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Abstract
The paper deals with the problem of the bearing capacity of pile groups under vertical eccentric load. Widespread practice

is to consider the achievement of the axial capacity on the outermost pile as the ultimate limit state of the pile group.

However, this approach neglects the ductility of the foundation system and may be thereby overconservative. With the aim

of proposing an alternative and more rational approach, a novel formulation for interaction diagrams based on theorems of

limit analysis is presented and discussed. The methodology is applicable to the general case of groups of unevenly

distributed, dissimilar piles. Piles’ connections to the pile cap are modeled as either hinges or rigid-plastic internal fixities.

An application example to a slender structure is also provided, showing that the proposed approach can lead to significant

advantages over the traditional design.
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List of symbols
a Adhesion factor

aM Inclination of the applied moment vector

cb, cs Partial resistance factors for pile base and

shaft capacity

cst Partial factor for shaft capacity in tension

csu Partial factor for undrained shear strength

d Coefficient depending on number of piles

dh Increment of rotation

dWi, dWk Increments of work done by internal forces

dEi, dEk Increments of work done by external forces

g Efficiency of a pile group

n3 Correlation factor to derive characteristic

value

nj Coordinate of the j-th pile in the reference

system (n, g)

rVL Total overburden stress at depth L

Ab Base area of the block containing the piles

As Side area of the block containing the piles

B Distance between two external piles of a

row

c Abscissa of the center of the row

d Pile diameter

L Pile length

M External moment vector

M0 Moment capacity of the pile group under

zero axial loading

Mu,

Mui, Muk

Moment capacities of the pile group

Mux, Muy Moment capacities along x- and y-axes in

the 3D domain

m Number of alignments of piles parallel to

external moment vector M

myc, myt Dimensionless yielding bending moments

Myc, Myt Yielding bending moments

Nc Bearing capacity factor

Nu Axial capacity of the single pile in

compression

Nuj Axial capacity in compression of the j-

th pile

n Number of piles in a row

p Number of piles in a group

pk Unit base resistance

Pk Characteristic value of pile base resistance

Q External axial capacity

Qi, Qj Axial loads on piles i an j

Q0 Axial capacity of the pile group

Qu, Qui, Quk Axial capacity of the pile group

Sk Characteristic value of pile shaft resistance

Su Axial capacity of the single pile in uplift

Suj Axial capacity in uplift of the j-th pile

& Raffaele Di Laora

raffaele.dilaora@unicampania.it
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s Pile spacing

sk Unit shaft resistance

su Soil undrained shear strength

xj Abscissa of the j-th pile

yj Ordinate of the j-th pile

1 Introduction

Axially loaded piles should be designed to provide ade-

quate strength against a bearing capacity failure. In many

engineering problems, pile groups are loaded eccentrically,

that is, the external load is not applied on the center of the

axial capacities of the individual piles, as shown in Fig. 1.

Under centered load, the difference between the axial

capacity of a group of piles and that of the single pile, Nu,

multiplied by the number of piles, p, has been traditionally

characterized by an efficiency factor, g, depending on both

pile and soil type [14]:

Qu ¼ g � p � Nu ð1Þ

The proper value of the efficiency may be selected on

the basis of the available experimental evidence

[2, 3, 6, 7, 23, 32, 34, 35]. The above concept applies to the

failure mode corresponding to individual pile capacities.

However, collapse of pile groups may occur also by failure

of the overall block of soil containing the piles [11, 31].

Fleming et al. [11] claim that block failure for granular

soils occurs when the base area is much smaller than the

side area (Ab/As\ 1). As a result, group of closely spaced

long piles are more likely to fail as a block than groups of

short piles at relatively large spacing. For fine-grained soils

in undrained conditions, block failure is even more likely

to occur. Experiments carried out by many researchers

(e.g., [6, 7]) suggested that groups with piles at spacing

smaller than a critical value (say 2–4 times the pile

diameter d) fail as ‘blocks’. Independent calculation of

both modes of failure should be therefore carried out, and

the bearing capacity of the pile group taken as the lesser of

the two capacities.

In case of eccentric loads (Fig. 1), the most widespread

approach is that of considering the achievement of the axial

capacity (in compression or in uplift) on the outermost pile

as the ultimate limit state of the pile group, as recom-

mended, for example, by AASHTO Bridge Design Speci-

fications [1]. The implication in design of such an

assumption is described in Fig. 2, referring to a 1 9 4

group of identical piles connected by a rigid cap and loaded

by a vertical force acting along the axis of the first pile. For

the sake of simplicity, the four piles are considered as

linear elastic, perfectly plastic independent springs, with

equal strength in compression (Nu) and in uplift (-Su).

Under these hypotheses, the load distribution varies lin-

early with the distance along the cap until the achievement

of the axial capacity on the first pile. According to the

common approach, the axial capacity of the pile group

would be Qu = 10/7Nu. However, the achievement of the

axial capacity on pile 1 does not represent a failure con-

dition for the whole group and can be viewed just as the

onset of yielding. At this point, the pile group is still

capable to carry a further increase in the external load

taking advantage from the ductility of the system. For

example, an external load Qu = 2Nu (that is 40% larger

than 10/7Nu) might be equilibrated by a load distribution

where piles from 1 to 3 achieve the axial capacity in

compression and pile 4 that in uplift. Such a load distri-

bution does not violate the failure criterion adopted for the

piles and, thus, is a lower bound solution of the problem

under examination. Therefore, the common approach is

unduly conservative.

Attention has been placed in the past on the assessment

of interaction diagrams (Qu, Mu) of pile groups on an

experimental basis. Research works on this subject include

reduced scale tests on groups of steel piles loaded by a

vertical and eccentric load and resting on both sand

Fig. 1 Problem under investigation: bearing capacity of a pile group

under vertical eccentric load Fig. 2 Conservatism of the conventional approach
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[15, 18, 20] and saturated clay [17, 19, 27]. Semiempirical

interaction relationship between the axial and moment

capacity based on the above experimental evidence is also

available. For groups of piles embedded in sand, Meyerhof

et al. [20] suggest to adopt the following expressions:

Qu

Q0

� 0:4

� �2

þMu

M0

¼ 1 for
Qu

Q0

� 0:4

Qu

Q0

¼ 2

3

Mu

M0

� 0:4

� �
for

Qu

Q0

� 0:4

ð2a; bÞ

where Q0 and M0 represent the axial capacity of the pile

group with zero moment and the moment capacity with

zero axial load, respectively.

For groups of piles embedded in clayey soils, Meyerhof

and Yalcin [19] propose a unique parabolic relationship:

Qu

Q0

� �2

þMu

M0

¼ 1 ð3Þ

However, the application in practice of Eqs. (2) and (3)

is not immediate, because of the inherent difficulties

associated with the evaluation of the moment capacity with

zero axial load. In addition, the available evidence is lim-

ited to reduced scale pile groups resting on homogeneous

soils.

Moving to the design perspective, recent codes seem to

be fully aware of the conservatism associated with the

common approach. For example, Eurocode 7 [5] claims

that ‘for piles supporting a stiff structure, a failure will

occur only if a significant number of piles fail together’,

outlining that ‘a failure mode involving only one pile need

not be considered’. Similarly, according to the Italian

building code [22], an axially loaded pile group achieves

an ultimate limit state only when ‘the piled foundation fails

as a whole’. Nevertheless, such statements are not sup-

ported by any indication on the calculation method to be

applied to predict the bearing capacity of the pile group. An

example on how to perform a plastic calculation alternative

to the conventional approach can be found in [10] and is

referred to as ‘fully plastic calculation’. In this application,

a discrete number of ultimate strength points is evaluated

by imposing that piles achieve together the axial capacity

in compression or in uplift. At the same time, FEMA 750

claims that ‘the plastic analysis approach is likely to

overestimate the strength that a multi-pile group is capable

of developing’; as a result, ‘many engineer would prefer

the conventional approach’, based on a linear relationship

between the axial and moment capacities. Furthermore, the

calculation example supplied by FEMA does not shed any

light on the plastic mechanism occurring at failure.

Although codes seem to recognize the conservatism of

the conventional approach, there is still lack of under-

standing about the mechanism governing the failure of a

pile group under vertical and eccentric load, even from a

theoretical standpoint.

This work is aimed at filling this gap, by providing a

theoretical framework in which the beneficial role played

by the ductility of the foundation system is explicitly taken

into account. In this respect, a novel closed-form exact

formulation for moment-axial force interaction diagrams of

groups of unevenly distributed, dissimilar piles hinged at

the top is presented and discussed. In addition, when the

connection of the pile top to the cap is restrained against

rotation, an accurate lower bound solution is supplied.

2 Interaction diagrams from limit analysis
theorems: exact solution

2.1 General

In order to determine the collapse load of a pile group

under vertical eccentric loads, the following assumptions

are made: (a) piles are modeled as rigid-plastic independent

uniaxial elements, characterized by two yielding loads, one

in compression (Nu) and one (-Su) in uplift, intended as the

capacities of the single pile within the group; (b) piles’

heads are connected through a rigid cap having infinite

strength; (c) the connections of the piles to the cap are

modeled as hinges, i.e., internal forces on piles consist only

of axial loads (pinned piles).

The assumption of rigid cap (b) is a reasonable

hypothesis in many engineering problems, since the eval-

uation of the ultimate capacity of a pile group is generally

of concern for small piled rafts [9, 25, 26]. With reference

to (c), the contribution of the yielding moments to the

overall failure domain of the pile group is usually negli-

gible in case of slender piles; by contrast, it may be rele-

vant for squatty piles, because yielding moments are

proportional to d3, with d the pile diameter.

In principle, the expression of the interaction diagram

can be derived by solving directly the problem of a rigid

cap supported on rigid-plastic uniaxial elements, by

imposing equilibrium conditions and compatibility of ver-

tical displacements at the piles’ heads for cap rotation

about an arbitrary point. An alternative, more elegant and

conceptually more effective approach is based on theorems

of limit analysis. Noticeably, the basic hypothesis of

associative flow rule is implicitly satisfied, because plastic

displacements of piles have the same direction of yielding

loads. The upper bound theorem states that: if there is a set

of external loads and a compatible collapse mechanism

such that the increment of work of the external loads equals

the increment of energy dissipated by internal stresses, the

collapse occurs and the set of external loads represent an

upper bound to the ‘real’ solution of the collapse problem.

Acta Geotechnica

123



Since this theorem considers the kinematics of the collapse

mechanism, it is also defined as kinematic theorem. The

lower bound theorem states that: if there is a set of external

loads in equilibrium with internal stresses that do not

exceed the yield stress in any point, the collapse does not

occur and the external loads represent a lower bound to the

‘real’ collapse load. Since this theorem refers only to static

equilibrium conditions, it is defined also as static theorem.

2.2 Row of equally spaced, identical piles

Reference is made to a row of equally spaced, identical

piles, as shown in Fig. 3. The origin of the x-axis is taken

as coincident with the center of the row. In the realm of the

upper bound theorem of limit analysis, Fig. 3a shows a

plastic mechanism where the capped pile group displaces

by rotation about point C located between pile (i-1) and

pile (i). The external collapse load corresponding to such a

mechanism can be defined as (Qui, Mui); in this respect, the

variable ‘i’ identifies both pile i within the row and the

plastic mechanism characterized by a counterclockwise

increment of rotation about a point between pile (i-1) and

pile i. Since all piles behave like rigid-perfectly plastic

elements, the axial load mobilized by any increment of

rotation, dh, is equal to Nu or (-Su). Taking into account

the sign convention shown in Fig. 3, the increment of work

done by external forces (Qui, Mui) is given by (i = 1, …, n):

dEi ¼ Muidhþ Quicdh ð4Þ

while the increment of work done by internal forces is:

dWi ¼ �
Xi�1

j¼1

xj � c
� �

dhNu þ
Xn
j¼i

xj � c
� �

dhSu ð5Þ

where c is the abscissa of point C and n is the number of

piles.

It is easy to verify that Eq. (5) leads to:

dWi ¼ dh
s

2
Nu þ Suð Þ i� 1ð Þ n� iþ 1ð Þ

þ dhc Nu i� 1ð Þ � Su n� iþ 1ð Þ½ � ð6Þ

By equating dWi = dEi, the upper bound solution is

found (i = 1,…, n):

Qui ¼ Nu i� 1ð Þ � Su n� iþ 1ð Þ
Mui ¼

s

2
Nu þ Suð Þ i� 1ð Þ n� iþ 1ð Þ

(
ð7Þ

Noticeably, the coordinates (Qui, Mui) do not depend on

the exact position of the center of rotation between piles

(i-1) and i.

For a clockwise increment of rotation between pile

(k-1) and (k), the increment of work done by external

forces (Quk, Muk) is (k = 1, …, n):

dEk ¼ Mukdhþ Qukcdh ð8Þ

while the increment done by internal forces is

dWk ¼
Xk�1

j¼1

xj � c
� �

dhSu �
Xn
j¼k

xj � c
� �

dhNu ð9Þ

The latter quantity can be cast in the form:

Fig. 3 Collapse mechanism for a row of equally spaced, identical piles: a rotation about a point between two piles; b rotation about the head of a

pile
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dWk ¼ �dh
s

2
Nu þ Suð Þ i� 1ð Þ n� iþ 1ð Þ

þ dhc � k � 1ð ÞSu þ ðn� k þ 1ÞNu½ � ð10Þ

As before, the variable k identifies both pile k-th within

the row and the plastic mechanism characterized by a

clockwise increment of rotation about a point between pile

(k-1) and k.

By equating dWk = dEk, the following expression is

found:

Qu kþnð Þ ¼ � k � 1ð ÞSu þ ðn� k þ 1ÞNu

Mu kþnð Þ ¼ � s

2
Nu þ Suð Þ k � 1ð Þ n� k þ 1ð Þ

(
ð11Þ

It is easy to verify that Eq. (11) can be obtained from

Eq. (7) by substituting Nu with (-Su) and vice versa.

Equation (11) is also equivalent to (i = n ? 1, …, 2n):

Qui ¼ � i� n� 1ð ÞSu þ ð2n� iþ 1ÞNu

Mui ¼ � s

2
Nu þ Suð Þ i� n� 1ð Þ 2n� iþ 1ð Þ

(
ð12Þ

Noticeably, Eq. (11) can be derived from Eq. (12) by

replacing (i-n) with k. Equations (7) and (11), or (7) and

(12), define a set of 2n upper bound solutions corre-

sponding to cap rotations about any point located between

two consecutive piles or on the left of pile 1, the latter

condition representing pure compression or pure traction.

External loads (Qui, Mui) with i = (1,…2n) define a

polygonal line in (Qu, Mu) plane, obtained by drawing the

conjunction lines between consecutive points.

An application of Eqs. (7) and (11) is depicted in Fig. 4,

referring to the pile layout shown in Fig. 3 and Su = 3/4Nu.

The number of conjunction lines between consecutive

points is 2n. The corresponding equations in (Qu, Mu) plane

can be written as:

Mu ¼ Mui þ Qu � Quið Þ s
2

n� 2iþ 1ð Þ i ¼ 1; . . .; 2n

ð13Þ

It is easy to verify that the conjunction lines between

any two consecutive points also represent subsets of upper

bound solutions. To prove this, Fig. 3b shows a mechanism

of plastic collapse consisting of a rotation about the head of

pile i-th. Proceeding as before, for a counterclockwise

increment of rotation we have (i = 1,…, n):

dEi ¼ Mudhþ Quxidh ð14Þ

dWi ¼ �
Xi

j¼1

xj � xi
� �

dhNu þ
Xn
j¼iþ1

xj � xi
� �

dhSu ð15Þ

where

Qu ¼ i� 1ð ÞNu þ Qi � n� ið ÞSu
� Su �Qi �Nu

ð16Þ

The increment of work done by internal forces can be

written as:

dWi ¼ Muidh�
s

2
n� 2iþ 1ð ÞQuidh ð17Þ

Equating the increments of work done by internal and

external forces leads to:

Mu ¼ Mui þ
s

2
n� 2iþ 1ð Þ Q� Quið Þ ð18Þ

For a clockwise rotation, the same solution is recovered.

Equation (18) is identical to Eq. (13) and thus corresponds

to the conjunction lines between consecutive vertexes.

Note that the domain is characterized by two axes of

symmetry, since the origin of the coordinate system is

taken as the center of the row. The vertical axis of sym-

metry coincides with the y-axis when the axial capacity in

compression is equal to that in uplift.

It may be convenient to write Eqs. (7) and (11) in the

following dimensionless form:

Qui

Nu

¼ i� 1 � Su

Nu

n� iþ 1ð Þ
Mui

sNu

¼ 1

2
1 þ Su

Nu

� �
i� 1ð Þ n� iþ 1ð Þ

8>><
>>:

i ¼ 1; . . .; n ð19Þ

QuðkþnÞ
Nu

¼ � Su

Nu

k � 1ð Þ þ n� k þ 1ð Þ
MuðkþnÞ
sNu

¼ � 1

2
1 þ Su

Nu

� �
k � 1ð Þ n� k þ 1ð Þ

8>><
>>:

k

¼ 1; . . .; n ð20Þ

The maximum and minimum axial dimensionless loads,

occurring at zero moment, are:

Fig. 4 Interaction diagram for a row of 4 identical, equally spaced

piles
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Qu

Nu

� �
max

¼ n

Qu

Nu

� �
min

¼ �n
Su

Nu

ð21Þ

It is straightforward to demonstrate that the maximum

dimensionless moment is:

Mu

sNu

����
����
max

¼ 1 þ Su

Nu

� �
n2 � d

8
ð22Þ

with d = 0 if n is even and 1 if n is odd.

It is worthy of note that a load distribution satisfying

Eqs. (7), (11) and (13) does not violate the failure criterion

and, hence, represent also a lower bound solution. There-

fore, an interaction diagram like that represented in Fig. 4

is an exact solution, and there is no point in seeking load

distributions other than those obtained by the plastic

mechanisms defined in Fig. 3.

Based on the above results, the following main con-

clusions can be drawn:

a. A pile group subjected to vertical and eccentric load

will fail by a cap rotation about the head of a pile, as

shown in Fig. 3b; under this collapse mechanism, all

piles within the group achieve their ultimate axial

capacity in compression or in uplift, with the exception

of the pile corresponding to the center of rotation;

b. The vertexes of the interaction diagram represent

singularities; when the external load on the capped pile

group corresponds to a vertex, the plastic mechanism is

indeterminate, and failure occurs by a cap rotation

about an indefinite point in between two consecutive

piles, as shown in Fig. 3a; under this circumstance, all

piles achieve their axial capacity.

2.3 Groups of identical piles

A group of equally spaced, identical piles subjected to an

external moment vector, M, inclined by aL with respect to

y-axis, is first examined (Fig. 5). Since piles are supposed

identical, the center of the capacities in compression, CN,

corresponds to that in uplift, CT. For the sake of simplicity,

the origin of the reference system (X, Y) is taken coinci-

dent with CN (or CT). A new reference system (n, g) can be

defined, with the g-axis coincident with the direction of the

resultant moment vector M, as shown in Fig. 5.

The interaction diagram consists of 2p points, where p is

the number of piles within the group. Proceeding as before,

the coordinates of the vertexes can be written as:

Qui ¼ i� 1ð ÞNu � ðp� iþ 1ÞSu
Mui ¼ �Nu

Pi�1

j¼1

nj þ Su
Pp
j¼i

nj

8<
: i ¼ 1; . . .; p ð23Þ

and

Quk ¼ � k � 1ð ÞNu þ ðp� iþ 1ÞSu
Muk ¼ Su

Pi�1

j¼1

nj � Nu

Pp
j¼k

nj

8<
: k ¼ 1; . . .; p ð24Þ

where

nj ¼ xj cos aM � yj sin aM ð25Þ

It is easy to verify that the conjunction lines between

these points still represent an exact solution. Note that in

the particular case of a rectangular group of identical piles

with constant spacing s along both x and y direction and

aM = 0, the conjunction lines between two consecutive

points are described by the same equations as for the row of

piles:

Mu ¼ Mui þ Qu � Quið Þ s
2

p� 2iþ 1ð Þ for i ¼ 1; . . .; 2p

ð26Þ

Figure 5 also illustrates the interaction diagrams of the

pile group examined herein for different values of aM.

Generally, any alignment parallel to the resultant moment

vector does not catch more than one pile. However, there

might be alignments passing through two or more piles; in

this case, the number of vertexes reduces from 2p to 2m,

where m is the total number of different alignments parallel

to vector M including at least one pile.

The interaction domain is always characterized by two

axes of symmetry, whatever be the inclination of vector M,

provided that the origin of the reference system coincides

with the center of the pile capacities in compression (or in

uplift).

The failure locus of the pile group shown in Fig. 5 is

plotted in Fig. 6 in the (Qu, Mux, Muy) space, in line with

what is commonly done in the literature for failure envel-

opes of shallow foundations [4, 12, 13, 21, 24, 28]. Due to

symmetry, only a quarter of the overall domain is repre-

sented. The cross sections of the failure locus at constant

Qu are also plotted in Fig. 6. It can be noticed that the 3D

failure locus is not convex, making complicated the com-

parison with the applied load. Thus, taking also into

account the inherent difficulty associated with the con-

struction of the 3D domain, a comparison in the (Qu, Mu)

plane along the direction of the applied moment vector will

be preferable form a practical viewpoint.
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2.4 Groups of unevenly distributed, dissimilar
piles

The above approach can be easily extended to the general

case of a group of unevenly distributed, dissimilar piles:

Qui ¼
Pi�1

j¼1

Nuj �
Pp
j¼i

Suj

Mui ¼ �
Pi�1

j¼1

Nujnj þ
Pp
j¼i

Sujnj

8>>><
>>>:

i ¼ 1; . . .; p ð27Þ

Qu kþpð Þ ¼
Pp
j¼k

Nuj �
Pk�1

j¼1

Suj

MuðkþpÞ ¼
Pk�1

j¼1

Sujnj �
Pp
j¼k

Nujnj

8>>><
>>>:

k ¼ 1; . . .; p ð28Þ

An application of Eqs. (27) and (28) to a row of 4 piles,

each of them having different failure load both in

compression and in tension, is illustrated in Fig. 7. The

domain is characterized by a polar symmetry that does not

coincide with the origin of the reference system; moreover,

the maximum and minimum values of the ultimate axial

load are associated with a nonzero ultimate moment.

3 Effect of the yielding moments
at the piles’ head: approximate solution

The connections of the piles to the cap can be idealized as

rigid-plastic internal fixities, to take advantage from the

additional strength supplied by yielding moments devel-

oping at the piles’ heads. In this case, applying the theo-

rems of limit analysis leads to:

Fig. 5 Interaction diagram for an inclined moment vector

Fig. 6 Interaction diagram in the (Qu, Mux, Muy) space
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Qui

Nu

¼ i� 1 � Su

Nu

n� iþ 1ð Þ

Mui

sNu

¼ 1

2
1 þ Su

Nu

� �
i� 1ð Þ n� iþ 1ð Þ

þ n� iþ 1ð Þmyt þ i� 1ð Þmyc

8>>>>>><
>>>>>>:

i ¼ 1; . . .; nþ 1

ð29Þ
Qu kþnþ1ð Þ

Nu

¼ � Su

Nu

k � 1ð Þ þ n� k þ 1ð Þ

Muðkþnþ1Þ
sNu

¼ � 1

2
1 þ Su

Nu

� �
k � 1ð Þ

n� k þ 1ð Þ � n� k þ 1ð Þmyt � k � 1ð Þmyc

k ¼ 1; . . .;
nþ 1

8>>>>><
>>>>>:

ð30Þ

where

myt ¼
Myt

sNu

myc ¼
Myc

sNu

ð31a; bÞ

and Myt and Myc yielding bending moments corresponding

to (-Su) and Nu, respectively. In this case, the domain has

(2n ? 2) vertexes. Noticeably, for myt = myc = 0 Eqs. (29)

and (30) simplify to Eqs. (19) and (20).

For a group of unevenly distributed, dissimilar piles, the

coordinates of the vertexes become:

Qui ¼
Pi�1

j¼1

Nuj �
Pp
j¼i

Suj

Mui ¼
Pi�1

j¼1

Mycj � Nujnj
� �

þ
Pp
j¼i

Mytj þ Sujnj
� �

8>>>>>>><
>>>>>>>:

i ¼ 1; . . .; pþ 1 ð32a; bÞ

Qu kþpþ1ð Þ ¼ �
Pk�1

j¼1

Suj þ
Pp
j¼k

Nuj

Muðkþpþ1Þ ¼
Pk�1

j¼1

Sujnj �Mytj

� �

�
Pp
j¼k

Mycj þ Nujnj
� �

8>>>>>>><
>>>>>>>:

k ¼ 1; . . .; pþ 1

ð33a; bÞ

While the above points represent an exact solution, the

conjunction lines between consecutive points deserve

special attention. Connecting with a straight line points

i and (i ? 1) implies assuming a linear relationship

between the yielding moment of pile i and the axial load Qi

in the range (-Sui; Nui). Although this assumption does not

correspond to reality, owing to the convexity of the flexural

domain of the section, straight lines represent lower bound

solutions. Further, considering that for any conjunction line

the linear approximation is made only for the moment

capacity of one pile, such lower bound solution will be

very close to the rigorous, more complicated, exact

domain, and is therefore suitable for engineering

applications.

Figure 8 shows the interaction diagrams for different

values of the yielding moment in compression, by taking a

constant value of the ratio myc/myt. Due to different sec-

tional moment capacities in compression and tension, the

symmetry with respect to a vertical axis is lost.

4 Use of the results for design purposes

This section provides a comparison between the proposed

and the conventional approach, the latter being applied

with or without considering the interaction among piles.

Figure 9 depicts interaction diagrams for 32 and 72 pile

Fig. 7 Interaction diagram for a group of unevenly distributed dissimilar piles
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groups assuming for the sake of simplicity equal strength in

compression and uplift (i.e., Su/Nu = 1). This is a reason-

able assumption in the case of slender piles in soft clay,

where the failure mechanism involving pile tip furnishes a

negligible contribution to the overall capacity.

For the conventional interaction diagram without inter-

action effects, the following equations can be written:

Nu ¼
Qu

p
þ MuPp

i¼1

x2
i

B

2

�Su ¼
Qu

p
� MuPp

i¼1

x2
i

B

2

8>>>>>><
>>>>>>:

ð34Þ

where B is the distance between the two external piles.

Since piles are equally spaced, Eq. (34) simplifies to:

Mu ¼ � s nþ 1ð Þ
6

Qu � nNuð Þ

Mu ¼
s nþ 1ð Þ

6
Qu þ nSuð Þ

8><
>: ð35Þ

The maximum moment is the ordinate of the intersec-

tion point between the two lines represented by Eq. (35):

Mumax1 ¼ s

6
nþ 1ð Þ nSu þ nNu

2
ð36Þ

On the other hand, the maximum moment of the inter-

action domain based on limit analysis can be obtained from

Eq. (22):

Mumax2 ¼ s

4

n2 � d
n

nSu þ nNu

2
ð37Þ

Fig. 8 Effect of the sectional flexural capacity on the interaction diagram for a row of 4 identical, equally spaced piles

Fig. 9 Comparison between the proposed and the traditional

approach. Pile-to-pile interaction is considered through the interaction

coefficient supplied by Dobry and Gazetas [8]
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It is immediate to recognize that Mumax2 is always larger

than Mumax1, and hence, the proposed interaction diagram

is less conservative than the conventional domain for any

eccentricity of the external load.

In addition, considering pile-to-pile interaction leads to

a contraction of the conventional domain because of the

occurrence of edge effects, thereby resulting in overcon-

servative design especially for small pile spacing.

From comparison illustrated in Fig. 9, it is evident that

using the proposed interaction diagram leads to undeniable

advantages in the evaluation of the bearing capacity of a

pile group under vertical eccentric load, particularly in the

case of large eccentricity.

5 Application to a case study

An application to a case study is presented herein to

highlight the potential beneficial effect of the proposed

approach. The case examined in this work is a wind farm

with 23 turbines constructed in South Italy. Each wind

turbine is 95 m high and is founded on a circular raft

enhanced with 16 cast in situ bored piles 22 m long and

0.8 m in diameter. The total pile length, nL, which may be

considered roughly proportional to the cost of the piles, is

8096 m. Figure 10 illustrates a plan view and a cross

section of a wind turbine. Also shown in this figure is the

typical subsoil profile encountered at the site under

examination, consisting essentially of a deep layer of

overconsolidated, inorganic silty clay of high plasticity up

to a depth of about 15 m, underlain by a very stiff, inor-

ganic clay layer of medium plasticity and covered by a

layer of silty sand; the ground water table was found at

2.0 m from the ground level. Site investigations included

boreholes, standard penetration tests and down-hole tests,

while laboratory tests consisted primarily of unconsoli-

dated and undrained triaxial tests. Undrained shear

strength, su, was therefore estimated as 196 kPa in the

intermediate layer and 232 kPa in the lower stiff clay.

Unit base and shaft strength were evaluated in undrained

conditions in terms of total stress through the following

equations:

pk ¼ rVL þ Ncsu ð38Þ
sk ¼ asu ð39Þ

where rVL is the total overburden stress at the depth L of

the pile base, Nc = 9 [16, 29], and a is a coefficient

depending on the pile installation technique and the

undrained shear strength. For replacement piles and su-

C 70 kPa, a can be taken equal to 0.35 [33]. Finally, the

design value of the single pile capacity in compression was

evaluated through the following expression [5]:

Nu ¼
Pk

cb
þ Sk

cs
¼ pd2

4n3cb
rVL þ Ncsu

csu

� �
þ pd
n3cscsu

ZL

0

skdz

ð40Þ

where cb and cs are partial resistance factors for pile base

and shaft capacities, csu is the partial factor for undrained

shear strength, and n3 is the correlation factor to derive

characteristic value from ground test results. In the short

term, the uplift capacity of a bored pile in clay is likely to

be equal to the shaft capacity in compression [11, 30];

hence,

Su ¼
Sk

cst
¼ pd

n3cstcsu

ZL

0

skdz ð41Þ

where cst is the partial factor of the shaft capacity in

uplift. Design approach 2 of Eurocode 7 and partial fac-

tors from the Italian national annex (cb = 1.35, cs = 1.15,

cst = 1.25, csu = 1, n3 = 1.45) led to Su = 2614 kN and

Nu = 2855 kN. The axial capacity in uplift is therefore

Fig. 10 Plan view and cross section of the piled foundation of the

wind turbine under examination
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very close to the one in compression, as expected for

slender piles in clay. Both capacities within the group

were evaluated assuming a group efficiency equal to

unity. Figure 11 illustrates the interaction diagrams based

on the conventional and the proposed approaches. Both

domains were evaluated for two values of the inclination

aL of the applied moment vector M: aL = 0 and aL = p/
n, with n number of piles supporting a single wind tur-

bine, in order to investigate the effect of the wind

direction on the ultimate axial capacity of the foundation.

Evidently, the inclination of the resultant moment vector

has a negligible effect on both shape and size of the

interaction diagrams. This is not surprising, given the

small angular spacing among piles.

The design action at foundation level equivalent to

extreme wind conditions falls within the conventional

domain, in proximity of its boundary. However, the same

action is far from the boundary of the domain based on the

ultimate capacity of the whole foundation. Hence, there is

room for a more rational design.

Different solutions can be investigated by reducing the

pile length or the number of piles. Figure 12a shows the

interaction diagrams of the whole foundation determined

by a progressive reduction of the pile length. For example,

the domain with L = 14 m, for which piles are still pene-

trating into the lower stiff clay layer, represents an allow-

able solution. The total pile length would reduce by about

36% (from 8096 to 5152 m). Similarly, Fig. 12b refers to a

foundation layout with 12 piles and different pile lengths;

in this case, it would be sufficient to adopt a solution with

L = 19 m, corresponding to a reduction in the total pile

length by 35%. Note that the above domains do not account

for the additional strength supplied by yielding moments at

the top of piles, which is negligible in comparison with the

overall resistance associated with the axial capacity of

piles.

6 Conclusions

The common approach employed to assess the bearing

capacity of pile groups under vertical eccentric loads

assumes as ultimate strength that corresponding to the

achievement of the axial capacity on the outermost pile.

Such an approach is unduly conservative, since it does not

exploit the ductility of the system, and may lead to oversize

significantly the pile foundation.

This work suggests an alternative, more rational

approach for ultimate moment-axial force interaction dia-

grams. The problem under examination consists of a rigid

cap, clear from the ground, surmounting a group of

unevenly distributed, dissimilar piles, each of them having

specified values of ultimate load in compression and uplift.

The piles’ connections to the cap are modeled as either

hinges or rigid-plastic fixities. Under the assumption of

hinged heads, closed form, exact solutions are provided for

the most general case, giving rise to an interaction diagram

which is always a convex domain consisting of straight

lines and characterized by a point of polar symmetry. For

rigid-plastic fixities, a closed-form, lower bound to the

collapse load, almost coincident with the exact solution, is

provided. Usually, the effect of yielding moment is

Fig. 11 Design loads, conventional and proposed interaction domains for the foundation of the wind turbine: effect of the moment inclination
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negligible for slender piles, while it may be important for

large diameter, squatty piles.

With regard to collapse mechanisms, a group of piles

loaded eccentrically will fail by a cap rotation about the

head of a pile; in this case, all the piles achieve their

ultimate axial strength, with the exception of the pile cor-

responding to the center of rotation. The vertexes of the

domain are singularities. If the external load corresponds to

a vertex, failure may occur according to a cap rotation

about any arbitrary point in between two consecutive piles;

in this case, all the piles achieve their ultimate strength.

The proposed approach leads invariably to a more

economic ultimate limit state design compared to the

common method, regardless of the assumptions made on

pile-to-pile interactions effects. An application example to

a wind turbine supported by bored piles in stiff clay

demonstrates that the proposed approach is very effective

in reducing the fondation cost.

It is fair to mention that this work is aimed at providing

merely a theoretical framework regarding the bearing

capacity of pile groups under vertical eccentric loads.

However, it should be kept in mind that the design of such

kind of structures is also based on serviceability limit states

considerations (i.e., on the evaluation of settlements and

rotations and on their comparison with allowable values).
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64(1):1–15

25. Randolph MF, Jamiolkowski MB, Zdravkovic L (2004). Load

carrying capacity of foundations. In: Thomas T (ed) Keynote

lecture, proceedings of the Skempton conference ‘Advances in

Geotechnical Engineering’, London, vol 1, pp 207–240

26. Russo G, Viggiani C, de Sanctis L (2004) Piles as settlement

reducers: a case history. In: Advances in geotechnical engineer-

ing: The Skempton conference: proceedings of a three day con-

ference on advances in geotechnical engineering, organised by

the Institution of Civil Engineers and held at the Royal Geo-

graphical Society, London, UK, 29–31 March 2004, pp 1143–

1154

27. Saffery MR, Tate APK (1961). Model tests on Pile Groups in

Clay Soil with particular reference to the behaviour of the group

when it is loaded eccentrically. In: Proceedings of the 5th inter-

national conference on soil mechanics, Paris, vol 5, pp 129–134

28. Salciarini D, Tamagnini C (2009) A hypoplastic macroelement

model for shallow foundations under monotonic and cyclic loads.

Acta Geotechnica 4(3):163–176

29. Skempton AW (1951) The bearing capacity of clays. In: Pro-

ceedings of building research congress. ICE, London, pp 180–189

30. St John HD, Randolph MF, McAvoy RP, Gallagher KA (1983)

The design of piles for tethered platforms. In: Proceedings of the

conference on the design and construction of offshore structures.

Institution of Civil Engineers, London, pp 53–64

31. Terzaghi K, Peck RB (1948) Soil mechanics in engineering

practice. Wiley, New York

32. Vesic AS (1969) Experiments with instrumented pile groups in

sand. Performance of deep foundations, vol 444. ASTM Special

Technical Publication, West Conshohocken, pp 177–222

33. Viggiani C (1993) Further experience with auger piles in Naples

area. In: Inpe WF (ed) Proceedings of the second international

geotechnical seminar on deep foundations on bored and auger

piles, BAP II. Balkema, Rotterdam, pp 445–458

34. Viggiani C, Mandolini A, Russo G (2011) Piles and piles foun-

dations. Spon Press, London

35. Whitaker T (1957) Experiments with model piles in group.
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