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A Genetic Algorithm for the Proactive
Resource-Constrained Project Scheduling

Problem With Activity Splitting
Zhiqiang Ma , Zhengwen He, Nengmin Wang , Zhen Yang, and Erik Demeulemeester

Abstract—Proactive scheduling aims at the generation of robust
baseline schedules, which has been studied for many years with
the assumption that activity splitting is not allowed. In this paper,
we focus on the proactive resource-constrained project scheduling
problem in which each activity can be split at discrete time instants
under the constraints of a maximum number of splitting and a
minimum period of continuous execution. In this problem, setup
times are also considered. A mathematical model is established and
analyzed, of which two properties and one lemma are proposed.
As the problem is proved to be NP-hard in the strong sense, for
solving the model, we develop a genetic algorithm (GA) in which
the two proposed properties and the lemma are applied as local
search operators. After linearizing the proposed model, we use a
commercial mathematical programming solver as a benchmark to
solve the problem. From the computational results, we find that the
developed GA is effective and efficient in solving the defined prob-
lem, and activity splitting improves robustness. With the growth
of the maximum number of splitting, the decline in the minimum
execution time, the decrease in the setup times, and the extension
of the project due date, robustness increases.

Index Terms—Activity splitting, genetic algorithm (GA),
proactive project scheduling, setup time, solution robustness.

I. INTRODUCTION

I T IS a well-known fact that project activities are subject
to considerable uncertainties, such as accidents, resource

breakdowns, and bad weather conditions, which may lead to
numerous schedule disruptions during project execution and
therefore incur some costs when project managers adjust the
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starting times of the activities to deal with them. Accordingly,
proactive scheduling has been the subject of many research
efforts that aim to generate robust baseline schedules that are
protected against schedule disruptions. The more robust the
baseline schedules are, the lower the adjustment costs will be
during project execution. These research efforts have led to
many models and algorithms, which are summarized in [1]–[4].

Two robustness approaches are considered in this field, i.e.,
quality robustness and solution robustness [5]. For quality ro-
bustness, the robust multimode discrete time/cost tradeoff prob-
lem is introduced and solved by exact and heuristic algorithms
[6], [7]. Regarding solution robustness, various approaches are
developed to cope with multiple disruptions, including activity
duration disruptions [8], stochastic activity durations [9], [10],
and stochastic resource availabilities [11], [12]. In contrast to the
literature that addresses quality robustness or solution robust-
ness separately, several studies have concentrated on the poten-
tial tradeoff between these two types of robustness. Al-Fawzan
and Haouari develop a bi-objective model with an aggregation
function in the absence of available information regarding the
nature or size of the uncertain events [13]. With the compos-
ite objective of maximizing both schedule stability and timely
project completion probability, Van de Vonder et al. develop a
heuristic algorithm for minimizing a stability cost function [14]
and they discuss the results obtained by a large experimental
design that is established to evaluate several predictive-reactive
resource-constrained project scheduling procedures [15]. Fur-
thermore, Chtourou and Haouari present a two-stage algorithm
in which the first stage is designed to minimize the project
makespan, while the second one aims to maximize schedule ro-
bustness [16]. Deblaere et al. propose an objective to minimize
a cost function that consists of the weighted expected activity
starting time deviations and the penalties or bonuses that are
associated with late or early project completion [17]. One re-
cent study defines a new robustness measure that is completely
independent of the applied reactive policy and then introduces
a branch-and-cut algorithm to solve a sample average approx-
imation of the original problem [18]. More details about the
literature on proactive scheduling can be found in Appendix A.

It is noteworthy that most of the literature on proactive
scheduling does not consider activity splitting, which means
that these activities are not divisible. However, if activity split-
ting is allowed, it may be more flexible for project managers to
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schedule activities and make good use of resources and slacks to
generate much more robust baseline schedules. In other words, if
activity splitting contributes to higher robustness, then activities
will be split into certain parts for execution; otherwise, activi-
ties will be scheduled without splitting. Note that we consider
to split activities actively during the stage of baseline sched-
ule generation, which is different from interrupting activities
passively to deal with disruptions during the stage of project
execution.

In previous literature, some researchers have already con-
sidered the project scheduling problem with activity splitting.
The difference from what we discussed before is that their
objective function is mainly focused on makespan minimiza-
tion and the term they use of activity splitting is activity pre-
emption or activity interruption. For example, Demeulemeester
and Herroelen describe a branch-and-bound procedure to solve
the preemptive resource-constrained project scheduling prob-
lem (PRCPSP) with the objective of minimizing project dura-
tion [19]. Following the work that reveals the potential ben-
efits of allowing one interruption in the scheduling of activi-
ties in a resource-constrained project [20], Buddhakulsomsiri
and Kim present a priority rule-based heuristic for the multi-
mode scheduling problem with the splitting of activities around
unavailable resources allowed [21]. Based on an analysis of
the characterizations of the solution set for the preemptive and
nonpreemptive RCPSP, Damay et al. present a linear program-
ming based algorithm to solve the two problems [22]. Ballestı́n
et al. mainly focus on problem 1_PRCPSP in which a maximum
of one interruption per activity is allowed, and they propose a
new model that covers most practical applications of discrete
activity preemption [23], [24]. A genetic algorithm (GA) for the
nonpreemptive multimode scheduling problem is developed and
extended to the preemptive case of this problem [25]. Recently,
Haouari et al. use a linear programming model that is based on
the PRCPSP to compute a lower bound for the RCPSP [26],
and Moukrim et al. propose an effective branch-and-price algo-
rithm based on minimal interval order enumeration that involves
column generation as well as constraint propagation [27]. For
more research efforts on project scheduling problems with ac-
tivity splitting, refer to [28]–[30]. In Appendix B, more details
can be found about the literature on the RCPSP with activity
splitting.

In practice, activities may be different with respect to activity
splitting. First, activities may need to be executed continuously
for certain periods before the next splitting and the duration of
the continuous execution time is different. Second, some activ-
ities, such as chemical reactions, may not be split at all due to
technical reasons, but some activities, such as the transporta-
tion of materials, are technically feasible to be split into certain
parts. Even though the activities are all feasible for splitting, the
maximum number of splitting allowed may be still different.
Third, some activities, such as managerial operations, do not
need setup times before execution while some activities, such
as a bridge construction, may need certain periods for prepa-
ration. From the previous literature, we know that the first two
differences have been considered and measured by two factors,
i.e., the maximum number of activity splitting and the minimum

continuous execution [24], [30], but the third one has not been
considered in the scheduling research with activity splitting.

Typically speaking, activities that are split into certain parts
cause additional setup times (and thus additional costs) when
returning to their execution. In other words, if one activity tech-
nically needs a setup time before execution, then there will be
additional setup times for the second and the subsequent parts of
this activity. This implies that there will be a tradeoff between
the benefits of activity splitting and the drawbacks of the in-
creasing setup times under the objective of solution robustness
maximization.

Based on the facts above, this paper presents a proactive
RCPSP with activity splitting. In this problem, each activity can
be split at discrete time instants under the constraints of a max-
imum number of splitting and a minimum period of continuous
execution. Besides, additional setup times are considered when
the activities return to execution from splitting. Different from
the existing proactive scheduling that aims to improve sched-
ule robustness without activity splitting, this paper aims to take
activity splitting into account to seek opportunities to further
improve schedule robustness. Therefore, it can be regarded as
a two-stage problem: the first one is to decide how to split ac-
tivities and the second stage is proactive scheduling, i.e., how
to schedule activities to construct an optimal baseline sched-
ule with the objective of solution robustness maximization. The
solution robustness is obtained by inserting time buffers into
the baseline schedule with the consideration of precedence, re-
newable resources, and project deadline constraints, and it is
measured by a free slack based function, an adjusted surrogate
solution robustness measure that is proposed by Lambrechts
et al. [31]. This problem can be defined as an extension of the
proactive RCPSP because activity splitting becomes allowed.
As activities are handled in different ways in terms of activity
splitting, this problem is also a generalization of m PRCPSP,
where all activities can be split m times. We believe that the pro-
posed problem, which to the best of our knowledge has not thus
far been investigated, may be more practical because it takes
activity splitting into account and considers multiple cases of
divisible activities.

Note that in previous literature on proactive scheduling ac-
tivities are indivisible and treated as the basic project units.
However, based on the theory of the work breakdown structure,
activities are broken down by different levels. Therefore, in this
paper activities are much more similar to work packages, which
are not divided to the lowest level so that project managers can
have the freedom to decide whether to further split the activities.
Conversely, if activities have already been divided to the low-
est level, we can regard them as subactivities, and then we can
decide how to merge and schedule them to decrease the setup
times and improve schedule robustness, which is just equivalent
to scheduling activities without activity splitting in this paper.

The rest of this paper is organized as follows. In Section II, we
present the notations and the problem formulation. Section III is
devoted to the development of a GA that is based on the analysis
of the proposed scheduling model. Section IV conducts an ex-
tensive computational experiment. Finally, in Section V, general
conclusions and directions for further research are presented.
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II. PROBLEM FORMULATION

A. Optimization Model

Consider a project represented in an activity-on-the-node
(AoN) format by means of a digraph G = (N,A), where the
set of nodes N represents the activities and the set of arcs
A the finish-start, zero-lag precedence relations. The activities
are numbered from the dummy start activity 1 to the dummy
end activity n, and each activity i has a duration di and re-
quires renewable resources to ensure that it is carried out. The
project deadline is denoted as D. There are K different renew-
able resource types with an availability in each period [t, t + 1),
(t = 0, 1, . . . ,D), of Rρ

k units, k = 1, 2, . . . ,K. Each activity
i requires rρ

i,k units of resource type k during each period in
which it is processed. Dummy activities have zero duration and
resource usage. We use subactivity (i, v) to denote the vth part
of activity i, which has the same resource usage as activity i.
The only difference between the activity and its subactivities is
the duration.

For practical reasons that activities are different with respect
to activity splitting, we make the following three assumptions.
First, for each activity i, a required minimum execution time εi

is predefined during which the activity must be in progress with-
out any splitting. This forces the duration duri,v of subactivity
(i, v) to be at least εi . Second, each activity i can be split a max-
imum of ηi(ηi < [ di

εi
]) times at any discrete time instant, which

results in Vi (Vi ≤ ηi + 1) precedence-connected subactivities,
each of which has a resource requirement rρ

i,k . The first two as-
sumptions are responses to the fact that activities cannot be split
too frequently. Obviously, the case ηi = 0 or di < 2εi means
that activity i must be processed without splitting. In addition,
as a response to the fact that in projects activities may need
setup times for preparation, we assume each activity technically
needs setup time θi before execution. Note that the setup time
is not included in the activity duration, which means the actual
duration of one indivisible activity is its duration plus its setup
time, and there will be additional setup times for activities that
are split into certain parts. Obviously, the case θi = 0 means
that activity i technically does not need setup time.

The weight wi , which is allocated to each activity i, denotes
the marginal cost of deviating the completion time of activity
i during project execution from its planned completion time in
the baseline schedule. The cost can be regarded as the impact
of such a delay on all its immediate and transitive successors.
Because the successors of the subactivities are the same as those
of their original activity, we assume that the weights of the
subactivities are equivalent to those of their original activities.
The free slack FSi,v , which represents the time buffers after
the duration of subactivity (i, v), is defined as the total amount
of time this subactivity can be delayed without causing any
precedence or resource constraint violations. Note that the free
slack here is defined in the context of limited resources, which
is an extension of the one in the framework of critical path
method (CPM). Referring to Lambrechts et al. [31], the utility
of the free slacks may decrease marginally in exponent with the
increase of their amounts. For example, if one activity has a
free slack of 6, then the first slack will be much more beneficial

than the sixth one to absorb the disruptions because it is less
likely for the activity to delay six periods. Thus, the robustness
that is generated by FSi,v can be calculated as wi

∑FSi , v

b=1 e−b .
Then, counting the utilities of all subactivities of all activities,
the robustness of a schedule (hereafter denoted as Robu) can be
defined as

∑n
i=1 [wi(

∑Vi

v=1
∑FSi , v

b=1 e−b)].
There are three groups of decision variables in this prob-

lem, i.e., Vi , duri,v , and si,v , which, respectively, represent the
number of subactivities of activity i, the duration of subactivity
(i, v), and the starting time of this subactivity. Then, the goal is
to decide the optimal values for Vi , duri,v , and si,v to obtain a
baseline schedule with the maximum schedule robustness Robu.
The optimization model for the proactive RCPSP with activity
splitting is constructed as follows. It is important to note that in
our model setup times are not included in di but are included in
duri,v .

Maximize Robu =
n∑

i=1

⎡

⎣wi

⎛

⎝
Vi∑

v=1

FSi , v∑

b=1

e−b

⎞

⎠

⎤

⎦ (1)

Subject to

s1,1 = 0 (2)

si,Vi
+ duri,Vi

≤ sj,1 (i, j) ∈ A (3)

si,v + duri,v ≤ si,v+1 i = 1, . . . , n; v = 1, . . . , Vi − 1 (4)

sn,1 ≤ D (5)
∑

i∈S (t)

rρ
i,k ≤ Rρ

k k = 1, 2, . . . ,K; t = 0, 1, . . . ,D (6)

Vi∑

v=1

duri,v = di + Vi × θi i = 1, 2, . . . , n (7)

Vi ≤ ηi + 1 i = 1, 2, . . . , n (8)

duri,v − θi ≥ εi i = 1, 2, . . . , n; v = 1, 2, . . . , Vi (9)

Vi, duri,v , and si,v are nonnegative integers ∀i,∀v (10)

In the formulation, the objective function (1) is to maximize
solution robustness. Equation (2) forces the project to start at
time 0. The precedence constraints given by (3) indicate that the
start of activity j must wait for the end of the last subactivity of
all its preceding activities, and in constraints (4) one subactiv-
ity of an activity does not start before the end of the previous
subactivity of the same activity. Constraint (5) imposes a dead-
line on the project. As S(t) is the set of activities that are in
progress during time interval [t, t + 1), constraints (6) force the
total units of utilized resources to be no greater than the available
resource capacity for every period. The conditions for activity
splitting are reflected in (7)–(9). Equation (7) ensures that the
duration of all the subactivities of activity i must be equal to the
sum of the processing time of activity i and its total setup times.
The constraints (8) guarantee that the times of splitting for a
given divisible activity is no more than a predefined level called
ηi , while in (9) for each subactivity the duration without setup
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Fig. 1. Example.

time must be at least its minimum execution time. The range of
values for Vi , duri,v , and si,v are given in the constraints (10).

In this nonlinear model, we need to take constraints (7)–(9)
into account to decide how to split activities and decide how to
schedule those subactivities based on the constraints (2)–(6). In
the first decision, there will be a tradeoff between the benefits
of activity splitting and the drawbacks of the increasing setup
times. In the second decision, there will be a tradeoff between
inserting time buffers and the deadline constraint. For the ob-
jective function, FSi,v will be calculated by an algorithm that
is developed in the next section. Note that FSi,v may not be
equal to the values of time buffers. Time buffers are inserted
based on the rule of marginally decreasing slack utility, activity
weights, and the changes of the schedule after inserting time
buffers, which together influence the improvement of the objec-
tive function value. The bigger the improvement, the bigger the
possibility to insert time buffers to this activity.

B. Example

We use an example to illustrate the problem that is identified
above. The AoN network of the example is depicted in Fig. 1,
where activities 1 and 6 are the dummy start and end activities,
respectively. The activities in the project require one renewable
resource and their durations as well as resource requirements,
activity weights, the maximum numbers of splitting, the mini-
mum periods of continuous execution, and the setup times are
labeled with the nodes. Other data of the project are as follows:
K = 1, Rρ

1 = 4, D = 14. To demonstrate that activity splitting
is beneficial to schedule robustness, we give the most robust
baseline schedules without and with activity splitting, which
are depicted as schedules (a) and (b), respectively, in Fig. 2, and
compare the results obtained ahead.

1) Case Without Activity Splitting: In this case, we suppose
that activities are indivisible during execution. Therefore, we
have ηi = 0 for each activity i. Under this circumstance, sched-
ule (a) is the optimal baseline schedule in terms of solution
robustness where each activity has only one subactivity and the
rounded rectangle represents the setup time of activity 5. Obvi-
ously, only activity 2 has a free slack of 2. The corresponding
objective function value is equal to 2.00 and was calculated as
shown in Table I.

2) Case With Activity Splitting: In this case, it is assumed
that activity splitting is allowed. Based on the data shown in
Fig. 1, schedule (b) is the most robust baseline schedule where
activity 5 is split into two subactivities. Because of activity
splitting, another setup time is needed before the execution of
the second subactivity of activity 5. The corresponding objective

Fig. 2. Two feasible schedules for the project. (a) The most robust schedule
without activity splitting. (b) The most robust schedule with activity splitting.

function value is 10.90, the computation of which can be found
in Table I as well.

Comparing the results discussed above, we can find that an
improvement of 445% is obtained for the free slack based ob-
jective function value, which verifies the potential benefits of
making good use of activity splitting in proactive scheduling to
some extent. The reason is that activity splitting enhances the
flexibility of scheduling activities, which is beneficial to making
good use of resources to shorten the project duration and thus
spare more space to insert time buffers. Next, we will make an
analysis about the cost saving when taking activity splitting into
account. In this example, compared with schedule (a), schedule
(b) is likely to have lower adjustment costs. For example, if the
activity duration increases by 1 both for activity 3 and activity
5, we need to adjust the starting times of activities 3, 4, and 6 in
schedule (a), but do nothing in schedule (b). Schedule (b) will
have a much lower cost compared with (a).

III. DEVELOPED GA

In the first part, we propose two properties of the scheduling
model and one lemma, which can be used for the development of
the algorithm. In the second part, we first explain why we choose
a GA to solve the problem and then present the framework of
the developed algorithm. Afterwards, technical details are given
to describe the developed GA in seven parts where the proposed
properties and the lemma are used for the local search procedure.

A. Properties and the Lemma

To explain the properties and the lemma more clearly, we
provide three definitions in advance.

Definition 1: In a given schedule, time period T is feasible
for a minimum part of activity i, whose duration equals the
minimum execution time of activity i, to be executed if the
successors of activity i do not start before the end of time period
T , the remaining resources in time period T can still satisfy the
resource requirements of activity i, the length of time period T
is no less than εi + θi , and the starting time of the time period
is after the completion time of the last subactivity of activity i.
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TABLE I
CALCULATION OF THE OBJECTIVE FUNCTION

Definition 2: Subactivity (i, v) is divisible if Vi ≤ ηi and
duri,v − θi ≥ 2εi .

Definition 3: Subactivity (i, v) is abundant in free slacks if
FSi,v ≥ 2 + θi .

Based on the above definitions, we develop two properties of
the model, which are named as Pioneering and Balancing, re-
spectively, based on the mechanism of each operation. After that,
one lemma is proposed for improving the schedule robustness.

Property 1 (Pioneering): If subactivity (i, v) is divisible,
and there is a feasible period T , whose length is denoted as
ξT , for activity i to be executed, then schedule robustness
can be improved in three steps: First, keep other activities un-
changed. Second, divide this subactivity into two parts, which
are denoted as (i, v1) and (i, v2), whose durations are duri,v −
dd (εi ≤ dd ≤ min{duri,v − εi − θi, ξT − θi}) and dd + θi ,
respectively. Third, schedule the two parts of this subactivity
in the original and the new periods. In this way, the objective
function value of the schedule can be improved.

Proof of Property 1: After the Pioneering operation, the free
slack of subactivity (i, v1) will be FSi,v + dd, while the free
slack of subactivity (i, v2) will be ξT − dd − θi . The utility of
the free slacks before the operation is U1 =

∑FSi , v

b=1 e−b , which

is smaller than that after the operation U2 =
∑FSi , v +dd

b=1 e−b +
∑ξT −dd−θi

b=1 e−b . Hence, Property 1 can be used as a rule to
maximize schedule robustness.

Property 2 (Balancing): If subactivity (i, v) is divisible and
has no more than one free slack, while the reverse is true for
subactivity (i, p), then schedule robustness may be improved by
transferring one unit of time from the duration of subactivity
(i, v) to that of subactivity (i, p).

Proof of Property 2: From the prerequisites of Property 2,
we can obtain the four following constraints: duri,v − θi ≥ 2εi ,
0 ≤ FSi,v ≤ 1, εi ≤ duri,p − θi < 2εi , and FSi,p ≥ 2. After the
Balancing operation, the free slack of subactivity (i, v) will
be FSi,v + 1, while the free slack of subactivity (i, p) will be
FSi,p − 1. Then, the utility of the free slacks after the operation
can be calculated as

U2 =
FSi , v +1∑

b=1

e−b +
FSi , p −1∑

b=1

e−b

=
FSi , v∑

b=1

e−b +
FSi , p∑

b=1

e−b + (e−FSi , v −1 − e−FSi , p ).

Because of the two following constraints, i.e., −FSi,v ≥ −1
and −FSi,p ≤ −2, U2 will be no less than the utility before

the operation U1 =
∑FSi , v

b=1 e−b +
∑FSi , p

b=1 e−b . Hence, Property
2 can be used to improve the objective function value.

To summarize, Pioneering facilitates the discovery of new
periods for activities to be executed, and Balancing is used to
balance the length of the durations between two subactivities of
one activity. As the two properties can help to transform subac-
tivities into divisible ones with abundant free slacks, they pave
the way for the following lemma, which is used to divide one
subactivity into subactivities that specifically share the buffer
of the original subactivity as equally as possible such that the
schedule robustness can be improved.

Lemma 1: For any subactivity (i, v) that is divisible and
abundant in free slacks, we can first divide this subactiv-
ity into numi,v = min([ duri , v −θi

εi
], FSi , v +θi

1+θi
, ηi − Vi + 2) parts

whose durations are no less than εi , and then schedule them con-
tinuously and make sure their free slacks are as equal as possible,
i.e., the difference between the maximum and the minimum free
slack value of the newly generated subactivities is no more than
one. In this way, schedule robustness will be improved.

Proof of Lemma 1: As
∑∞

b=1 e−x = 1
e − 1 < 2e−1 is true, it

would be always beneficial for improving schedule robustness
by splitting a divisible subactivity with abundant free slacks into
certain parts. To maximize robustness, FSi,v − (numi,v − 1)θi

should be no less than numi,v , so numi,v ≤ FSi , v +θi

1+θi
. Further-

more, if the difference between the maximum and the minimum
free slack value of the newly generated subactivities is more than
one in the optimal improvement, for example, fs1 > fs2 + 1,
then

∑fs1
b=1 e−b +

∑fs2
b=1 e−b = (

∑fs1 −1
b=1 e−b + e−fs1 ) +

∑fs2
b=1

e−b <
∑fs1 −1

b=1 e−b + (
∑fs2

b=1 e−b + e−f s2 −1) =
∑fs1 −1

b=1 e−b +
∑fs2 +1

b=1 e−b . As there will be a contradiction, to obtain an
optimal improvement based on the proposed lemma, the
original subactivity should be divided into numi,v parts whose
free slacks are as equal as possible.

Note that it is possible that none of the subactivities in a
schedule is divisible and abundant in free slacks, and under this
circumstance we cannot apply Lemma 1 to improve solution
robustness of this schedule.

B. Developed GA

As shown in Appendix C, the proposed problem can be sim-
plified into the RCPSP with the objective of makespan mini-
mization. As the latter is known to be NP-hard in the strong
sense [32], [33], the proposed proactive scheduling problem
with activity splitting is NP-hard in the strong sense as well,
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which makes the achievement of optimal solutions a computa-
tionally difficult proposition, especially for large projects. For
this reason, we use a well-known metaheuristic, i.e., GA as in-
troduced by Holland [34], to solve the problem. We choose the
genetic search methodology for two reasons. First, this tech-
nique has been successfully applied to many project scheduling
problems [24], [25], [29], [30], [35], [36], and second, it is
easy to generate activity splitting at each iteration by using the
crossover operator.

GAs work with a “population” of individuals. In our algo-
rithm, we set the size of the population as μ, the individual
of which can be initially generated by a procedure called in-
dividual generation procedure (IGP). At each iteration, which
is denoted as iter, the best ϕ individuals of the population in
terms of fitness (objective function value) are chosen to be in-
cluded in the population of the next iteration, while (μ − ϕ)
individuals of the population are selected following the roulette
wheel sampling method to generate children with the aid of a
crossover operator called crossover procedure (CRP). Then, a
mutation operator called mutation procedure (MTP) is used to
apply a certain change to the generated children. Each child will
be decoded into a solution using the decoding procedure (DCP).
If it is feasible, the solution will be buffered with the buffering
procedure (BFP) and improved with a local search procedure
that includes three operators called LSP 1, LSP 2, and LSP 3,
respectively. As far as the termination criterion of the developed
GA is concerned, we define δ as the required number of itera-
tions and stop the algorithm once δ is reached. It is noteworthy
that we work with the notion of life span to solve the problem of
superindividuals. Superindividuals far exceed, in fitness, other
solutions of the population, and their existence might result in
premature convergence to a local optimum. We set the life span
of an individual at “birth” at 0. At each iteration, the life span
of each surviving individual is increased by 1. When the life
span reaches a certain number, maxlife, the individual dies and
is replaced by a newly generated individual with the aid of the
procedure IGP.

1) Solution Representation: Referring to [24], [31], we use
three lists below to codify the solutions, the length of which is
denoted as nsub.

1) Subactivity list (L): This list is the sequence of subac-
tivities. The jth element in L represents the subactivity
Lj = (i, v)j .

2) Duration list (DL): This list stores the duration dur(i,v )j

of the corresponding subactivity (i, v)j in L.
3) Buffer list (BL): This list indicates which subactivities

should be buffered and by how much their finish times can
be delayed beyond their earliest finish times as dictated by
the serial schedule generation scheme (SSGS). For conve-
nience, let buf(i,v )j

denote the buffer of the corresponding
subactivity (i, v)j in L. Note that buf(i,v )j

represents the
inserted buffer, which is different from FS(i,v )j

.
Given the above lists, a solution can be obtained using a de-

coding approach, which is an extension of SSGS and is described
in Algorithm 1 in Appendix D.

2) Objective Function: For a solution that is represented by
the combination of the three lists, the key to calculating its ob-

jective function value is to compute the free slack FSi,v of each
subactivity. Once they are obtained, the objective function value
can be easily computed based on the formula (1). We develop a
procedure called free slack calculation procedure (FSP) to com-
pute the free slack of every subactivity, which is an extension
of the procedure developed by Lambrechts et al. [31] and is
indicated in Algorithm 2 in Appendix D.

As the decoded schedule may cause a project deadline viola-
tion, we transform the deadline constraint into a soft constraint
that is based on a deadline feasibility test (DFT) function, which
is defined as DFT = max{0, sn,1 − D}. During the searching
process, if the DFT of a solution is greater than 0, the objective
function value of the solution will be penalized based on the
following formula:

Robu =
n∑

i=1

⎡

⎣wi

⎛

⎝
Vi∑

v=1

FSi , v∑

b=1

e−b

⎞

⎠

⎤

⎦− np × nc × DFT.

Here, np is the penalty factor, and nc denotes the number of
iterations that are used by the GA since the last major improve-
ment was found.

3) Buffering: For a feasible solution, we use a procedure
called BFP, which is described in Algorithm 3 in Appendix D, to
insert enough buffers into the schedule to improve its robustness,
which serves as a local search of the BL. We first select a
subactivity randomly and add one unit of time buffer to that.
Then, we calculate the objective function value Robu′ of the
improved solution. If the deadline constraint is violated or the
objective function value has not been improved, the number of
failure times ζ that is initialized at zero will increase by one. If
ζ reaches a predefined maximum allowed number Z of failures,
the procedure ends. Otherwise, another subactivity is chosen
and the procedure continues.

4) Initial Population Generation: The individual g of the
initial population can be generated through the procedure IGP,
which is described in Algorithm 4 in Appendix D. To decide
whether to split the activities in the initial solution, we take the
constraints of the maximum number of splitting and the mini-
mum execution time into consideration. If the two constraints
are satisfied, then we generate random numbers and compare
them with a predefined parameter itrpt to make the decision of
activity splitting. Note that this procedure builds an individual
in nsub iterations, where nsub is unknown until the end of the
procedure.

5) Crossover: Children can be generated by operating on the
selected individuals with the aid of a crossover procedure called
CRP. This procedure is described in Algorithm 5 in Appendix D,
which is similar to the one that is developed by Ballestı́n et al.
[24] except that we now have a third list called BL. In our
procedure, we copy the same proportion of time buffer of the
parent to the child as that of the duration. Note that the selected
individuals are randomly paired as parents, and each of them
can be a father or a mother.

6) Mutation: We make a change on the children with the pro-
cedure MTP, which is described in Algorithm 6 in Appendix D.
We must emphasize that it is a deliberate choice that the
mutation operation only considers the operators of changing
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Algorithm 1: Pioneering: Robu′= LSP 1 (L, DL, BL).
1: FS(i,v )′j = FSP (L, DL, BL), obtain Vi (i ∈ N)
2: FOR i = 2 TO n − 1 DO
3: IF Vi ≤ ηi AND di ≥ 2εi THEN
4: Obtain the sets C1 and C2
5: WHILE C1 �= ∅ AND C2 �= ∅ DO
6: Choose the period T1 from C1 and one

subactivity (i, v) from C2
7: Generate dd from [εi,min{duri,v − εi − θi ,

ξT − θi}]
8: duri,v = duri,v − dd, duri,Vi +1 = dd + θi,

FSi,v = FSi,v + dd, FSi,Vi +1 = ξT1 − dd − θi

9: Update the sets C1 and C2 , Vi = Vi + 1
10: END WHILE
11: END IF
12: END FOR
13: Calculate the objective function value Robu′ of the

improved solution

Algorithm 2: Balancing: Robu′= LSP 2 (L, DL, BL).
1: FS(i,v )′j = FSP (L, DL, BL)
2: FOR i = 2 TO n − 1 DO
3: IF ηi > 0 AND di ≥ 2εi THEN
4: Obtain the sets C3 and C4 , NS = min{|C3 |, |C4 |}
5: FOR q = 1 TO NS DO
6: Choose one subactivity (i, v) from C3 and

another one (i, p) from C4
7: duri,v = duri,v − 1, duri,p = duri,p + 1
8: FSi,v = FSi,v + 1, FSi,p = FSi,p − 1
9: Update C3 and C4

10: END FOR
11: END IF
12: END FOR
13: Calculate the objective function value Robu′ of the

improved solution

the sequences and time buffers of the subactivities and does not
introduce more operators. We considered many operators, such
as introducing more activity splitting, merging some subactiv-
ities, and changing the duration of subactivities. However, the
preliminary tests with such operators did not lead to improved
results. A reason could be that the local search procedure that
is developed in the next section plays the same roles as those of
these operators. For example, the procedures LSP 1 and LSP 3
can be regarded as operations that introduce more splitting of
activities, and the procedure LSP 2 is structured to change the
duration of the subactivities.

7) Local Search: For each feasible child, we adopt a local
search procedure that includes three operators called LSP 1,
LSP 2, and LSP 3, respectively, to improve its schedule ro-
bustness. The operator LSP 1, which is based on Property 1
and described in Algorithm 1, facilitates the discovery of new
periods for activities to be executed. Let C1 = {T1 , T2 , . . . , Tc}

Algorithm 3: Robu′ = LSP 3 (L, DL, BL).
1: FS(i,v )′j = FSP (L, DL, BL), obtain Vi (i ∈ N)
2: FOR i = 2 TO n − 1 DO
3: IF Vi ≤ ηi AND di ≥ 2εi THEN
4: Obtain the set C5
5: WHILE C5 �= ∅ DO
6: Choose one subactivity (i, v) from C5 , numi,v =

min{[ duri , v −θi

εi
], FSi , v +θi

1+θi
, ηi − Vi + 2}

7: Divide the subactivity (i, v) into numi,v parts
whose free slacks are as equal as possible
and durations are [duri,v − (numi,v − 1) · εi ],
εi + θi, . . . , εi + θi , respectively

8: Update Vi and the set C5
9: END WHILE

10: END IF
11: END FOR
12: Calculate the objective function value Robu′ of the

improved solution

denote the set of feasible periods, as defined in Definition 1,
and let C2 = {(i, v)|duri,v − θi ≥ 2εi and Vi ≤ ηi} represent
the set of divisible subactivities, as defined in Definition 2.

The operator LSP 2, which is based on Property 2 and de-
scribed in Algorithm 2, is used to balance the length of du-
rations between two subactivities of one activity. Let C3 =
{(i, v)|duri,v − θi ≥ 2εi and FSi,v ≤ 1} denote the set of sub-
activities that are divisible but has no more than one free slack
and let C4 = {(i, v)|duri,v − θi < 2εi and FSi,v ≥ 2} represent
the ones that are just the reverse.

The operator LSP 3, which is based on Lemma 1 and de-
scribed in Algorithm 3, is used to divide one subactivity into
subactivities that specifically share the buffer of the original sub-
activity as equally as possible. For the sake of description, let
C5 = {(i, v)|duri,v − θi ≥ 2εi and FSi,v ≥ 2 + θi} denote the
set of subactivities that are divisible and abundant in free slacks.

IV. COMPUTATIONAL RESULTS

A. Experimental Design

Based on the three developed local search operators, four
different versions of the GA are presented. For the sake of de-
scription, we represent the GA without any local search operator
as GA, the GA with the operator LSP 1 as GA-LSP1, the GA
with operators LSP 1 and LSP 2 as GA-LSP12, and the GA
with all the three operators as GA-LSP123, respectively, in the
remainder of the paper. To evaluate the effectiveness of the pro-
posed GAs, we propose the use of CPLEX as a benchmark to
optimally solve the established model. Referring to the methods
that are proposed to reduce zero-one polynomial formulations
to zero-one linear formulations [37], the proposed nonlinear
model can be linearized, just as shown in Appendix E. As many
variables and constraints are introduced into the model, it may
take much time to solve the problem. However, there is no loss
of the quality of the solutions for the problem and therefore it
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TABLE II
PARAMETER SETTINGS THAT ARE USED TO GENERATE THE DATASET

TABLE III
LEVELS OF THE KEY PARAMETERS

is enough for the sake of comparison of effectiveness. Note that
we can use CPLEX to directly represent the algorithm that is
conducted by the software. The aim of our experiment is not
only to test the effectiveness of the three local search opera-
tors by comparing the performance of different versions of the
GA, but also to validate the performance of the GA developed
in this paper against CPLEX. Besides, it is expected to draw
conclusions based on an analysis of the results.

The five algorithms are tested on five instance sets that are
constructed by the ProGen project generator [38], [39], which
is classified by three parameters, i.e., network complexity (NC),
resource factor (RF), and resource strength (RS). Specifically,
the instances with 6 or 8 or 10 nondummy activities, denoted
as J6, J8, and J10, are generated by ourselves using the ProGen
generator, while the instances with 30 or 60 nondummy activ-
ities, denoted as J30 and J60, are randomly (the first and the
sixth instances out of the ten provided instances) chosen from
the Project Scheduling Problem Library (PSPLIB), which is also
generated by the ProGen generator [39]. The five sets consist
of 48 × 2 × 5 = 480 instances, and the parameter setting that
is used to generate instances is described in Table II. Note that
in consideration of the feasibility of the instance generation, we
choose a different level setting of NC for J6, J8, and J10 from
the one for J30 and J60. The generation of activity weight wi is
also shown in Table II.

In our experiment, the project due date D of each instance
is set at CRCPSP

max (1 + α), where CRCPSP
max represents the min-

imum makespan that is optimally solved by CPLEX under a
deterministic, indivisible, and nonsetup-time environment, and
the due date factor α is a parameter that is chosen by the project

TABLE IV
VALUES OF PARAMETERS FOR INSTANCE SETS

manager and constitutes the tradeoff between project stability
and project duration [14]. The value of the four key parameters,
i.e., α, θi , ηi , and εi , is set at certain levels, as shown in Table III,
where parameter c denotes a decimal that is randomly selected
from [1/10, 1/8] and parameters a and b, respectively, denote
random numbers that are selected from [0, di − 1] and [1, di].
Consequently, a full factorial experiment of the four parame-
ters results in 3 × 3 × 7 = 63 replicates for each instance and
480 × 63 = 30 240 ones overall.

The following ten indices are defined to evaluate the perfor-
mance of the algorithms. Specifically, the first seven indices are
used to compare the performance of the four different versions
of the GA, and the last three indices are additionally designed
to make a comparison of the performance between the GA and
CPLEX.

1) AOV: Average objective function value.
2) APB: The percentage of instances for which the algo-

rithm finds a solution that is equal to the best solution
known, i.e., the best one among the solutions that are
found by the four developed versions of the GA – GA,
GA-LSP1, GA-LSP12, and GA-LSP123.
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TABLE V
PERFORMANCE OF THE FOUR VERSIONS OF THE GA

3) API: The percentage of solutions that are improved after
using the local search procedure.

4) ARI: Average rate of improvement in terms of the objec-
tive function value after using the local search procedure.

5) ACT: Average computing time.
6) ACT’: Average computing time to solve the problems to

obtain the best solutions known.
7) AOG’: Average gap in terms of the objective function

values of the worse solutions that are obtained by a spe-
cific version of the GA compared with those of the best
solutions known.

8) AOG: Average gap in terms of the objective function
values of the worse solutions that are obtained by the
GA compared with those of the corresponding solutions
that are obtained by CPLEX.

9) APN: The percentage of instances that cannot be solved
by CPLEX within a predefined time limit.

10) AWS: The percentage of instances in which worse solu-
tions are obtained by the developed GA than by CPLEX.

In our experiment, the developed algorithms are programmed
in the C++ language, implemented in Microsoft Visual Studio
2013 and executed on a DELL OptiPlex 3040MT with 3.20 GHz
clock-pulse and 8G RAM.

B. Parameter Selection

Our developed GA allows for different choices of eight pa-
rameters. With a focus on the value of AOV, we performed a
preliminary experiment to choose the best combination of pa-
rameters. This experiment tests the instances whose project due
date factor α is set at 30%, setup time is set at level 1, and
the combination of ηi and εi is set at level 4. According to the

results of the preliminary test, the parameters are set at different
values to solve different instance sets, as shown in Table IV
where parameter pmut represents the probability of mutation.

C. Performance of the Developed GA

1) Comparison of the Four Different Versions of the GA:
The results of the performance of the four developed GAs on
the five instance sets are presented in Table V, where the italic
numbers in the four bottom rows represent the average val-
ues of the five instance sets. It is noteworthy that the five left
indices are used to measure the performance of the GAs that
stop after a predefined number of iterations while the two right
ones are used to measure the performance of the GAs that stop
once obtaining the best solutions known. From the table, we
observe that for different instance sets the conclusion is almost
the same in terms of the performance of the four versions of the
GA. The indices AOV and APB of GA-LSP1 are higher than
those of GA, which verifies a better performance of GA-LSP1
compared with GA. This is not surprising because the operator
LSP 1 is added in GA-LSP1, which on average improves the
objective function values of 3.20% of the solutions by 10.51%.
Similarly, the effectiveness of the operator LSP 2 can be ana-
lyzed by comparing the versions GA-LSP12 and GA-LSP1. On
average, GA-LSP12 performs better than GA-LSP1 in terms of
AOV, APB, and ACT. Furthermore, we find that GA-LSP123,
followed by GA-LSP12, GA-LSP1, and GA, performs the best
with the highest AOV and the highest average percentage of the
best solutions (APB). Corresponding with the highest value of
APB, GA-LSP123 takes the least time to solve the problems
again, reaching a smallest average gap of the objective function
values compared with those of the best solutions known. Most of
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TABLE VI
PERFORMANCE OF GA-LSP123 AND CPLEX

the success is due to the application of the three operators which
on average improve the objective function values of 16.43% of
the solutions by 8.53%. Compared with the operators LSP 1
and LSP 2, LSP 3 is much more effective as there is a sharp
increase of AOV and APB once it is included in the GA. In
summary, the three developed local search operators improve
the solution robustness of the baseline schedules, although it
takes a somewhat longer computing time to solve the prob-
lems. Thus, GA-LSP123 is the most promising version for the
problem among the four presented GAs, which can be used to
compete with a commercial mathematical programming solver
next.

2) Comparison of the Performance Between the GA and
Commercial Software: To test the effectiveness of the algo-
rithm that is developed in this paper, we conduct an experiment
to compare the performance between GA-LSP123 and a com-
mercial mathematical programming solver (CPLEX). In this
experiment, we predefine a maximum period of 1 h for CPLEX
to solve each instance. This means that even though one instance
is not solved optimally by that time, we end the algorithm and
save the outcome that has been obtained thus far, which includes
the best solution, the objective function value, and the comput-
ing time. Because it is difficult for CPLEX to solve the problems
with a lot of nondummy activities, we only choose to test the
three instance sets J6, J8, and J10.

The results of the experiment can be found in Table VI. From
the table, we can see that the number of instances that cannot
be solved by CPLEX in the predefined period is very high and
increases quickly with an increasing number of nondummy ac-
tivities. Simply put, CPLEX requires a great deal of time to solve
the problem. This is not surprising because many variables and
constraints are introduced during the linearization process of
the proposed scheduling model, which results in the difficulty
of computing problems for CPLEX. By contrast, GA-LSP123
is much more efficient, with a very small computing time. Al-
though GA-LSP123 cannot solve some instances as optimally
as CPLEX, the percentage of these instances is very small, and
it is acceptable of the average gap between the objective func-
tion values of the solutions for these instances that are solved
by GA-LSP123 and the corresponding ones that are solved by
CPLEX.

D. Sensitivity Analysis of the Key Parameters

First, we investigate the effect of different levels of the com-
bination of ηi and εi on solution robustness for the five instance
sets. In addition to the seven levels of the divisible case, we take
level 8, which represents the indivisible case, into account. The

TABLE VII
EFFECT OF DIFFERENT LEVELS OF THE COMBINATION OF ηi AND εi

results are described in Table VII, where for each instance set
the italic numbers in the second row from the bottom represent
the average values of the divisible case. From the table, two
main phenomena can be observed. The first one is that the AOV
under the divisible case is significantly higher than the corre-
sponding values under the indivisible case. This indicates that
activity splitting is beneficial for generating more robust base-
line schedules that are likely to have lower adjustment costs
during project execution. Compared with the classic proactive
scheduling models where activity splitting is not allowed, this
paper offers a new method to improve schedule robustness when
activity splitting is allowed and generates better solutions to
project management. This phenomenon can be explained as fol-
lows. When activities can be split, it will be more flexible for
project managers to schedule activities at the design stage of
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Fig. 3. Influence of the key parameter θi on AOV.

Fig. 4. Influence of the key parameter α on AOV.

the baseline schedules, which may help to obtain higher solu-
tion robustness. Essentially, the solution space of the divisible
case is extended because of the constraint relaxation. The sec-
ond phenomenon is that the AOV increases with the growth of
ηi or the decline of εi . Activities can be split more frequently
with a higher value of ηi or with a lower value of εi , which
improves the scheduling feasibility, and thus this is beneficial
for obtaining a higher objective function value.

Second, we investigate the influence of the key parameter
θi on the index AOV for the five instance sets. The results are
shown in Fig. 3, from which we can see that the growth of θi has
a negative effect on the AOV. This is because there will be less
space for inserting time buffers when taking more setup times
into account.

In addition, we investigate the influence of the key parameter
α on the index AOV for the five instance sets, and we take two
more levels of α, 25% and 35%, into account. The results are
shown in Fig. 4, from which we can see that the growth of α has
a positive effect on the AOV. This is reasonable because there
will be more inserted buffers in the schedule as the project due
date constraint becomes less strict.

V. CONCLUSIONS

This paper presents a proactive RCPSP with activity splitting
where each activity can be split at discrete time instants under
the constraints of a maximum number of splitting and a mini-
mum period of continuous execution. Besides, in this problem
setup times are considered. Based on the analysis of the estab-
lished model, two properties and one lemma are proposed and
applied in our developed GA to improve the local search effi-
ciency. In addition, after linearizing the proposed model, we use
a commercial software as a benchmark to solve the problem. A
computational experiment that is performed on datasets gener-
ated by the ProGen is designed and executed, from which the
following conclusions are drawn.

1) The two developed properties and the proposed lemma
can be used to maximize the objective function, and the
GA with a combination of the three local search operators
performs the best.

2) Compared with commercial software, the developed GA
is much more efficient to solve the proposed scheduling
problem, and the gap in terms of the objective function
value is acceptable.

3) Due to the increase in flexibility of executing activities, ac-
tivity splitting enhances the robustness of baseline sched-
ules that are likely to have lower adjustment costs during
project execution. Compared with the classic proactive
scheduling models where activity splitting is not allowed,
this paper offers a new method to improve schedule ro-
bustness when activity splitting is allowed and generates
better solutions to project management.

4) With the growth of the maximum number of splitting, the
decline in the minimum execution time, the decrease in
the setup times, and the extension of the project due date,
schedule robustness increases.

Note that the research in this paper is based on specific as-
sumptions of activity splitting, so further research can provide
support for quantitative decisions on project management under
more complex and realistic conditions of activity splitting, such
as cases in which activity splitting is allowed at arbitrary ratio-
nal times. In addition, more effective and efficient algorithms
can be developed to solve the proposed scheduling problem, and
other efficient methods can be proposed to solve the zero-one
polynomial formulations.

APPENDIX A
MORE DETAILS ABOUT THE LITERATURE

ON PROACTIVE SCHEDULING

See Table VIII top of the next page.

APPENDIX B
MORE DETAILS ABOUT THE LITERATURE ON THE

RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM

WITH ACTIVITY SPLITTING

See Table IX top of the next page.
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TABLE VIII
DETAILS ABOUT THE LITERATURE ON PROACTIVE SCHEDULING

TABLE IX
DETAILS ABOUT THE LITERATURE ON THE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM WITH ACTIVITY SPLITTING

APPENDIX C
SIMPLIFICATION OF THE PROPOSED PROBLEM

In the proposed problem, activities can be split into certain
parts, which is decided by two parameters, the maximum split-
ting times ηi and the minimum continuous execution time εi . If
we set ηi = 0 or εi = di for each activity i, then the problem
will be simplified into the proactive scheduling problem with-
out activity splitting. As the dummy end activity is assumed
to start and end at the project deadline, we can add an extra
dummy activity (n − 1) in the project network G′ = (N,A′)
where (n − 1, n) ∈ A′ and (i, n − 1) ∈ A′, ∀(i, n) ∈ A. Then,
we can set the weight of activity (n − 1) as 1 and the weights
of all other activities as 0. In this way, the objective function
(maximize

∑n
i=1 [wi(

∑Vi

v=1
∑F Si , v

b=1 e−b)] will be simplified to

maximize
∑F Sn −1 , 1

b=1 e−b , which is equivalent to minimizing the
project makespan CRCPSP

max . As there are also precedence and
resource constraints in our model and there would not be a
deadline constraint if we set the project deadline much big-
ger than CRCPSP

max , the proposed problem can be simplified into
RCPSP with the objective of makespan minimization.

APPENDIX D
MORE DETAILS OF THE PROCEDURES IN THE GAS

Algorithm 1: Decoding procedure: s(i,v )j
= DCP (L,

DL, BL).
1: s(i,v )1

= 0
2: FOR j = 2 TO nsub DO
3: s(i,v )j

= max(i,v )h ∈P ( i , v ) j
(s(i,v )h

+ dur(i,v )h
+

buf(i,v )h
)

4: WHILE ∃k, t :
∑

h∈S (t) rρ
h,k > Rρ

k (k = 1, . . . , K
and t = s(i,v )j

, . . . , s(i,v )j
+ dur(i,v )j

+
buf(i,v )j

− 1) DO
5: s(i,v )j

= s(i,v )j
+ 1

6: END WHILE
7: END FOR
8: s(i,v )nsub

= max(s(i,v )nsub
, D)

Note: P(i,v )j
represents the set of predecessors of subactivity

(i, v)j .
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Algorithm 2: Slack calculation: FS(i,v )′j = FSP (L,

DL, BL).
1: s(i,v )j

= DCP (L, DL, BL)
2: Obtain the list L′

3: ES(i,v )′1 = LS(i,v )′1 = s(i,v )′1 , FS(i,v )′1 = 0
4: FOR j = 2 TO nsub DO
5: ES(i,v )′j = s(i,v )′j , LF(i,v )′j = min{ESh |h ∈ S(i,v )′j },

LS(i,v )′j = LF(i,v )′j − dur(i,v )′j
6: WHILE ∃k, t :

∑
h∈S (t) rρ

h,k > Rρ
k (k = 1, . . . , K

and t = ES(i,v )′j , . . . , LF(i,v )′j − 1) DO
7: LF(i,v )′j = LF(i,v )′j − 1, LS(i,v )′j = LS(i,v )′j − 1
8: END WHILE
9: FS(i,v )′j = LS(i,v )′j − ES(i,v )′j

10: END FOR

Note: L′ represents the list of subactivities that are or-
dered according to their nonincreasing completion times
(the tiebreaker is the highest subactivity number). For con-
venience, (i, v)′j denotes the subactivity in position j of the
ordered list L′. Additionally, dur(i,v )′j represents the dura-
tion of the subactivity (i, v)′j , and S(i,v )′j , ES(i,v )′j , LS(i,v )′j ,
and LF(i,v )′j respectively, denote the set of immediate suc-
cessors, the earliest starting time, the latest starting time,
and the latest completion time of the subactivity (i, v)′j .

Algorithm 3: Buffering: Robu′= BFP (L, DL, BL).
1: FS(i,v )′j = FSP (L, DL, BL), ζ = 0
2: Calculate the objective function value Robu
3: WHILE ζ ≤ Z DO
4: Choose one subactivity (i, v)j from the list L, and

then buf(i,v )j
= buf(i,v )j

+ 1
5: FS(i,v )′j = FSP (L, DL, BL), and calculate its new

objective function value Robu′

6: IF s(i,v )n s u b
> D OR Robu′ ≤ Robu THEN

7: ζ = ζ + 1, buf(i,v )j
= buf(i,v )j

− 1
8: ELSE
9: Robu = Robu′

10: END IF
11: END WHILE

Algorithm 4: Individual generation: (L, DL, BL)= IGP(g).
1: DO
2: Initialize Elig and the three lists,

j = 0, Vi = 0 (∀i ∈ N), leftd(i) = di (∀i ∈ N)
3: WHILE Elig �= ∅ DO
4: Select an activity i from Elig, Vi = Vi + 1,

j = j + 1
5: Lj = (i, Vi), buf(i,v )j

= 0, nsub = j
6: Generate a random number m1 between 0 and 1
7: IF m1 > itrpt AND Vi ≤ ηi AND leftd(i) ≥ 2εi

THEN
8: Generate a random number m2 from

[εi, leftd(i) − εi ]

Algorithm 4: Continued.

9: dur(i,v )j
= m2 + θi , leftd(i) = leftd(i) − m2

10: ELSE
11: dur(i,v )j

= leftd(i) + θi , update Elig
12: END IF
13: END WHILE
14: WHILE (s(i,v )nsub

> D)
15: Robu′= BFP(L, DL, BL)

Note: Let leftd(i) represent the number of duration units
of activity i that have not yet been assigned (setup times
are not included in leftd(i)), and let Elig, defined as
Elig = {i | leftd(i) > 0 and leftd(j) = 0, (j, i) ∈ A}, be
the set of eligible activities.

Algorithm 5: Crossover: (LC ,DLC ,BLC ) = CRP(LF ,
DLF ,BLF ,LM ,DLM ,BLM ).

1: Generate a random number m between 1 and nsubF

2: Copy the first m elements of every list of the father to
the child

3: Obtain Vi and leftd(i) of the child after copy,
j =

∑
i∈N (ηi + 1)

4: FOR q = nsubM TO 1 DO
5: i = LM

q , d = dur(i,v )M
q

− θi

6: IF leftd(i) > 0 THEN
7: IF Vi ≥ ηi OR leftd(i) < d THEN
8: dur(i,v )C

j
= leftd(i) + θi , leftd(i) = 0

9: ELSE
10: dur(i,v )C

j
= d + θi , leftd(i) = leftd(i) − d

11: END IF
12: LC

j = LM
q , buf(i,v )C

j
= buf(i,v )M

q
×

[(dur(i,v )C
j
− θi)/d]

13: Vi = Vi + 1, j = j − 1
14: END IF
15: END FOR
16: Erase the blank cells from LC , DLC , and BLC

Note: The parameters that are labeled with F , M , and C,
respectively, represent the corresponding lists of the father,
the mother, and the child.

Algorithm 6: Mutation: (LQ ,DLQ ,BLQ ) = MTP(L,
DL,BL).

1: FOR q = 1 TO pmut · nsub DO
2: Randomly generate a number m3 from {0, 1},

a number j from [1,nsub]
3: IF m3 = 0 THEN
4: Calculate the possible positions [a, b] of

subactivity (i, v)j in the list L without causing the
precedence constraint violation

5: Generate a random number m4 from [a, b]
6: Place subactivity (i, v)j in position m4 and update

the lists
7: ELSE
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Algorithm 6: Continued.

8: Generate a random number m5 from {0, 1}
9: IF m5 = 0 THEN

10: buf(i,v )j
= buf(i,v )j

+ 1
11: ELSE
12: IF buf(i,v )j

≥ 1 THEN
13: buf(i,v )j

= buf(i,v )j
− 1

14: END IF
15: END IF
16: END IF
17: END FOR

Note: The parameters that are labeled by Q represent the
corresponding lists of the mutated individual.

APPENDIX E
LINEARIZATION OF THE MODEL

To conduct the linearization, we redefine Vi as the maximum
number of subactivities of activity i, which is a constant value
that is known in advance instead of being a decision variable.
We use M to denote a large positive number and introduce Ui

to represent the maximum number of free slacks of activity i,
which is calculated as the length of the time window of activity
i without the resource constraints under an indivisible schedul-
ing environment. Then, the free slack FSi,v ranges from 0 to
Ui . Additionally, five groups of binary variables are defined as
follows:

yi,v =

{
0 if the duration of subactivity (i, v) is zero

1 otherwise

xi,v ,u =

{
0 if free slack u of subactivity (i, v) is zero

1 otherwise

αi,v ,t =

{
1 if si,v ≤ t

0 otherwise

βi,v ,t =

{
1 if si,v + duri,v + FSi,v > t

0 otherwise

γi,v ,t =

{
1 if αi,v ,t = βi,v ,t = 1

0 otherwise
.

There are seven groups of decision variables in the trans-
formed linear model, i.e., yi,v , duri,v , si,v , xi,v ,u , αi,v ,t , βi,v ,t ,
and γi,v ,t . Compared with those decision variables in the non-
linear model, yi,v is used to replace Vi while duri,v and si,v

stay the same. In addition, xi,v ,u is used to take the place of the
computation of the free slack, while αi,v ,t , βi,v ,t , and γi,v ,t will
decide the set of activities that are in progress at time t. Based
on the above definitions, the nonlinear scheduling model can be

transformed into a linear one, as follows.

Maximize Robu =
n∑

i=1

[

wi

(
Vi∑

v=1

Ui∑

u=1

e−uxi,v ,u

)]

(1)

s1,1 = 0 (2)

si,Vi
+ duri,Vi

+ FSi,Vi
≤ sj,1 (i, j) ∈ A (3)

si,v + duri,v + FSi,v ≤ si,v+1 ∀i; v = 1, . . . , Vi − 1 (4)

sn,1 ≤ D (5)
n∑

i=1

(

rρ
i,k

Vi∑

v=1

γi,v ,t

)

≤ Rρ
k ∀k,∀t (6)

Vi∑

v=1

duri,v = di + θi

Vi∑

v=1

yi,v ∀i (7)

Vi = ηi + 1 (8)

duri,v ≥ (εi + θi) × yi,v ∀i; v = 1, 2, . . . , Vi (9)

yi,v+1 ≤ yi,v ∀i; v = 1, 2, . . . , Vi − 1 (10)

duri,v + FSi,v ≤ yi,v × M ∀i, ∀v (11)

Ui∑

u=1

xi,v ,u = FSi,v ∀i, ∀v (12)

M (αi,v ,t − 1) ≤ t − si,v < M × αi,v ,t ∀i, ∀v, ∀t (13)

M (βi,v ,t − 1) < si,v + duri,v + FSi,v − t ≤ M × βi,v ,t

(14)

2 γi,v ,t ≤ αi,v ,t + βi,v ,t ≤ γi,v ,t + 1 ∀i, ∀v, ∀t (15)

FSi,v , duri,v , and si,v are nonnegative integers (16)

yi,v , xi,v ,u , αi,v ,t , βi,v ,t , γi,v ,t ∈ {0, 1} ∀i, ∀v, ∀t. (17)

In the formulation, the objective function is transformed into
a new linear one, while two constraints, (2), and (5), stay the
same. In addition, six constraints, (3), (4), (6), (7), (8), and (9),
are adjusted into new ones, and six constraints, from (10) to
(15), are added. Specifically, FSi,v should be included in the
precedence constraints (3) and (4). As the decision variable
xi,v ,u is used to decide the value of FSi,v through (12), it should
also replace FSi,v in the objective function. In constraints (7),
we now use

∑Vi

v=1 yi,v to represent the number of nondummy
subactivities. Because Vi now represents the maximum number
of subactivities of activity i, which is calculated by constraints
(8), there will be dummy subactivities whose durations and free
slacks should be zero. Hence, constraints (9) force the duration
of each subactivity to be at least its minimum execution time
plus its setup time, but only if it is a nondummy one. Moreover,
constraints (10) and (11) ensure that the dummy subactivities
are the last ones of each activity and that their duration and
free slack are zero. Further, with three added constraints, which
are shown in (13)–(15), to describe the set S(t) based on the
definition S(t) = {i|si,v ≤ t < si,v + duri,v + FSi,v}, the re-
source constraints are transformed into new ones, as stated in
constraints (6).
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