function.
In general, the activation function is described as a formula 1
which is named sigmoid function.

f(z) =
1

1 + exp(−z)
(1)

The output of neurons in the (l + 1)-th layer is defined as
a(l+1) or hW,b(x) in formula 2a and 2b,

z(l+1) =W (l)a(l) + b(l) (2a)

hW,b(x) = a(l+1) = f(z(l+1)) (2b)

where W is the connection weight. b denotes the bias of the
l-th layer. Both of them are updated during the training.

In order to achieve unsupervised learning of the features
from HSI dataset, the first layer and the output layer are set
with the same neurons number. After training the network
by minimizing the loss function with gradient descent [11],
the network operates as an auto-encoder. For SAE, the loss
function is defined as formula 3,

J(W, b) =
1

2m

m∑
i=1

∥∥∥hW,b(x
(i))− y(i)

∥∥∥2+λ
2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W l

ji

)2
(3)

where λ is weight decay parameter, m is the number of train-
ing samples, y denotes the decoding output of the network,
nl is the total layer numbers of the network, sl is the neuron
number of l-th layer.

Each pixel of HSI is applied as an independent sample and
fed into the auto-encoder network for training and detecting.
Different spectral bands of each pixel are directly fed to
different neurons in input layer. For a new PUT, after encoding
and decoding, the neuron values in the middle layer are saved
as image code. The difference between PUT and its decode
value is defined as reconstruction error, named RecErr.
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Fig. 1: The symmetrical structure of auto-encoder network.

The SAE network structure of proposed method is shown in
figure 1. It was made up of five layers, and the neurons number
of first and last layers are the same with the HSI spectral bands
number. To realize sparse encoding, hidden layer size is less
than spectral bands.

B. Local Weight based HSI AD
In order to identify anomaly pixels, a local weight based

anomaly detector is introduced as follows. A dual window
[12]–[14] centered on the PUT is built up to generate neigh-
boring pixels as in figure 2. Then, anomaly score of the PUT
is measured by the distance between PUT and neighboring
pixels. The anomaly score δd is defined as in formula 4.
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Fig. 2: Dual window method to generate local pixels.

δd = 1/K
K∑
j=1

wtj(
D∑
i=1

|xji − yi|2)1/2, (4)

where K is the total number of local neighboring pixels,
wt is the weight of local pixel which is reciprocal of its
reconstruction error.

A greater anomaly score of a pixel means that this pixel has
higher probability to be an anomaly object.

III. PROPOSED INCREASING LEARNING METHODS

For onboard HSI AD, with the moving of the camera , the
features of HSI will change when different kind of ground
scenes are collected. To describe the HSI dataset better, the
features of the new scene need to be updated to HSI AD
model to fix mismatch problem during detection. However,
due to the limitation of onboard computing performance and
the short detection delay requirement, just part of the new
pixles can be selected out for model update to lower extra
computation load without lossing accuracy loss. Considering
the model mismatch is induced by the scene feature changing,
so one key factor in new sample pixel selecting is to get the
new features be contained. The sample selecting and the online
detection method is proposed as shown in figure 3.
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Fig. 3: The structure of proposed methods.

Before the anomaly detection, to initialize the connection
parameters and bias of the SAE, a quick training is executed

with a small size of initial pixels. The initial pixels can be the
pixels which are collected before the detection.

During the detection, the HSI pixels which are acquired
continually are fed to the auto-encoder one by one. According
to section II-A, the pixel code which is the output value
of neurons in the middle layer is generated by the SAE
network. To calculate the anomaly score in the formula 4, the
neighboring pixels in the figure 2 are fed to the autoencoder
to generate their pixel codes and reconstruction errors. The
anomaly score is used to identify the anomaly targets.

Since the pixel code can stand for the features of the
pixel, and reduce detection computation load with shorter data
width than spectral bands. The pixel code is stored in MDPL
for measuring the distances between new PUT and pixels in
MDPL. In general, if a PUT contains new features, its average
distance will be greater than others in MDPL. The average
distance is calculated by the formula 5. This principle is used
to determine which pixels should be used to update the auto-
encoder model.

Before the detection, the MDPL is empty. The pixel code
of the first PUT is added in MDPL, and its average distance
is set to 0.
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where k is the number of pixel code in MDPL, x(i)j and
x
(PUT )
j are the j-th dimension value of i-th pixel code

in MPDL and the PUT pixel code, respectively. To further
decrease the computation in updating, only the PUT whose
average distance Dist

(PUT )
th is larger than the maximum

distance in MDPL is selected to update the model. The average
distance and the pixel code selected PUT are added into MDPL
for next PUT checking.

In order to fix model mismatch, new features are updated to
the SAE model when a new PUT is determined for MDPL. To
keep the global features of the detected HSI scene, the SAE
model is updated by a forward propagation and a backward
propagation train without re-initial. Such train method can
perform almost the same accuracy with all the pixels being
used to update the model.

IV. EXPERIMENTS

A. Dataset for experiments

The proposed HSI AD are evaluated by two real HSI
dataset. The first HSI dataset was collected by the Airborne
Visible Infrared Imaging Spectrometer (AVIRIS) on Caminada
Bay in May 2010, which is embedded several image blocks
as anomaly targets. The image was downloaded from NASA1,
the file f100524t01p00r09. A part of this dataset with the size
of 1000×500 image is selected as a test image. The spatial
resolution is 12.2m, and the spectral band number is 224. To

1http://aviris.jpl.nasa.gov/



synthetic anomaly targets, 4×4 image blocks are mixed with
the ship pixel and the background average pixel in 20%, 40%,
60%, 80%, respectively. Each pixel of the test image is used as
independent samples for the detector. The spectrum of above
different anomaly pixels and background pixels are shown
in figure 5, the data in different wavelength are used as the
input for different layer neurons. The different lines in figure
5 are the spectrum signature for different targets including the
average spectrum of background pixels. Then, 44 image blocks
are embedded to test image. In test image, 30% value of the
pixels which will be replaced by blocks is kept. The remain
70% value of the pixels is filled with the value of the blocks.
The fake color image and the ground truth image are shown
in figure 4.

The second HSI dataset was collected by AVIRIS over San
Diego airport [8], 126 spectral bands are used to validate the
proposed anomaly detector. There are 38 planes which are
regarded as anomaly targets, its color image and the ground
truth image are shown in figure 6.

The ground truth image is used to indicate the location of
anomaly targets in where the pixel value is labeled as 1 and
display as white pixels in figure 4 and in figure 6 . Meanwhile,
the background is marked as 0 and display as black pixels
in the figures. The detection results for each pixel will be
compared with ground truth image to verify the accuracy of
the proposed method.

To validate the proposed methods, two test images are
employed, and 500 thousand independent samples in first test
image and 10 thousand independent samples in second test
image are used.

To appraise the proposed method, real-time local RX based
HSI AD(BLRXD) is performed on the test image as bench-
mark algorithm, and a full updating SAE HSI AD which
updates the SAE network at the end of each PUT detection is
employed on the test image as well.

B. Experimental environment and the evaluation criteria

The experiments are run with Matlab 2016b on AMAX
workstation with two Intel E5-2640v4 processors. To evaluate
the proposed method, the receiver operating characteristic
(ROC) curve and the area under the ROC curves (AUC) [15]
are used in term of detection accuracy. The detection time is
measured to analyze the time efficiency.

C. Results and discussion

The structure of SAE network in MPDL depends on the
spectral bands number of the test image dataset because the
neurons number in the first and last layer should be same
as the spectral number. For the first test image, the neurons
number from the first to the last layers in the SAE structure are
224,180,2,180,224 respectively, and for the second test image
the layer size is 126,40,20,40,126. respectively.

A real-time local RX based hyperspectral anomaly detector
(BLRXD) [6] is employed for comparison. In BLRXD, an
unsuitable size of the local window may break the assumption
of the local Gaussian distribution or make the correlation

 

(a) The fake color image of test
image.

(b) The position of embedded syn-
thetic anomaly blocks in test image

Fig. 4: The test image and the embedded anomaly targets on
Caminada BAY.
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Fig. 5: The spectrum of embedded anomaly targets and the
background

matrix become a singular matrix, and degrade the detection
performance. In this paper, a searching for the local window
size from 15 × 15 to 65 × 65 is executed (mainly to avoid
the matrix singular). The smallest one is 60× 60 to keep the
correlation matrix from the singular matrix for better detection
accuracy. For second test HSI image. After optimization, the
local window size is set to 26 × 26 for the best detection



(a) The fake color image of San
Diego airport HSI

(b) The ground truth of San
Diego airport.

Fig. 6: The test image and anomaly targets on San Diego
airport.

accuracy.
Different threshold for anomaly score lead to different

False Positive Rate(FPR) and Truth Positive Rate(TPR), by
change the threshold from the minimum anomaly score to
the maximum anomaly score, and comparing the identifying
results to the ground truth, the ROC curve of proposed method,
the full updating SAE HSI AD and the BLRXD method
are drawn in figure 7 and in figure 8 for two test images
respectively, and the AUC value and the executing time are
shown in Table I and Table II.
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Fig. 7: The ROC curve results Caminada BAY test image

From Table I and Table II, the proposed MDPL AD out-
performs the local real-time RX based HSI AD (BLRXD) in
term of AUC value and the executing time. It is because that
the transcendental function in each neuron of MDPL AD can
map the non-linear characters of HSI dataset without Gaussian
distribution assumption. Moreover, with the help of weight-

TABLE I: AUC values and detection time of Caminada BAY
test image.

Detector Name AUC Value Executing time(s)

Proposed MDPL AD 0.9884 262.5
SAE without MDPL AD 0.9747 1217.6

Real-time local RXD(BLRXD) [6] 0.9296 2444.8
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Fig. 8: The ROC curve results of San Diego airport test image

based local anomaly detection method in Section II-B, a high
detection accuracy can be achieved. In view of detection time,
due to small size window used in the proposed MDPL AD, less
time is required. While in BLRXD, the huge number of local
pixels requires more detection time. The proposed MDPL AD
reach up to 3.3× to 9.2× time efficiency to BLRXD. Due to
smaller local window size is used in BLRXD for the second
test image, so less computation and less time is cost.

By analyzing the Maximum-Distance-Pixel-Library, only 51
new pixels are included to update the SAE model in the first
test image. The proposed MDPL AD performs about 4.6×
time efficiency to full updating SAE HSI AD which employs
500000 pixels for updating in the first test image. For the
second test image, the time efficiency is about 4.4×. The AUC
value of the proposed MDPL AD is a little higher than full
updating SAE HSI AD.

The grey image of anomaly score from proposed MDPL

TABLE II: AUC values and detection time of San Diego
airport test image.

Detector Name AUC Value Executing time(s)

Proposed MDPL AD 0.8543 3.5
SAE without MDPL AD 0.7784 15.4

Real-time local RXD(BLRXD) [6] 0.7603 11.5



HSI AD and the BLRXD are shown in 9 and in 10. The
brighter the pixel is, the higher probability as an anomalous
pixel will be. As is shown in the results, the BLRXD gives
the more false alarm in the border of two backgrounds, while
the proposed MDPL performs well. Most of the background
pixels are displayed in the same position with the groundtruth
image, and the most of targets are clearly and right displayed
in the grey image of proposed MDPL results.

Due to the proposed online model parameters update
method well solves the model mismatch problem, the proposed
MDPL AD outperforms better detection accuracy than classic
BLRXD and the full updating SAE HSI AD. With the benefit
of less updating times, the proposed method run over 3× faster
than BLRXD and full updating SAE HSI AD.

 

(a) The anomaly score grey image
of BLRXD detector

(b) The anomaly score grey image
of proposed MDPL detector

Fig. 9: The detection results in grey image of Caminada BAY
dataset

(a) The anomaly score grey image
of BLRXD detector

(b) The anomaly score grey image
of proposed MDPL detector

Fig. 10: The detection results in grey image of San Diego
dataset.

V. CONCLUSION

Online HSI AD is widely required in real applications. For
deep learning based HSI AD which performs well in the off-
line mission, it is still a big challenge to overcome the model
mismatch problem with less computational requirements in
online application. In this paper, an online MDPL AD is
proposed with less updating pixels by a maximum average
distance strategy without accuracy loss. Experimental results
on two real HSI datasets which have been embedded with
anomaly targets show the proposed method reach up to 3.2
to 9.2 times speedup comparing to BLRXD and full updating
SAE HSI AD respectively. It also gets better detection ac-
curacy than the aformentioned comparison methods. In the
future, a more efficient re-training pixel selection method
needs to be further studied to overcome the problem that the
size of MDPL may increase along with detection time.
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