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a b s t r a c t

This paper examines limitations of the multi-stage DEA (data envelopment analysis) model in the
literature. We focus on the DEA model with additive efficiency decomposition. We create taxonomy for the
multi-stage DEA models and show when the decomposition weights can be non-increasing. When the
decompositionweight for a stage is deemed reflective of the stage's relative importance, this property then
implies that upstream stages (regardless the stage efficiency scores) in the model will obtain higher
priority in efficiency decomposition. We also find that the non-increasing weights can affect the evaluation
of overall and stage efficiency scores. We illustrate our findings through an empirical data set.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Data envelopment analysis (DEA) is a popular method for evaluating the relative efficiency of decision-making units (DMUs) [2,15,4].
One of the unique features of the classical DEA method is that it does not make any assumption on the production system's internal
structure. This property makes DEA a general and robust method. However, the classical DEA model leaves out information about the
internal structure, which often reveals process improvement opportunities (e.g., [3]). In addition, few industrial production systems
consist of only a single-stage process.

Recently, the classical DEA has been extended to multi-stage serial systems. One useful feature of the multi-stage DEA model is that it can
estimate the technical efficiencies for a DMU as well as the stages inside it. The multi-stage model is gaining increasing prominence in both
theoretical development and empirical applications of DEA [12,17,30,32,34,19]. However, the multi-stage model in its general form is a non-
linear problem, in that the objective function is a weighted sum of stage efficiency indexes. Therefore, the usual assumption adopted by most
researchers is to model the weights (i.e., decomposition weights), which implicitly reflect the relative importance of different stages in a DMU,
as variables and assume that the weights have a specific structure, such that the original problem can be converted to an equivalent LP.

In this paper, we examine the unintended consequences of this assumption on decomposition weights and efficiency scores. We
conclude that caution is required when interpreting and acting on estimation results under this assumption. Specifically, we find that the
decomposition weights can be non-increasing from the first to the last stages in certain multi-stage DEA models, which implies that the
model always assigns higher (or not lower) priority to the upstream stages in efficiency decomposition. This property can be problematic
in practice, as the evaluator is likely to prefer not to set weights as such. As the weights and efficiency scores are both endogenous in the
multi-stage model, we will show through an empirical dataset that the assumption on decomposition weights has influence not only on
weights but also efficiency estimates as well. Regarding this property, we should note that Despotis et al. [13] discuss a similar issue for the
two-stage DEA model without exogenous inputs and outputs (i.e., the simplest type of two-stage models). However, it still remains unclear
whether this property also applies to a general two-stage or a multi-stage model, an issue which we examined in the current paper.
Finally, we find that the analytical relationship between different stages' efficiency scores and weights for certain multi-stage DEA models:
the stage-1 efficiency score decreases when its weight increases (and vice versa).

As an alternative to the models with endogenous weights, we investigate the additive DEA model in which weights are pre-determined
by the evaluator based on her perception for different production stages. Since weights are set as constant in this model, the problem due
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to endogenous weights is circumvented. However, one limitation for this model lies in its nonlinearity. Li et al. [22] develop an algorithm
applicable to a two-stage DEA model. We improve the existing algorithm for the constant weight model and outline how this improved
algorithm can be applied to a general multi-stage DEA model. The proposed algorithm shortens the computation time by approximately
70% based on an application to evaluating twenty-four Taiwanese non-life insurance companies using a two-stage model. We expect that
the difference in computation time between two algorithms will grow exponentially when the number of stages increases. Finally, we
compare the constant weight model with the traditional two-stage model. We illustrate that the standard multi-stage model may generate
spurious weights and efficiency scores when the importance of different production stages in the model can been articulated.

2. Additive efficiency decomposition in a multi-stage DEA model

Several recent studies extend the classical DEA model to a two-stage system and a multi-stage system [12,17]. An illustration of a multi-
stage production process is shown in Fig. 1. Kao [17] provides a detailed survey of DEA studies on the serial multi-stage processes.

Three major distinctions can be drawn between the classical DEA model and the multi-stage DEA model. First, the classical DEA model
only considers the initial inputs and final outputs of a system, whereas the multi-stage DEA model additionally considers the intermediate
outputs that traverse through the entire process. Second, the classical DEA model aims to optimize the efficiency score of the DMU under
evaluation, and the efficiency score is a ratio between weighted initial inputs and final outputs. In contrast, the objective function of the
multi-stage DEA model (i.e., the overall efficiency) is an increasing function of the efficiency scores of all stages, and the stage efficiency
scores are ratios of weighted inputs and outputs of different stages. Finally, the multistage DEA model calculates efficiency scores at the DMU
and the stage levels, whereas the classical DEA can only calculate the DMU (overall) efficiency score. The multi-stage DEA model has been
applied to measure the efficiencies of a wide variety of applications, such as cable TV service operation units [30], cement manufacturing
production process [32], electric power companies [33,34], bank systems [28,19], Airlines [21] and vegetable oil industry [29].

The multi-stage DEA model that we study in the current paper employs ratio-form efficiency measures, and we begin by introducing
the notation for it. Fig. 1 shows the Q-stage production process. For DMUj, we denote the two output vectors of stage p by zoutjp AℜRp

þ and
zinjpAℜSp

þ . The notation zoutjp represents the exogenous outputs of stage p, and zinjp represents the outputs that serve as inputs to stage pþ1. In
addition, xjp' AℜIp

þ represents the exogenous input vector of stage p. We use an alternative formulation for the first stage (stage 1) and the
last stage (stage Q ). The inputs for stage 1 are denoted by xj1 and outputs of stage Q by yjQ . Thus it follows that xj1' ¼ xj1, zinj0 ¼ 0, zinjQ ¼ 0 and
zoutjQ ¼ yjQ :

We define three variants (M2, M3 and M4) of the general multi-stage model in Fig. 1:

� Structure M1 (with external, intermediate inputs and outputs): if both xjp' a0 and zoutjp a0 for all p¼ 1;…;Q , where xjp' AℜIp
þ and

zoutjp AℜRp
þ .

� Structure M2 (no external, intermediate inputs): if xjp' ¼ 0 for p¼ 2;…;Q and zoutjp a0 for all p¼ 1;…;Q , where xjp' AℜIp
þ and zoutjp AℜRp

þ .
� Structure M3 (no external, intermediate outputs): if xjp' a0 for all p¼ 1;…;Q and zoutjp ¼ 0 for p¼ 1;…;Q�1, where xjp' AℜIp

þ and
zoutjp AℜRp

þ .
� Structure M4 (no external, intermediate inputs and outputs): if both xjp' ¼ 0 for p¼ 2;…;Q and zoutjp ¼ 0 for p¼ 1;…;Q�1, where xjp' AℜIp

þ
and zoutjp AℜRp

þ .

Among these four structures, M1 (with external intermediate inputs and outputs) has the most general structure. M2, M3 and M4 are
special cases of M1. As we did not find any specific properties for M1, our subsequent analysis and discussion will focus on M2, M3,
and M4.

Following previous studies, we define the input-oriented efficiency for stagep of DMUj as the ratio of weighted outputs and inputs1:

θjp ¼
PRp

r ¼ 1 uprzoutjpr þ
PSp

k ¼ 1 ηpkz
in
jpkPSp� 1

k ¼ 1 ηp�1kzinjp�1kþ
PIp

i ¼ 1 vpixjpi'
; p¼ 2;…;Q�1: ð1Þ

Similarly, the efficiencies of the first and the last stage are respectively,

θj1 ¼
PR1

r ¼ 1
u1rzoutj1r þ

PS1
k ¼ 1

η1kzinj1kPm

i ¼ 1
vixji

;

θjQ ¼
Ps

r ¼ 1 uQryjrPSQ � 1

k ¼ 1 ηQ �1kzinjQ�1kþ
PIQ

i ¼ 1 vQixjQi'
: ð2Þ

y (r = 1,…,s)

z (h = 1,…, R )

Stage 1 Stage p Stage Q

z h = 1,…,R

x ( = 1, . . . , ) z ( ) k

… …

x h = 1,…,Ix h = 1,…,IDMU , j = 1,…,n

Fig. 1. A general serial multi-stage process.

1 The output-oriented formulation is shown in Appendix A.
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In (1) and (2), upr represents the multiplier for zoutjpr , the output from stage p. Similarly, vpi represents the multiplier for the exogenous
inputs xjpi' , and ηpk represents the multiplier for the zinjpk (i.e., z

in
jpk is the outputs for stage p and inputs for stage pþ1). These multipliers are

the decision variables in the model. Eqs. (1) and (2) show that the numerator and denominator of the stage efficiency are weighted sums
of the inputs and outputs of that stage, respectively. We refer to these sums as virtual inputs and virtual outputs.

2.1. Additive multi-stage models

Depending on how the stage efficiency scores enter the objective function, the efficiency decomposition in a multi-stage DEA model
can be either additive or multiplicative. In an additive model, the objective function is a weighted average of the stage efficiency scores. In
a multiplicative model, the objective is the product of the stage efficiency scores. This paper focuses only on the additive model.

We next present the formulation of the additive model under Structure M1 (with external, intermediate inputs and outputs). The
additive multi-stage models for Structure M2, M3 and M4 are similar to that of M1. The overall efficiency of the multi-stage model (or
DMU) is a weighted average of the efficiencies of individual stages [12]. The model maximizes the evaluated DMU's efficiency θo under the
condition that the stage efficiencies of all DMUs θjp p¼ 1;…;Qð Þ must not exceed unity.

Max θo ¼
XQ
p ¼ 1

wpθop s:t: θjpr1; j¼ 1;…;n; p¼ 1;…;Q ; ð3Þ

where θjp are defined in (1) and (2).
We refer to wp in (3) as the decomposition weights, as they decompose the overall efficiency into stage efficiencies. Cook et al. [12]

define the weights wp as the virtual inputs of stage p divided by total virtual inputs:

wp ¼

Pm

i ¼ 1
vixjiPm

i ¼ 1
vixji þ

PQ

p ¼ 2

PSp� 1
k ¼ 1 ηp� 1kzinjp�1k þ

PIp
i ¼ 1

vpixjpi'
� �when p¼ 1;

PSp� 1
k ¼ 1

ηp� 1kzinjp�1k þ
PIp

i ¼ 1
vpixjpi'Pm

i ¼ 1
vixji þ

PQ

p ¼ 2

PSp� 1
k ¼ 1 ηp� 1kzinjp�1k þ

PIp
i ¼ 1

vpixjpi'
� �; for p¼ 2;…;Q :

8>>>>><
>>>>>:

ð4Þ

By (4), the θo in the objective function can be rewritten as

θo ¼
PQ �1

p ¼ 1
PRp

r ¼ 1 uprzoutoprþ
PSp

k ¼ 1 ηpkz
in
opk

� �
þPs

r ¼ 1 uryorPm
i ¼ 1 vixoiþ

PQ
p ¼ 2

PSp� 1

k ¼ 1 ηp�1kzinop�1kþ
PIp

i ¼ 1 vpixopi'
� �: ð5Þ

In an output-oriented model, the weights are similar to the input-oriented counterparts, and can be defined as virtual outputs over the
sum of virtual outputs across all stages. It is worth noting that by this construction, the decomposition weights wp become endogenous in
(3), in a sense that the weights and stage efficiencies are determined simultaneously within the model. Many subsequent studies on the
additive model adopt this setting (e.g., [6,8,10,9,11]). The rationale is that the weights defined in this way can reflect the resource
consumption of a stage compared with that of the entire DMU. This construction also provides great mathematical convenience, in that
the original fractional linear problem can be transformed to an equivalent LP. Specifically, we can express the objective function of (3) as a
ratio, and then use the Charnes-and-Cooper transformation [1] to convert the problem to the following LP:

Max
XQ �1

p ¼ 1

XRp

r ¼ 1

uprzoutoprþ
XSp
k ¼ 1

ηpkz
in
opk

 !
þ
Xs
r ¼ 1

uryor

s:t:
Xm
i ¼ 1

vixoiþ
XQ
p ¼ 2

XSp� 1

k ¼ 1

ηp�1kz
in
op�1kþ

XIp
i ¼ 1

vpixopi'

 !
¼ 1;

XR1

r ¼ 1

u1rzoutj1r þ
XS1
k ¼ 1

η1kz
in
j1kr

Xm
i ¼ 1

vixji; j¼ 1;…;n;

XRp

r ¼ 1

uprzoutjpr þ
XSp
k ¼ 1

ηpkz
in
jpkr

XSp� 1

k ¼ 1

ηp�1kz
in
jp�1kþ

XIp
i ¼ 1

vpixjpi' ; p¼ 2;…;Q�1; j¼ 1;…;n;

Xs
r ¼ 1

uryjrr
XSQ � 1

k ¼ 1

ηQ �1kz
in
jQ�1kþ

XIQ
i ¼ 1

vQixjQi' ; j¼ 1;…;n;

uph; vpk; ηpk;ur ; viZ0: ð6Þ

The output-oriented model of (6) can be developed analogously. See Appendix A for details.

2.2. Issue of the additive multi-stage model

Next, we will describe some properties associated with the weights (4). We find that the weights for different stages' efficiencies are
non-increasing from stages 1 to Q. We start by looking at Structure M2, then M3, and finally M4.

In the input-oriented model for Structure M2 (no external, intermediate inputs), the efficiency score of each stage must not exceed one.
Thus, it follows from (6) that

XR1

r ¼ 1

u1rzoutj1r þ
XS1
k ¼ 1

η1kz
in
j1kr

Xm
i ¼ 1

vixji;
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XRp

r ¼ 1

uprzoutjpr þ
XSp
k ¼ 1

ηpkz
in
jpkr

XSp� 1

k ¼ 1

ηp�1kz
in
jp�1k; p¼ 2;…;Q�1;

Xs
r ¼ 1

uryjrr
XSQ � 1

k ¼ 1

ηQ �1kz
in
jQ�1k: ð7Þ

Therefore, the decomposition weights have the following relationship:

w1�w2 ¼
Pm

i ¼ 1 vixjiPm
i ¼ 1 vixjiþ

PQ
p ¼ 2

PSp� 1

k ¼ 1 ηp�1kzinjp�1k

� ��
PS1

k ¼ 1 η1kz
in
j1kPm

i ¼ 1 vixjiþ
PQ

p ¼ 2
PSp� 1

k ¼ 1 ηp�1kzinjp�1k

� �

¼
Pm

i ¼ 1 vixji�
PS1

k ¼ 1 η1kz
in
j1kPm

i ¼ 1 vixjiþ
PQ

p ¼ 2
PSp� 1

k ¼ 1 ηp�1kzinjp�1k

� �Z
PR1

r ¼ 1 u1rzoutj1rPm
i ¼ 1 vixjiþ

PQ
p ¼ 2

PSp� 1

k ¼ 1 ηp�1kzinjp�1k

� �Z0;

wp�wpþ1 ¼
PSp� 1

k ¼ 1 ηp�1kzinjp�1kPm
i ¼ 1 vixjiþ

PQ
p ¼ 2

PSp� 1

k ¼ 1 ηp�1kzinjp�1k

� ��
PSp

k ¼ 1 ηpkz
in
jpkPm

i ¼ 1 vixjiþ
PQ

p ¼ 2
PSp� 1

k ¼ 1 ηp�1kzinjp�1k

� �

¼
PSp� 1

k ¼ 1 ηp�1kzinjp�1k�
PSp

k ¼ 1 ηpkz
in
jpkPm

i ¼ 1 vixjiþ
PQ

p ¼ 2
PSp� 1

k ¼ 1 ηp�1kzinjp�1k

� �Z
PRp

r ¼ 1 uprzoutjprPm
i ¼ 1 vixjiþ

PQ
p ¼ 2

PSp� 1

k ¼ 1 ηp�1kzinjp�1k

� �Z0; p¼ 2;…;Q�1: ð8Þ

Based on (8), we obtain following theorem.

Theorem 1. In the input-oriented additive multi-stage model (Structure M2), it holds that w1Zw2Z…ZwQ .

For the input-oriented model for M2 (no external, intermediate inputs), Theorem 1 shows that the decomposition weights are non-
increasing in the sequence of stages, regardless stage efficiency scores. This is against the intuition that in DEA, weights wp should
optimize the overall efficiency, given the stage efficiencies.

Given Theorem 1, one would reasonably expect that the output-oriented model for M3 (no external, intermediate outputs) may have
symmetric property to Theorem 1. That is, the weights are expected to be non-decreasing in the sequence of stages. Interestingly, we could
not establish this relationship for M3. Following our derivation for Theorem 1, we first note that (9) and (10) holds for the output-oriented
model for M3.

Xm
i ¼ 1

vixjiZ
XS1
k ¼ 1

η1kz
in
j1k; j¼ 1; ::;n;

XSp� 1

k ¼ 1

ηp�1kz
in
jp�1kþ

XIp
i ¼ 1

vpixjpi' Z
XSp
k ¼ 1

ηpkz
in
jpk; p¼ 2;…;Q�1; j¼ 1; ::;n;

XSQ � 1

k ¼ 1

ηQ �1kz
in
jQ�1kþ

XIQ
i ¼ 1

vQixjQi' Z
Xs
r ¼ 1

uryjr ; j¼ 1; ::;n; ð9Þ

wp�wpþ1 ¼
PSp

k ¼ 1
ηpkzinjpk �

PSpþ 1
k ¼ 1 ηpþ 1kzinjpþ 1kPQ � 1

p ¼ 1

PSp
k ¼ 1

ηpkzinjpk

� �
þ
Ps

r ¼ 1
uryjr

; p¼ 1;…;Q�1;

wQ �1�wQ ¼
PSQ � 1

k ¼ 1 ηQ �1kzinjQ�1k�
Ps

r ¼ 1 uryjrPQ �1
p ¼ 1

PSp
k ¼ 1 ηpkz

in
jpk

� �
þPs

r ¼ 1 uryjr
: ð10Þ

However, we cannot establish a relationship between the weights for the two stages due to
PIp
i ¼ 1

vpixjpi' Z0 in (9). If the property

w1rw2r…rwQ exists, then
PSp� 1

k ¼ 1
ηp�1kzinjp�1kþ

PIp
i ¼ 1

vpixjpi' Z
PSp
k ¼ 1

ηpkzinjpk must be like
PSp� 1

k ¼ 1
ηp�1kzinjp�1kþ

PIp
i ¼ 1

vpixjpi' r PSp
k ¼ 1

ηpkzinjpk. But that

cannot be true because of the restriction that the sum of virtual inputs must be not less than the sum of virtual outputs in both input- and
output-oriented models by DEA.

We continue the same analysis to both input- and output-oriented models for other structures. Table 1 summarizes the results that we
derive thus far.

Table 1
Implied weights relationship in additive multi-stage models.

Process structure Additive multi-stage models

Input-oriented Output-oriented

M1 ðwith external; intermediate inputs and outputsÞ) xjp' a0 and zoutjp a0 – –

M2 (no external, intermediate inputs) xjp' ¼ 0 and zoutjp a0 w1Zw2Z…ZwQ –

M3 (no external, intermediate outputs) xjp' a0 and zoutjp ¼ 0 – –

M4 (no external, intermediate inputs and outputs) xjp' ¼ 0 and zoutjp ¼ 0 w1Zw2Z…ZwQ w1Zw2Z…ZwQ
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Onemight ask the following question: as we foundw1Zw2Z…ZwQ for input-oriented model under M4, but why is not there a symmetric
result that w1rw2r…rwQ for output-oriented model? This can be explained as follows. Under M4 without exogenous inputs and outputs
(i.e., when xjp' ¼ 0 and zoutjp ¼ 0), the relationship of the weights between stages p and pþ1 depends on stages p's and ðpþ1Þ's sum of virtual

inputs (i.e.,
PSp� 1

k ¼ 1
ηp�1kzinjp�1k, and

PSp
k ¼ 1

ηpkzinjpk) for input-oriented model, and stages p's and ðpþ1Þ's sum of virtual outputs for output-oriented

model (i.e.,
PSp
k ¼ 1

ηpkzinjpk, and
PSpþ 1

k ¼ 1
ηpþ1kzinjpþ1k) according to the definition of decomposition weights in the additive multi-stage DEA model. We

find the same relationship for weights in the input- and output-oriented model under M4 for two reasons. First, the intermediate products zinp
served as both inputs (for stage pþ1) and as outputs (for stage p). Second, the DEA constraints in both input-oriented model and output-oriented
model yield the same inequality relationship between the sum of virtual inputs and the sum of virtual outputs for each stage.

However, the relationship may not exist in (i) both input and output-oriented models under M1, and M3, and (ii) the output-oriented
model under M2. In conditions (i) with the input-oriented model and (iii) (i.e., when xjp' a0), the relationship of the weights between

stages p and pþ1 depends on both stages p's and ðpþ1Þ's sum of virtual inputs (i.e.,
PSp� 1

k ¼ 1
ηp�1kzinjp�1kþ

PIp
i ¼ 1

vpixjpi' , and

PSp
k ¼ 1

ηpkzinjpkþ
PIpþ 1

i ¼ 1
vpþ1ixjpþ1i' ). However, stage p's efficiency is restricted to be less than or equal to one, and thus the sum of stage p's

virtual inputs must be greater than or equal to the sum of its virtual outputs, i.e.,
PRp

r ¼ 1
uprzoutjpr þ

PSp
k ¼ 1

ηpkzinjpkr
PSp� 1

k ¼ 1
ηp�1kzinjp�1kþ

PIp
i ¼ 1

vpixjpi' for

M1. Note that
PSp
k ¼ 1

ηpkzinjpk in the above inequality forms part of the outputs of stage p's as well as inputs for stage pþ1's. Similarly, for stage

p under M3, it holds that
PSp� 1

k ¼ 1
ηp�1kzinjp�1kþ

PIp
i ¼ 1

vpixjpi' Z
PSp
k ¼ 1

ηpkzinjpk, and
PSp
k ¼ 1

ηpkzinjpk will be part of stage pþ1's inputs. However, the

relationship of
PSp� 1

k ¼ 1
ηp�1kzinjp�1kþ

PIp
i ¼ 1

vpixjpi' and
PSp
k ¼ 1

ηpkzinjpkþ
PIpþ 1

i ¼ 1
vpþ1ixjpþ1i' cannot be determined because the external input xjp' a0. As a

result, we could not identify the relationship between the decomposition weights of stages p and pþ1. The same analysis applies to cases
(i) with the output-oriented model and (ii) with the output-oriented models under M1 and M2 (i.e., when zoutjp a0Þ:

Finally, Theorem 2 shows additional properties about the decomposition weights and efficiencies of stage 1and stage Q under Structure
M4 (no external, intermediate inputs and outputs). Interestingly, we find that the lower bound of the stage 1 decomposition weight
decreases in both the number of stages (Q) and its stage efficiency. This means that the stage 1 decomposition weight w1 can become
lower when stage 1 becomes more efficient, and that w1 can still be high (only bounded above by 1.0) even when Q becomes arbitrarily
large. In summary, the theorem shows that w1 in the standard multi-stage model is dominant compared with other w's. Part (ii) of
Theorem 2 states a similar property for the output-oriented model.

Theorem 2. (i) For Model (6) under Structure M4, w1Z 1
1þ Q �1ð Þθ1 and wQ r 1

QθQ
: (ii) For the output-oriented model (A.4) under Structure M4,

wQ r 1
Q �1ð ÞθQ þ1 and w1Z 1

Qθ1
:

Proof. In Structure M4 (no external, intermediate inputs and outputs),

(i). In the input-oriented additive multi-stage model, the stage efficiencies are θ1 ¼
PS1

k ¼ 1
η1kzinj1kPm

i ¼ 1
vixji

, θp ¼
PSp

k ¼ 1
ηpkzinjpkPSp� 1

k ¼ 1 ηp� 1kzinjp�1k

; p¼ 2;…;Q�1, and

θQ ¼
Ps

r ¼ 1
uryjrPSQ � 1

k ¼ 1
ηQ � 1kzinjQ�1k

. The weights w1 and wQ are defined as w1 ¼
Pm

i ¼ 1
vixjiPm

i ¼ 1
vixji þ

PQ

p ¼ 2

PSp� 1
k ¼ 1

ηp� 1kzinjp�1k

� � and wQ ¼

PSQ � 1
k ¼ 1

ηQ � 1kzinQ�1kPm

i ¼ 1
vixji þ

PQ

p ¼ 2

PSp� 1
k ¼ 1

ηp� 1kzinjp�1k

� �. The restriction that stage efficiencies must be equal or less than unity shows
Pm
i ¼ 1

vixijZ

PS1
k ¼ 1

η1kzinj1kZ…Z
PSp� 1

k ¼ 1
ηp�1kzinjp�1kZ

PSp
k ¼ 1

ηpkzinjpkZ…Z
PSQ � 1

k ¼ 1
ηQ �1kzinjQ�1kZ

Ps
r ¼ 1

uryjr . Then,w1 ¼
Pm

i ¼ 1
vixjiPm

i ¼ 1
vixji þ

PQ

p ¼ 2

PSp� 1
k ¼ 1 ηp� 1kzinjp�1k

� �¼
1

1þ
PQ

p ¼ 2

PSp� 1
k ¼ 1

ηp� 1kz
in
jp�1kPm

i ¼ 1
vixij

� �Z 1

1þ
PQ

p ¼ 2

PS1
k ¼ 1

η1kz
in
1kPm

i ¼ 1
vixij

� �¼ 1
1þ Q �1ð Þθ1, and wQ ¼

PSQ � 1
k ¼ 1

ηQ � 1kzinQ�1kPm

i ¼ 1
vixji þ

PQ

p ¼ 2

PSp� 1
k ¼ 1 ηp� 1kzinjp�1k

� �rPSQ � 1
k ¼ 1

ηQ � 1kzinQ�1k

Q
Ps

r ¼ 1
uryrj

¼ 1
QθQ

.

(ii). The proof is similar to (i) and is omitted ■

Table 2
A three-stage process and efficiencies.

DMU Stage 1 DEA efficiency of the stage Stage 2 DEA efficiency of the stage Stage 3 DEA efficiency of the stage

x zout1 zin1 zin1 zout2 zin2 zin2 y

A 5 10 10 1.0000 10 10 10 0.5000 10 5 0.5000
B 10 10 10 0.5000 10 20 20 1.0000 20 10 0.5000
C 10 10 10 0.5000 10 10 10 0.5000 10 10 1.0000
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2.3. A three-stage example

We next demonstrate that the weights in the objective function as described above may bias the estimates of the stage and overall
efficiencies. Tables 2 and 3 shows the data of three DMUs. Note that all three DMUs in the example have one efficient stage (i.e., efficiency
score equal to 1 if we evaluate the stage with standard DEA) and two inefficient stages (i.e., efficiency score equal to 0.5 if we evaluate the
stage with standard DEA). Specifically, stage 1 of DMU A, stage 2 of DMU B, and stage 3 of DMU C are efficient. Therefore, one would expect
that these three DMUs should have the same overall efficiency in the multi-stage model, and that, across the three DMUs, the weights (i.e.,
w1;w2; and w3Þ should follow a fixed pattern corresponding to the stage efficiencies.

However, the results are different from our intuitions. The weights are increasing (w14w24w3Þ for all three DMUs, and DMU A's
overall efficiency score is higher than DMU B's and DMU C's. This example illustrates that the decomposition weights can cause distortion
of efficiency scores, and that the overall efficiency of some DMUs may not be optimal given their stage efficiencies.

3. Additive efficiency decomposition for two-stage processes

In this section, we turn to the two-stage model, which is a special case of the general serial Q-stage process (i.e., Q ¼ 2). The purpose of
discussing the two-stage model is two-fold. First, we obtain some properties about stage efficiencies and weights, which may not apply to
the multi-stage model. Second, the applications of the two-stage model are more common in the literature. Therefore, a discussion about
the properties of the two-stage model can be useful for future research. Fig. 2 depicts the two-stage process structure.

Similarly, we can categorize the two-stage models as follows:

� Structure M1 (with external inputs and outputs): if both xj'a0 and zoutj a0, where xj'AℜH
þ and zoutj AℜK

þ .� Structure M2 (no external inputs): if only xj' ¼ 0, where xj'AℜH
þ and zoutj AℜK

þ .� Structure M3 (no external outputs): if only zoutj ¼ 0, where xj'AℜH
þ and zoutj AℜK

þ .� Structure M4 (no external inputs and outputs): if both xj' ¼ 0 and zoutj ¼ 0, where xj'AℜH
þ and zoutj AℜK

þ .

Despotis et al. [13] found that w2rw1 in their input-oriented model for Structure M4, which is consistent with Theorem 1.
In addition to the property that w1Zw2 identified in Despotis et al. [13], we discover several interesting properties of the two-stage

model, including the stage-1 efficiency decreases when w1 increases which is contrary to practitioners' belief that higher decomposition
weights should be associated with higher stage-wise efficiencies. To illustrate, first recall that the weights in the input-oriented two-stage

model are w1 ¼
Pm

i ¼ 1
vixjiPm

i ¼ 1
vixji þ

PD

d ¼ 1
ηdzinjd

and w2 ¼
PD

d ¼ 1
ηdzinjdPm

i ¼ 1
vixji þ

PD

d ¼ 1
ηdzinjd

. First, because w1Zw2 and w1þw2 ¼ 1, it follows that w1A 0:5; 1½ Þ and

w2A 0; 0:5ð �, indicating that stage 1 always receives at least as much weight as stage 2. Furthermore, for Structure M4, we can express the
decomposition weights w1;w2ð Þ as a function of the stage 1 efficiency:

w1 ¼
Pm

i ¼ 1
vixjiPm

i ¼ 1
vixji þ

PD

d ¼ 1
ηdzinjd

¼ 1

1þ
PD

d ¼ 1
ηdz

in
jdPm

i ¼ 1
vixji

¼ 1
1þ θj1

;

w2 ¼ 1�w1 ¼
PD

d ¼ 1 ηdz
in
jdPm

i ¼ 1 vixjiþ
PD

d ¼ 1 ηdz
in
jd

¼ θj1
θj1þ1

: ð11Þ

Thus, w1 will decrease and w2 will increase as stage 1 gains higher efficiency. Further, w1 ¼w2 ¼ 0:5 if and only if stage 1 is efficient.

Table 3
Efficiencies and weights from the additive model.

DMU θ θ1 θ2 θ3 w1 w2 w3

A 0.9997 1.0000 0.5000 0.5000 0.9995 0.0004 0.0001
B 0.6666 0.5000 1.0000 0.5000 0.6666 0.3332 0.0002
C 0.5714 0.5000 0.5000 1.0000 0.5716 0.2857 0.1427

Fig. 2. A general two-stage process.
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Similarly, we can express the weights w1;w2ð Þ in the output-oriented model as

w2 ¼
Ps

r ¼ 1
uryjrPD

d ¼ 1
ηdzinjd þ

Ps

r ¼ 1
uryjr

¼ 1PD

d ¼ 1
ηdz

in
jdPs

r ¼ 1
ur yjr

þ1

¼ 1
θj2 þ1;

w1 ¼ 1�w2 ¼
θj2

θj2þ1
; ð12Þ

which show that w2 will decrease when stage 2's efficiency increases, and that w1 will increase when stage 2's efficiency increases.
Table 4 lists the studies using the two-stage model. Note that several extensions of the basic two-stage model have also

appeared in the literature. For example, Liang et al. [24] develop a two-stage model with a feedback loop from stage 2 to stage 1,
and Chen et al. [6] propose a two-stage model with shared inputs for the two stages. Applications of the two-stage and network
DEA models have been applied to measuring performance of bank branch with information technology [6], corporate governance
on airline [27], Chinese commercial banking [35,26,37], and tourist hotels [16], among others. Cook et al. [12] extend the two-stage
additive DEA model to multi-stage and network models. Cook et al. [12] and Kao [17] contain several real-world examples of the
two-stage model.

4. Additive models with constant weights

The preceding sections illustrate the limitations of the multi-stage DEA model. To circumvent the problem due to variable
decomposition weights, we turn to (13), which is an additive model with constant decomposition weights.

Max θo ¼
XQ
p ¼ 1

wpθop

s:t:θj1 ¼
PR1

r ¼ 1 u1rzoutj1r þ
PS1

k ¼ 1 η1kz
in
j1kPm

i ¼ 1 vixji
r1; j¼ 1;…;n;

θjp ¼
PRp

r ¼ 1 uprzoutjpr þ
PSp

k ¼ 1 ηpkz
in
jpkPSp� 1

k ¼ 1 ηp�1kzinjp�1kþ
PIp

i ¼ 1 vpixjpi'
r1; p¼ 2;…;Q�1; j¼ 1;…;n;

θjQ ¼
Ps

r ¼ 1 uQryjrPSQ � 1

k ¼ 1 ηQ �1kzinjQ�1kþ
PIQ

i ¼ 1 vQixjQi'
r1; j¼ 1;…;n;

uph; vpk; ηpk;ur ; viZ0; ð13Þ

where wp are weights predetermined by the evaluator and
PQ
p ¼ 1

wp ¼ 1.

Note that Model (13) is a fractional linear programming problem ([20], [31]). Unlike the standard DEA model, the problem cannot be
expressed as a linear program by the Charnes-and-Cooper transformation. Therefore, we present a heuristic method to approximate its
optimal solution. Our method extends Li et al.'s approach from their 2012 paper, which is developed for the two-stage multiplicative DEA
model. Their approach aims to maximize the geometric mean of the two stages' efficiency scores (i.e., the DMU's efficiency expressed in
the multiplicative form). The solution is obtained by a line search within the upper bound of the two stages' efficiency scores; we will
introduce how the upper bound is determined later in this section. We improve Li et al.'s algorithm by finding a tighter lower bound,
which can significantly reduce computation time. For example, the computation time is reduced by approximately 70% based on the
dataset used in Section 5.2

Next we will introduce the method for the input-oriented two-stage DEA model with Structure M4 (no external inputs xhj' and outputs
zoutkj ), which we will use in the next section. The method can be extended and applied to solving a multi-stage model with different
structures.

Table 4
Classification of two-stage structures and related studies.

Structure Two-stage additive models Two-stage multiplicative models

M1 (with external inputs and outputs: – –

xj'a0 zoutj a0, xj'AℜH
þ and zoutj AℜK

þ )

M2 (no external inputs: – –

xj'¼ 0, zoutj a0, xj'AℜH
þ and zoutj AℜK

þ )

M3 (no external outputs: Liang et al. [25] Chen et al. [7]; Li et al. [22]
xj'a0, zoutj ¼ 0, xj'AℜH

þ and zoutj AℜK
þ )

M4 (no external inputs and outputs: Chen et al. [5]; Lu et al. [27]; Wang et al. [35]; Yang et al. [36] Kao and Hwang [18]; Liang et al. [23]; Du et al. [14]

xj'¼ 0, zoutj ¼ 0, xj'AℜH
þ and zoutj AℜK

þ )

2 For example, the computation time for the two algorithms is 515.05 seconds and 154.49 seconds, respectively, when the step length ε is 0.001.
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For DMUo, the input-oriented two-stage model with constant weights for M4 (no external inputs xhj' for stage 2 and external outputs
zoutkj for stage 1) is

Max w1

PD

d ¼ 1
ηdzinodPm

i ¼ 1
vixoi

þw2

Ps

r ¼ 1
uryorPD

d ¼ 1
ηdzinod

s:t:

PD
d ¼ 1 ηdz

in
jdPm

i ¼ 1 vixji
r1; 8 j;

Ps
r ¼ 1 uryjrPD
d ¼ 1 ηdz

in
jd

r1; 8 j;

ηd; vi;urZ0; 8d; i; r; ð14Þ
where w1 and w2 are predetermined weights, and w1þw2 ¼ 1.

We approximate the optimal solution of (14) as follows. In the first step, we calculate the bounds for the optimal stage efficiency scores.
In the second step, we use the bounds from the first step to specify the value of one of the stage efficiency scores, and then we can solve
the problem as an LP to obtain the other stage efficiency score.

Step 1. Calculating the bounds of the optimal value for θ1 and θ2 in Model (14).
To compute the ranges for θ1 and θ2, we calculate the maximal efficiency scores for stage 1 and stage 2 as follows:

θo1 ¼ Max
PD

d ¼ 1 ηdz
in
odPm

i ¼ 1 vixoi
; subject to the constraints of 14ð Þ: ð15Þ

θo2 ¼ Max
Ps

r ¼ 1 uryorPD
d ¼ 1 ηdz

in
od

; subject to the constraints of 14ð Þ: ð16Þ

We denote the optimal objective values of Model (15) and (16) as θo1 and θo2, respectively. Next, Model (17) maximizes stage 1's
efficiency given the stage 2's efficiency score θo2. Model (18) maximizes stage 2's efficiency given stage 1's efficiency score θo1.

θo1 ¼ Max
PD

d ¼ 1
ηdzinodPm

i ¼ 1
vixoi

s:t: the same contraints as in 14ð Þ;Ps
r ¼ 1 uryorPD
d ¼ 1 ηdz

in
od

¼ θo2: ð17Þ

θo2 ¼ Max
Ps

r ¼ 1
uryorPD

d ¼ 1
ηdzinod

s:t: the same constraints as in ð14Þ;PD
d ¼ 1 ηdz

in
odPm

i ¼ 1 vixoi
¼ θo1: ð18Þ

The optimal objective values of Model (17) and (18) are denoted θo1 and θo2, respectively.
Theorem 3 shows that the optimal values of Models (15)–(18) constitute bounds for the optimal values for efficiency scores fromModel
(14).

Theorem 3. Let θo1, θo2, θo1 and θo2 be the optimal objective values of Model (15–18). Then θo1rθo1rθo1 and θo2rθo2rθo2, where θo1and
θo2 are the optimal values for stage 1 and stage 2 efficiencies by Model (14).

Proof. Suppose θo1 and θo2 are the optimal efficiency scores of stage 1 and stage 2 by Model (14), and 0rθo1oθo1. We can then have
w1θo1þw2θo2ow1θo1þw2θo2rw1θo1þw2θo2. From Model (17), θo1; θo2

� �
can be a feasible solution to Model (14). This yields a

contradiction that θo1 is the optimum. Therefore, θo1 must be larger than θo1. Adding that Model (15) shows the upper bound that θo1rθo1,
we can derive that θo1rθo1rθo1. A similar analysis is applied to proof of θo2rθo2rθo2.

Step 2. Searching the optimal solutions of (14) based on the range obtained from Step 1.
Given the ranges obtained from Step 1, we can express Model (14) as a parametric programming problem with θo1A θo1; θo1

h i
as the

parameter:

Max w1θo1þw2

Ps

r ¼ 1
uryorPD

d ¼ 1
ηdzinod

s:t:

PD
d ¼ 1 ηdz

in
jdPm

i ¼ 1 vixji
r1; 8 j;

Ps
r ¼ 1 uryjrPD
d ¼ 1 ηdz

in
jd

r1; 8 j;
PD

d ¼ 1 ηdz
in
odPm

i ¼ 1 vixoi
¼ θo1;

θo1Aθ θo1; θo1
h i

;

ηd; vi;urZ0; 8d; i; r: ð19Þ
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With θo1 assigned to a value, Model (19) maximizes the stage 2 efficiency score
Ps

r ¼ 1 uryor=
PD

d ¼ 1 ηdz
in
od. The optimal solution ηd; vi;ur

� �
of

Model (19) can be approximated by solving Model (20):

Max
Ps

r ¼ 1
uryorPD

d ¼ 1
ηdzinod

s:t:

PD
d ¼ 1 ηdz

in
jdPm

i ¼ 1 vixji
r1; 8 j;

Ps
r ¼ 1 uryjrPD
d ¼ 1 ηdz

in
jd

r1; 8 j;
PD

d ¼ 1 ηdz
in
odPm

i ¼ 1 vixoi
¼ θo1;

ηd; vi;urZ0; 8d; i; r: ð20Þ
Model (20) is equivalent to the following LP after applying the Charnes-and-Cooper transformation:

Max
Xs
r ¼ 1

uryor

s:t:
XD
d ¼ 1

ηdz
in
od ¼ 1;

XD
d ¼ 1

ηdz
in
jd�

Xm
i ¼ 1

vixjir0; 8 j;

Xs
r ¼ 1

uryjr�
XD
d ¼ 1

ηdz
in
jdr0; 8 j;

XD
d ¼ 1

ηdz
in
od�θo1

Xm
i ¼ 1

vixoi ¼ 0;

ηd; vi;urZ0; 8d; i; r: ð21Þ
To obtain the optimal stage 2's efficiency θo2, we start by solving Model (21) with θo1 equal to its upper bound, θo1. Then we stepwise reduce
θo1 by ε (ε¼0.0001 for example), namely, θko1 ¼ θo1�ε� k, k¼ 1;2;… until the lower bound θo1 is reached. We denote the corresponding
optimal objective value for Model (21) is θko2. The efficiency of the overall process can be estimated as θo ¼max

k
w1θ

k
o1þw2θ

k
o2

n o
, where the

θko1 and θko2 associated with is the optimal stage 1 and stage 2 process's efficiency scores. We summarize this heuristic method as follows. We
will discuss how to apply this algorithm to a general multi-stage model in the final section.

Heuristics to approximate the optimal solution of (14)

1. Initial k¼ 0, ε is a user-specify parameter.
2. Let k¼ kþ1, and θko1 ¼ θo1�ε� k�1ð Þ.
3. Solve Model (21) with θo1 ¼ θko1 to obtain optimal objective value as θko2.
4. Compute θo kð Þ ¼w1θ

k
o1þw2θ

k
o2.

5. If θko1Zθo1, go to step 2; otherwise, go to step 6.
6. Let kn ¼ arg max θo kð Þ� 	� 	

: The efficiency of the overall process can be approximated by θo ¼ θo kn
� �

, and the optimal stages efficiency

scores are θo1 ¼ θk
n

o1 and θo2 ¼ θk
n

o2.

5. An illustration

In this section, we use the data of a two-stage model from Kao and Hwang [18] to demonstrate the issues that we discussed earlier in this
paper. The data contain the inputs (Operation expenses and insurance expenses), intermediate outputs (direct written premiums and
reinsurance premiums), and outputs (underwriting profit and investment profit) of 24 Taiwanese non-life insurance companies (see Appendix
B). Table 5 shows the DMU's efficiencies and the optimal weights that one would obtain by using the two-stage model of Chen et al. [5].

Table 5 shows that stage 1's weight, w1, is larger than stage 2's weight, w2 for all DMUs except for DMUs #9, #12, #15, #19 and #24
(w1 ¼w2 ¼ 0:5 for these five DMUs). Note that the weights are negatively associated with each stage's efficiencies. For example, both
DMUs #3 and #22's stage 2 efficiency scores are 1.000, but DMU #3's stage 1's efficiency score (¼0.690) is greater than DMU #22's
(0.590). However, DMU #3's weight for stage 1 (0.592) is lower than that for DMU #22 (0.629). This is contrary to our expectation that a
DMU (or the model) should assign a higher weight to the stage with a higher efficiency in order to maximize the DMU's overall efficiency
score. This example illustrates the problem of interdependency between weights and efficiency scores, which arises because weights and
stage efficiencies are both endogenous in the model. In other words, one cannot really tell how much of the efficiency score reflects
technical efficiency status and how much is due to the influence from weights.

To illustrate the influence of weights on efficiency estimates, we compare the results from Chen et al.'s method with those from Model
(14) with different predetermined weights. These predetermined weights reflect how the decision-maker values stage 1's efficiency over
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stage 2's efficiency. We use the same insurance companies' data, and experiment with different values of w1 (from 0.1, 0.2,…, to 0.9) to
solve Model (14). We refer to Model (14) with constant weights as the “constant-weight model.” Note that in a two-stage model, the
weights will sum up to one (w1þw2 ¼ 1Þ; therefore when w1 is assigned to a certain value, w2 automatically receives a
corresponding value.

Fig. 3 shows the differences between the efficiency scores of these two models. The horizontal axis represents the weight w1 for stage
1. The vertical axis in Fig. 3(a) and (b) indicates the differences between the product of efficiency scores and weights (i.e., w1θ1 in Fig. 3(a),
w2θ2 in Fig. 3(b), and w1θ1þw2θ2 in Fig. 3(c)) for all 24 DMUs.3 A positive value implies that the weighted efficiency score from the
constant-weight model is higher than that obtained from Chen et al.'s model.

We have a number of interesting observations from the results. First, Fig. 3(a) shows that the differences regarding w1θ1 increase from
negative to positive values as w1 increases, and that the differences approach zero when w1 is within the region of [0.5, 0.6]. Observe that
the optimal w1values from Chen et al.'s [5] additive two-stage model shown in Table 5, fall in the range between 0.5000 and 0.6291, or
approximately [0.50, 0.63]. This implies that stage 1's efficiency in Chen et al.'s model carries no less weight than stage 2's efficiency, and
that a slightly higher preference is given to stage 1 for certain DMUs. Thus, when w1 is set to lower than 0.500 in the constant-weight
model, the value of w1θ1 tends to be lower than the Chen et al. counterpart. The differences for w2θ2 also exhibit a similar but opposite
pattern described above (see Fig. 3(b)). Similarly, when w1 is lower than 0.500, the differences for w2θ2 tend to be positive. The above
patterns demonstrate that Chen et al.'s model can generate stage-wise efficiency scores different from the optimal scores under a fixed
value of w1 and w2. Therefore, Chen et al.'s model [5] would be inappropriate in a likely situation where the evaluator intends to attach a
higher importance weight to stage 2 over stage 1.

Second, the two methods also give different overall efficiency scores. Fig. 3(c) shows the differences in the overall efficiency scores
from two methods. It shows that the differences increase as w1 moves further away from the range [0.50, 0.63], and that differences
are positive for some DMUs and negative for others. The latter result is related to several DMU-level factors, including (1) whether
stage 1 or stage 2 has better relative efficiency, and (2) the range of θ1 and θ2 for the constant-weight model. As an illustration, we
pick a few representative DMUs (DMUs #9, #12, and #17) and plot their efficiency scores from the constant weights model in Fig. 4.
The region between dashed lines is the range of θ1, whereas the region between round-dotted lines is the feasible range of θ2 The
figure also shows the differences between the overall efficiency scores from two models, whose value corresponds to the right-hand-
side vertical axis.

Fig. 4 shows the results for the three DMUs that we choose. The difference between the overall efficiency scores for DMU #9's increases
in w1: The constant-weight model generates a higher score when w1 is higher than Chen et al.'s optimal w1 value (marked as a “cross” in
the horizontal axis). As noted, the main reason is that DMU #9's stage 1 has an edge over its stage 2's efficiency. Thus, its overall efficiency
score would increase when w1 takes a higher value. Note that through our computation we find that its stage 1 efficiency score (θ1) can
vary between [0.44, 1.0], while its stage 2 efficiency score (θ2) can vary between [0.22, 0.29]. Increasing w1 from 0.1 to 0.2 would result in a
higher θ1 at the cost of lower θ2, and both scores have reached their respective bounds when w1 ¼ 0:2: Thus when w140:2; the objective
value, which is also the overall efficiency of DMU #9, will increase linearly at a fixed marginal rate of θ1�θ2. In other words, the increase in
overall efficiency when w140:2 is due to the increase in w1. The difference in overall efficiencies will increase from negative to zero when
w1 is set equal to the optimal w1 value of the Chen et al.'s method, and will continue to increase linearly as w1 increases. Note that the
difference between the overall efficiency scores can be as high as 0.3.

Table 5
Additive efficiency scores and weights in Chen et al. [5].

DMU θj w1 w2 θj1 θj2

1 0.8491 0.5019 0.4981 0.9926 0.7045
2 0.8122 0.5004 0.4996 0.9985 0.6257
3 0.8166 0.5917 0.4083 0.6900 1.0000
4 0.5965 0.5799 0.4201 0.7243 0.4200
5 0.8727 0.5462 0.4538 0.8307 0.9233
6 0.6887 0.5100 0.4900 0.9606 0.4057
7 0.5804 0.5707 0.4293 0.7521 0.3522
8 0.5795 0.5795 0.4205 0.7256 0.3780
9 0.6116 0.5000 0.5000 1.0000 0.2233

10 0.7131 0.5372 0.4628 0.8615 0.5408
11 0.5088 0.5783 0.4217 0.7292 0.2066
12 0.8798 0.5000 0.5000 1.0000 0.7596
13 0.5565 0.5523 0.4477 0.8107 0.2431
14 0.5773 0.5798 0.4202 0.7246 0.3740
15 0.8069 0.5000 0.5000 1.0000 0.6138
16 0.6395 0.5303 0.4697 0.8856 0.3615
17 0.6126 0.5803 0.4197 0.7232 0.4597
18 0.5868 0.5576 0.4424 0.7935 0.3262
19 0.7056 0.5000 0.5000 1.0000 0.4112
20 0.7654 0.5173 0.4827 0.9332 0.5857
21 0.5412 0.5713 0.4287 0.7505 0.2623
22 0.7418 0.6291 0.3709 0.5895 1.0000
23 0.6854 0.5427 0.4573 0.8426 0.4989
24 0.5435 0.5000 0.5000 1.0000 0.0870

3 We choose to examine the product of efficiency and weight, w1θ1 and w2θ2, because both variables are endogenous in the Chen et al.'s method. Due to endogeneity,
one cannot isolate the influence of weights on efficiency scores in the optimal solution.
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Let us now turn to DMU #12. Observe that under the constant-weight model, the stage 1 and stage 2 efficiencies of DMU #12 have a
unique solution. Thus, its overall efficiency will be a linear function of w1. This stands in contrast to DMU #17: the bounds of DMU #17's
stage 1 and stage 2 efficiencies have a substantial overlap (Fig. 4(c)), and therefore the difference between overall efficiency scores
becomes nonlinear (in our case a concave function of w1).

In summary, we show that the weights and efficiencies in the existing two-stage DEA model are endogenous, leading to difficulties in
interpreting the results. We also show that the weight of stage 1 always carries at least as much weight as the stage 2. This implicit
assumption is likely to lead to spurious efficiency scores, as was evidenced in the preceding analysis.

Fig. 3. Differences of the stage-wise and overall efficiency scores under different w1. (a) Differences of the stage 1 w1nθ1 in the optimal solutions from two models.
(b) Differences of the stage 2 w2nθ2 in the optimal solutions from two models. (c) Differences of the overall efficiencies from two models.
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6. Discussion and conclusion

This paper reveals several previously overlooked properties about the decomposition weights in the additive multi-stage DEA model. We
summarize our findings as follows. First, we find that the decomposition weights for the input-oriented multi-stage models are non-increasing in
the sequence of stages. This means that the earlier stages would obtain higher decomposition weights and therefore a greater influence on the
overall efficiency. In the two-stage model, for example, this means that the first-stage decompositionweight will be at least as high as 0.5. It is not

Fig. 4. Stage and overall efficiency scores (the cross marked on the horizontal axis is the optimal w1 value obtained from Chen et al.'s model). (a) DMU #9's stage and overall
efficiencies from two models. (b) DMU #12's stage and overall efficiencies from two models. (c) DMU #17's stage and overall efficiencies from two models.
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too difficult to find examples where managers may find this property at odds with the process context in question. For example, one may argue
that stage 2 in a two-stage process should carry a higher weight because stage 2 is closer to the customer, whose perception on stage 2 would be
more influential to future demand. The traditional two-stage (or multi-stage) model is not flexible enough to adapt to such environments. Another
possible issue is that the endogenous weights may deviate substantially from the evaluator's preference and the best interest of the evaluated
DMU (for example, if the evaluator prefers to set the weights as 0.1 and 0.9 for stages 1 and 2, respectively). Second, we demonstrate that the
monotonic property of decomposition weights can interfere with the estimated stage and overall efficiency scores. The empirical application
shows that the efficiency scores from a standard two-stage model are subject to the influence from decomposition weights. This also suggests the
need to develop alternative models. We looked at one such alternative: the multi-stage DEA model with constant decomposition weights.

We improve the algorithm for solving the multi-stage DEA model with constant decomposition weights. In the case of two-stage
models, the improved algorithm was able to reduce the computation time by approximately 70% than the competing algorithm. We
believe the performance gap will increase exponentially in the number of stages, as the number of problems that needs be solved will also
increase as such. This improved algorithm also easily lends itself to a multi-stage DEA model with a different internal structure. We outline
the extension as follows. As noted earlier, we can obtain the upper bound of stage efficiency score, by solving one maximization problem
for each stage efficiency score. The lower bound for the stage efficiency score for a particular stage can be obtained by solving a
maximization problem similar to the one for the upper bound, but now the weighted sum of all the other stages' efficiency scores is set to
its maximum value (which we obtain by first solving a separate problem). In other words, we approximate the lower bound of a particular
stage's efficiency score by solving a problem similar to the two-stage method, in which we now fix the aggregate sum of all the other
stages' efficiency scores at its maximum. Once the bounds are determined, we can proceed to compute the stage and overall efficiency
scores by first discretizing the value range within the bounds and then solve problems based on combinations of the discretized values.

Further research into multi-stage DEA models seems warranted. First, we found that decomposition weights and efficiency scores are
linked in the traditional model. Although we use a numerical example as evidence of this confounding effect, more research is needed to
further validate this claim analytically. Second, the model with constant weight is one option to model the multi-stage problem, but we
also acknowledged its limitation in computation, too. Future research can try to develop linear formulations that are not subjective to the
same limitations identified by this paper.
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Appendix A. The output-oriented multi-stage model under structure M1

The output-oriented efficiency for stage p process for DMUj is defined as sum of virtual inputs divided by virtual outputs:

θp ¼
PSp� 1

k ¼ 1 ηp�1kzinjp�1kþ
PIp

i ¼ 1 vpixjpi'PRp

r ¼ 1 uprzoutjpr þ
PSp

k ¼ 1 ηpkz
in
jpk

; p¼ 2;…;Q�1; ðA1Þ

and

θ1 ¼
Pm

i ¼ 1
vixjiPR1

r ¼ 1
u1rzoutj1r þ

PS1
k ¼ 1

η1kzinj1k
;

θQ ¼
PSQ � 1

k ¼ 1 ηQ �1kzinjQ�1kþ
PIQ

i ¼ 1 vQixjQi'Ps
r ¼ 1 uryjr

: ðA2Þ

The weights wp is the sum of virtual outputs produced in stage p divided by total virtual outputs across all stages:

wp ¼

PRp
r ¼ 1

uprzoutjpr þ
PSp

k ¼ 1
ηpkzinjpkPQ � 1

p ¼ 1

PRp
r ¼ 1

uprzoutjpr þ
PSp

k ¼ 1
ηpkzinjpk

� �
þ
Ps

r ¼ 1
uryjr

; p¼ 1;…;Q�1;

Ps

r ¼ 1
uryjrPQ � 1

p ¼ 1

PRp
r ¼ 1

uprzoutjpr þ
PSp

k ¼ 1
ηpkzinjpk

� �
þ
Ps

r ¼ 1
uryjr

; p¼Q ;

8>>>>><
>>>>>:

ðA3Þ

where
PP
p ¼ 1

wp ¼ 1. The overall efficiency measure of the system is still represented as a convex linear combination of the Q stage-level

measures, θ¼ PP
p ¼ 1

wpθp.

In the output-oriented model, the restrictions for the individual measures θp p¼ 1;…;Qð Þ are that they must exceed unity. Similarly,
after the Charnes-and-Cooper transformation, the overall efficiency θ of DMU0 can be obtained by solving the following LP:

Min
Xm
i ¼ 1

vix0iþ
XQ
p ¼ 2

XSQ � 1

k ¼ 1

ηQ �1kz
in
0Q�1kþ

XIQ
i ¼ 1

vQix0Qi'

!
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s:t:
XQ �1

p ¼ 1

XRp

r ¼ 1

uprzout0prþ
XSp
k ¼ 1

ηpkz
in
0pk

 !
þ
Xs
r ¼ 1

ury0r ¼ 1;

Xm
i ¼ 1

vixjiZ
XR1

r ¼ 1

u1rzoutj1r þ
XS1
k ¼ 1

η1kz
in
j1k; j¼ 1; ::;n;

XSp� 1

k ¼ 1

ηp�1kz
in
jp�1kþ

XIp
i ¼ 1

vpixjpi' Z
XRp

r ¼ 1

uprzoutjpr þ
XSp
k ¼ 1

ηpkz
in
jpk; p¼ 2;…;Q�1; j¼ 1; ::;n;

XSQ � 1

k ¼ 1

ηQ �1kz
in
jQ�1kþ

XIQ
i ¼ 1

vQixjQi' Z
Xs
r ¼ 1

uryjr ; j¼ 1; ::;n;

uph; vpk; ηpk;ur ; viZ ;0: ðA4Þ

Appendix B. Data set of 24 Taiwanese non-life insurance companies

See Table B1
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