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a b s t r a c t

In order to evaluate whether coliphages can be used in combination with food additives, six lytic phages
against pathogenic Escherichia coli strains were tested for their resistance to additives commonly used in
the dairy and meat industries. All the phages evaluated were completely inactivated after a 1-min in-
cubation at 25 �C when exposed to acetic and lactic acids at 4% v/v without pH adjustment, whereas
phage viability remained unchanged when pH was adjusted to 5.0 (acetic) and 4.5 (lactic). Likewise, the
six phages proved to be highly resistant to both acetate and lactate (4%; sodium salts) after a 24-h in-
cubation. When phage viability was evaluated at 25 �C in Tris-Magnesium-Gelatin buffer supplemented
with nitrite (0.015% w/v), phage titers were never below 7e8 log10 PFU ml�1 for all the phages tested.
Regarding the influence of additives added to dairy products on phage viability, each phage
(107�8 PFU ml�1) challenged with nisin (0.25 mg ml�1) remained viable after a 24 h-incubation. In
addition, phage viability was either slightly affected or not affected at all when phages were exposed to
chymosin. These results proved that phages can be used against pathogenic E. coli strains along with
other additives as an additional hurdle in order to improve food safety.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Foodborne diseases caused by pathogenic Escherichia coli
(E. coli) strains are a serious and growing problem. This pathogen
has been responsible for hemolytic uremic syndrome cases since
1980 (Karmali et al., 1985). Foodborne bacteria can contaminate
food products at any point along the chain production - during
slaughtering, milking, storage or packaging (García, Martínez,
Obeso, & Rodríguez, 2008). Therefore, several food additives such
as weak acids (Ouattara, Simard, Holley, Piette, & B�egin, 1997), ni-
trite (Honikel, 2008), and nisin (Gharsallaoui, Joly, Oulahal, &
Degraeve, 2015) are used at different stages of production in or-
der to ensure food quality and safety. Regarding the maximum
concentration allowed in foodstuff, most of these additives are
tad de Ciencias Bioquímicas y
.R), Suipacha 531, S2002LRK,
nt. 206.
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strictly regulated (FDA, 2000; CAA, 2010) as they may be toxic, e.g.
nitrite (Honikel, 2008), cause alteration of the organoleptic char-
acteristics of food, e.g. weak acids at higher concentrations (Kotula
& Thelappurate, 1994) or by the activity needed to achieve a high
quality product, e.g. chymosin (Vallejo, Ageitos, Poza,& Villa, 2012).
Although these additives are widely used and accepted, and
numerous publications have documented the effectiveness of food
preservatives against E. coli (Yoder et al., 2012) and other pathogens
(Glass et al., 2002; Michaelsen, Sebranek, & Dickson, 2006), novel
strategies, such as the use of phages, are needed to fulfill consumer
demands for food with lower amounts of chemical compounds.
Furthermore, additives are less specific than phages, affecting both
foodborne pathogens as well as the normal microflora of food due
to their nonspecific mechanisms of action (Kin et al., 2011).

The application of bacteriophages in food safety has been
extensively documented against pathogenic E. coli strains as well as
other foodborne pathogens such as Salmonella, Campylobacter
jejuni, Listeria monocytogenes, Enterobacter sakazakii, and Staphy-
lococcus aureus (Tomat, Mercanti, Balagu�e, & Quiberoni, 2013a).
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However, the action of food additives on phage viability was not
assessed in most of the studies carried out in situ, namely in the
food matrix.

There are studies analyzing the effect of acetic acid on phage
expression (Wallin-Carlquist et al., 2010), and the effect of lactic
acid on phage viability (García, Madera, Martinez, & Rodriguez,
2007), as well as other works where phages are characterized by
their acid resistance (Coffey et al., 2011). However, articles report-
ing the effect of food additives on the infectivity of coliphages are
scarce. Several authors have studied different combination of an-
timicrobials such as bacteriocins and phages (Leverentz et al., 2003;
Ly-Chatain, Moussaoui, Vera, Rigobello, & Demarigny, 2013), bac-
teriocins and endolysins (Schmelcher, Powell, Becker, Camp, &
Donovan, 2012), and bacteriocins and essential oils (Bajpai, Yoon,
Bhardwaj, & Kang, 2014). However, most of these studies were
focused on phages of LAB (Ly-Chatain et al., 2013), L. monocytogenes
(Leverentz et al., 2003) and S. aureus (Martínez, Obeso, Rodríguez,
& García, 2008). Regarding studies on phages affecting patho-
genic E. coli strains, Ly-Chatain et al. (2013) were the only authors
who analyzed the antiviral activity of several cationic compounds,
specifically nisin, against the bacteriophage MS2, a phage infecting
E. coli strains, and found a weak antiviral effect (1 log10 reduction
after 10min) only at the highest concentration of nisin (100,000 IU)
tested.

In previous studies, phages have proved to be efficient biocon-
trol agents of pathogenic E. coli strains (Tomat, Migliore, Aquili,
Quiberoni, & Balagu�e, 2013b; Tomat, Mercanti, Balagu�e, &
Quiberoni, 2013c; Tomat, Quiberoni, Mercanti, & Balagu�e, 2014)
and to be highly resistant to thermal and physicochemical treat-
ments (Tomat, Balagu�e, Casabonne, Verdini, & Quiberoni, 2015).
Studies on the interaction (e.g. challenges) of coliphages with food
additives, such as weak acids and their sodic salts, nitrite, and
chymosin, have not yet been carried out. The aim of this study was
to evaluate the influence of additives added to meat and dairy
products on phage viability in order to determine whether they can
be used simultaneously as a hurdle technology in the biocontrol of
pathogenic E. coli strains.

2. Materials and methods

2.1. Bacterial strains and phages

E. coliDH5awas used as the sensitive host strain to propagate all
the bacteriophages used in this study. DH5a was maintained as
frozen (�80 �C) stock in Hershey broth (8 g l�1 Bacto nutrient broth,
5 g l�1 Bacto peptone, 5 g l�1 NaCl and 1 g l�1 glucose) (Difco,
Detroit, Michigan, USA) (Cicarelli, San Lorenzo, Santa Fe, Argentina)
supplemented with 15% (v/v) glycerol and routinely reactivated
overnight at 37 �C in Hershey broth.

Bacteriophages DT1, DT2, DT3, DT4, DT5 and DT6 were isolated
from stool samples of patients with diarrhea treated at the Cente-
nary Hospital, Rosario (Tomat et al., 2013c). High-titre phage sus-
pensions were prepared as previously described (Tomat et al.,
2013c). Namely, Hershey-Mg broth was inoculated (1%, v/v) with
an overnight culture of DH5a, aliquots (100 ml) of phage stocks were
added, incubated (37 �C) with shaking until complete lysis. Next,
chloroform was added (0.1 ml) and cultures centrifuged at 4000 g
for 10 min. Phage stocks were stored at 4 �C and enumerated
(plaque-forming units per millilitre; PFU ml�1) by the double-layer
plaque technique. Briefly, aliquots of 100 ml of phage stocks were
mixed with 100 ml of recipient strain culture (OD600 ¼ 1.0), then
added with three ml of Hershey-Mg soft agar (Hershey-Mg with
0.7% agar, w/v) at 45 �C. The mixture was poured into plates with
Hershey-Mg agar (1.4%, w/v) and incubated overnight at 37 �C
(Jamalludeen et al., 2007).
2.2. Viability studies - additives applied in meat products -

2.2.1. Influence of acetic and lactic acid
Phages (107e108 PFUml�1) were suspended in Tris-magnesium

gelatin (TMG) buffer (10 mM Tris-Cl, 10 mM MgSO4 and 0.1% (w/v)
gelatin) supplemented with acetic (pH 2.72) and lactic (pH 2.28)
acid at 4% v/v without pH adjustment. In addition, further assays
were carried out with acetic (pH 5.0) and lactic (pH 4.5) acid at 4%
v/v with pH adjusted to the same values which result from treating
meat with each acid in in-vitro preliminary studies.

After each incubation time, namely without (1 and 5 min) and
with (1, 8 and 24 h) pH adjustment, at 25 �C, phage suspensions
were enumerated by the double-layer plate titration method
(Jamalludeen et al., 2007). Assays were carried out in triplicate.

2.2.2. Influence of acetate and lactate (sodium salts)
The influence of acetate and lactate on phage (107 e

10�8 PFU ml�1) viability was investigated by incubation at 25 �C in
TMG buffer supplemented with sodium acetate (4% w/v) or sodium
lactate (4% v/v) with the pH adjusted to 5.7, which represents the
natural pH of meat. After incubation for 1, 8 and 24 h, phage
viability was determined as described above (Jamalludeen et al.,
2007). Assays were carried out in triplicate.

2.2.3. Influence of nitrite
The influence of nitrite (sodium salt) on phage (107 e

10�8 PFU ml�1) viability was investigated by incubation at 25 �C in
TMG buffer supplemented with nitrite (0.015% w/v; maximum
concentration allowed) (CAA, 2005). After incubation for 1, 8 and
24 h, phage viability was determined as described above
(Jamalludeen et al., 2007). Assays were carried out in triplicate.

2.3. Viability studies - additives applied in dairy products -

2.3.1. Influence of nisin
The influence of nisin on phage (107 e 108 PFU ml�1) viability

was investigated by incubation at 25 �C in TMG buffer supple-
mented with nisin (Nisaplin, nisin 2.5% w/w, 1 million IU g�1) at
0.25 mg ml�1 (maximum concentration allowed; FDA, 2001). After
incubation for 1, 8 and 24 h, phage particles were enumerated as
described above (Jamalludeen et al., 2007) and the counts were
compared to those at control (TMG) conditions. Assays were carried
out in triplicate.

2.3.2. Influence of chymosin
Phages (107 e 108 PFU ml�1) were suspended in TMG buffer

supplemented with chymosin (Maxiren 150, 100% chymosin,
rennet strength 150,000 IMCU ml�1) at 8.0 mg ml�1. The suspen-
sion was incubated at 25 �C. After incubation for 1, 8 and 24 h,
phage particles were enumerated as described above (Jamalludeen
et al., 2007) and the counts were compared to those at control
(TMG) conditions. Assays were carried out in triplicate.

2.4. Statistical analysis

Means (three determinations) were compared using the one-
way ANOVA procedure followed by Duncan's multiple range tests
at p < 0.05.

3. Results and discussion

3.1. Influence of additives applied in meat products on phage
viability

Food additives such as weak acids are widely used in the meat
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industry with the aim of lowering surface bacterial load prior to
packaging (Cherrington, Hinton, Mead, & Chopra, 1991; Ouattara
et al., 1997; Ariyapitipun, Mustapha, & Clarke, 1999; Acuff, 2005).
Specifically, acetic and lactic acids are regularly used to wash the
meat surface while their sodic salts, acetate and lactate, are incor-
porated into a mass of ground meat in sausage production (FDA,
2000). Thus, the viability of each phage must be evaluated in or-
der to determine whether these acids, or their salts, present in the
meatmatrix are an obstacle for the use of the phages under study as
biocontrol tools.

First, when the six coliphages were tested in vitro for their
resistance against acetic and lactic acids at 4% v/v without pH
adjustment (2.72 and 2.28, respectively), all the phages evaluated
were completely inactivated after a 1-min incubation at 25 �C,
indicating a high sensitivity to low pH values. When viability was
tested at acidic pH values, similar results were obtained for these
coliphages (Tomat et al., 2015) as well as for others such as O157:H7
(Coffey et al., 2011), STEC (Dini & De Urraza, 2010), lactic acid bac-
teria (LAB) (Mercanti, Guglielmotti, Patrignani, Reinheimer, &
Quiberoni, 2012) and Mycobacterium (Endersen et al., 2013)
phages. Regarding treatments with organic weak acids, it is well-
known that both acetic and lactic acid possess a biocide effect, e.g.
they permeabilize gram-negative bacteria by disrupting the outer
membrane (Alakomi, Skytta, Saarela,Mattila-Sandholm, Latva-Kala,
& Helander, 2000). However, endurance of coliphages other than
those analyzed in the present work remains to be assessed.

Next, the action of these acids on phage viability was also
evaluated at 25 �C with pH adjustment. Namely, pieces of meat
were treated with each acid and pH was determined after a 1-h
incubation in order to determine the pH value reached in the
food matrix. Unlike inactivation observed without pH adjustment,
when phages were exposed to acetic and lactic acid, both at 4% v/v,
with pH adjusted to 5.0 and 4.5, respectively, phage viability
remained unchanged and no significant difference after 8 h was
observed, although there was a sligh but significant reduction in
most cases after a 24-h incubation (Table 1). Accordingly, acetic acid
at pH 5.5 induced a S. aureus prophage and its subsequent repli-
cation, indicating that the phage remained viable (Wallin-Carlquist
et al., 2010). On the other hand, the production of lactic acid by
starter cultures and the concomitant reduction of pH negatively
affected the viability of S. aureus phages since their titre declined by
approx. 2 log10 PFU when the pH dropped from 6.19 to 5.38 (Garcia
et al., 2007). It is noteworthy that, though phage inactivation de-
pends on pH, concentration, and identity of the acidifying agent
used (Alvarado & McKee, 2010), only the change in the pH value
(pH adjusted) produced a significant impact on phage viability.

Acetate and lactate (sodium salts) are commonly used to replace
their acids in order to prevent acidification leading to protein
denaturation and color changes in meat products (Smulders &
Table 1
Phage viability in TMG buffer at 25 �C supplemented with acetic and lactic acid.

Phage * Phage particles (� 107) (PFU ml�1) a

Acetic acid at 4%
(pH 5.0)

1 h 8 h 24 h

DT1 a1.74 ± 0.37 a1.39 ± 0.41 b0.86 ± 0.13
DT2 a4.41 ± 1.31 a4.02 ± 1.06 b3.16 ± 0.10
DT3 a6.46 ± 0.74 a6.17 ± 0.95 a5.78 ± 0.46
DT4 a7.59 ± 2.27 a7.18 ± 1.86 a5.58 ± 0.32
DT5 a6.18 ± 0.74 a5.56 ± 0.92 b4.19 ± 0.17
DT6 a2.87 ± 0.05 a2.70 ± 0.55 b1.69 ± 0.34

* Initial inoculum range (� 107): DT1 ¼ 1.81e2.12; DT2 ¼ 4.08e4.36; DT3 ¼ 6.21e6.8
determinations ± standard deviation. Different letters indicate significant differences.
Greer, 1998; Kotula & Thelappurate, 1994; Lin & Chuang, 2001).
At the concentration assayed in this study, neither acetate nor
lactate were shown to change the pH value of meat (data not
shown), namely ca. 5.7, as was also found by other authors at 0.25%
(acetate) and 4.8% (lactate) (Alvarado & McKee, 2010). The effect of
acetate and lactate on phage viability is shown in Fig. 1. The six
phages (DT1 to DT6) showed high resistance to both acetate
(Fig. 1A) and lactate (Fig. 1B) after a 24-h incubation since phage
counts were never below 107 PFU ml�1 and no significant re-
ductions were observed. These results proved the high resistance of
the phages evaluated, which remain active and are useful biocon-
trol tools during the manufacture and after the packaging of meat
products. Acetate and lactate are normally used to eliminate
foodborne pathogens such as L. monocytogenes (Alvarado &McKee,
2010) and both acids are detrimental to the growth of E. coli (Kim
et al., 2015); yet, no scientific data on the interaction between
weak acids and coliphages has been found.

Food-grade biocides such as nitrite are widely used in the food
industry, specifically in the manufacture of cold cuts and sausages,
both as meat preservatives and color fixers (Sindelar & Milkowski,
2012). Regarding their influence on phages, the results of the pre-
sent work showed that the presence of nitrite (0.015% w/v) had no
significant effect after a 24-h incubation for all the phages evalu-
ated, suggesting high resistance against this food additive (Fig. 2).
Spores of Clostridium botulinum are the main reason for using ni-
trite; yet, it also has a bacteriostatic activity against other patho-
genic strains such as E. coli (Guti�errez-Cort�es & Suarez-Mahecha,
2012). It is noteworthy that no assays on the viability of E. coli
phages when challenged with nitrite have been carried out in order
to determine whether their simultaneous use in a particular food
matrix is possible.

3.2. Influence of additives applied in dairy products on phage
viability

Several food additives are artificially added to dairy products
(O'Sullivan, Ross,&Hill, 2002; EFSA., 2006), and although several of
them - such as nisin and chymosin - are not expected to affect the
viability of phages, their effect must be evaluated. Bacteriocins,
produced by LAB strains, have been extensively studied for many
years (O'Sullivan et al., 2002; Joerger, 2003). Specifically, nisin has
the generally recognized as safe (GRAS) status granted by the Food
and Drug Administration (FDA, 2001; 21 CFR 184.1538). Although
there is abundant scientific literature regarding the use of bacte-
riocins in combination with phages (Leverentz et al., 2003;
Martínez et al., 2008; Nascimento, Guerreiro-Pereira, Costa, Sao
Jose, & Santos, 2008), each specific bacteriocin-phage system must
be individually evaluated in order to determine whether they can
be used together in a treatment.
Lactic acid at 4%
(pH 4.5)

1 h 8 h 24 h

a1.97 ± 0.11 a1.89 ± 0.23 b0.83 ± 0.08
a4.18 ± 0.26 a4.18 ± 0.04 b3.28 ± 0.76
a7.36 ± 0.40 a6.72 ± 0.16 b4.33 ± 0.43
a7.94 ± 0.62 a7.46 ± 0.02 b4.72 ± 1.08
a5.89 ± 0.05 a4.72 ± 0.96 b3.21 ± 0.17
a3.18 ± 0.10 a2.95 ± 0.11 b1.80 ± 0.29

4; DT4 ¼ 6.71e7.08; DT5 ¼ 5.12e5.14; DT6 ¼ 2.46e3.01. a Mean value of three



Fig. 1. Phage viability at 25 �C in Tris-magnesium gelatin (TMG) buffer supplemented with acetate (A) and lactate (B) (sodium salts; 4% w/v) at the beginning (▫) and after 1 ( ), 8
( ) and 24 h (-) of incubation. Error bars represent the standard deviation of three determinations (p < 0.05).

Fig. 2. Phage viability at 25 �C in TMG buffer supplemented with nitrite (0.015% w/v)
at the beginning (▫) and after 1 ( ), 8 ( ) and 24 h (-) of incubation. Error bars
represent the standard deviation of three determinations (p < 0.05).
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Our results indicated that phage viability was unaffected at
25 �C for all nisin/phage systems evaluated (Fig. 3A). Specifically,
each phage - DT1 to DT6 - (~107�8 PFU ml�1) was challenged with
nisin at 0.25 mg ml�1 and phage viability remained at ~ 7e8
log10 PFU ml�1, showing no significant reductions after a 24-h in-
cubation. Accordingly, Ly-Chatain et al. (2013) found similar results
for the coliphage MS2 and the Lactococcus lactis phage c2, when
challenged against nisin at 100,000 UI. In addition, Leverentz et al.
(2003) observed that nisin and phage complemented each other for
the control of L. monocytogenes, showing a synergistic effect, rather
Fig. 3. Phage viability at 25 �C in TMG buffer supplemented with nisin (A) (0.25 mg ml�1) an
incubation. Error bars represent the standard deviation of three determinations (p < 0.05).
than mutually interfering or being inactivated, as it was found for
other combinations of antimicrobials such as endolysins and bac-
teriocins (Becker, Foster-Frey, & Donovan, 2008; Schmelcher et al.,
2012) and nisin and essential oils (Bajpai et al., 2014).

Regarding the influence of chymosin, a widely used additive in
the dairy industry (Vallejo et al., 2012), on phage viability, the six
phages (~107�8 PFU ml�1) evaluated were slightly affected or
insensitive - not significantly reduced - after a 24-h incubation,
even at concentrations 10-fold higher (8 mg ml�1) than those
commonly used, although the phage count was always higher than
7 log10 PFU ml�1 (Fig. 3B). Previous studies related to the interac-
tion between dairy additives and phages had shown that the
viability of LAB phages (Keogh & Pettingill, 1983; Emond &
Moineau, 2007) and the phages evaluated in the present work
(e.g. Ca2þ) (Tomat et al., 2015) were not affected. However, the
chymosin-coliphage systems had never been evaluated. As for
other phages, no viability data against chymosin were found. Re-
sults of the present work showed that phage viability, in the
presence of routinely used additives such as nisin and chymosin,
was unaffected for all the phages tested.
4. Conclusion

Our study showed that the six bacteriophages, lytic against
pathogenic E. coli strains, resisted well when they were challenged
with different additives used in the food industry. These results
imply that the coliphages evaluated can be used simultaneously
with the additives assayed as an additional hurdle in order to
maximize food safety, although further experiments should be
conducted in real food environments.
d chymosin (B) (8.0 mg ml�1) at the beginning (▫) and after 1 ( ), 8 ( ) and 24 h (-) of
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It is noteworthy that the viability of coliphages had not been
previously challenged with most of the food additives tested,
especially with those additives used in meat products.
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