
Performance Comparison of Deep Learning
Techniques for Recognizing Birds in Aerial Images

Yang Liu1, Peng Sun1, Max R. Highsmith1, Nickolas M. Wergeles1, Joel Sartwell2, Andy Raedeke2,
Mary Mitchell3, Heath Hagy3, Andrew D. Gilbert4, Brian Lubinski3, and Yi Shang1

1Department of Electrical Engineering and Computer Science (EECS), University of Missouri, Columbia, MO, USA
2Missouri Department of Conservation, Columbia, MO, USA , 3U.S. Fish & Wildlife Service, Bloomington, MN, USA

4Illinois Natural History Survey, Forbes Biological Station, University of Illinois, Champaign, IL, USA
{ylt5b, ps793, mrh8x5}@mail.missouri.edu, {Joel.Sartwell, Andrew.Raedeke}@mdc.mo.gov,

{mary_mitchell, heath_hagy, Brian_Lubinski}@fws.gov, agilb849@illinois.edu, {shangy, wergelesn}@missouri.edu

Abstract— In computer vision, significant advances have been

made in recent years on object recognition and detection with the
rapid development of deep learning, especially deep convolutional
neural networks (CNN). The majority of deep learning methods
for object detection have been developed for large objects and
their performances on small-object detection are not very good.
This paper contributes to research in low-resolution small-object
detection by evaluating the performances of leading deep learning
methods for object detection using a common dataset, which is a
new dataset for bird detection, called Little Birds in Aerial
Imagery (LBAI), created from real-life aerial imagery data. LBAI
contains birds with sizes ranging from 10px to 40px. In our
experiments, some of the best deep learning architectures were
implemented and applied to LBAI, which include object detection
techniques such as YOLOv2, SSH, and Tiny Face, in addition to
small instance segmentation techniques including U-Net and Mask
R-CNN. Among the object detection methods, experimental
results demonstrated that SSH performed the best for easy cases,
whereas Tiny Face performed the best for hard cases, i.e. where a
cluttered background makes detecting birds difficult. Among
small instance segmentation methods, experimental results
revealed U-Net achieved slightly better performance than Mask
R-CNN.

Keywords—small-object detection, instance segmentation,
convolutional neural networks, deep learning, aerial image dataset

I. INTRODUCTION
Object detection is one of the crucial tasks in computer

vision. In the past few years, the performance of object detection
[1-14] has dramatically improved due to the success of deep
convolutional neural networks (CNN). Typically, object
detection and recognition involve two steps: first, deep neural
networks are used to localize the potential location of each target
object; then, objects are classified into appropriate classes. If
the first step can effectively localize the potential object, the
second step will be easier. Even though the two-step approach
achieved state-of-the-art performance, the running times are
usually slow [11]. Therefore, one-stage detectors have been
developed to improve the speed.

Small-object detection remains challenging because small
objects usually have lower resolution and less context
information. Finding a 20 × 20 size object located in a 5000 ×
5000 image is a difficult task, even for humans. As described in
the literature, state-of-the-art methods for object detection

usually performed poorly on small objects [11]. Recent research
has shown the importance of context information and scale for
small-object recognition [8][9]. In addition, it has been reported
that lower-layer features extracted from CNNs are very useful
for small-object detection and segmentation [8-11].

 The work presented in this paper focuses on low-resolution
small-object detection by evaluating the performances of
leading deep learning methods using a common dataset, which
is a new dataset for bird detection, called Little Birds in Aerial
Imagery (LBAI). This dataset was created from real-life aerial
imagery data, provided by the Illinois Natural History Survey at
the University of Illinois at Urbana-Champaign. LBAI contains
images of waterfowl and other water birds in shallow lakes
within the Illinois River Valley. LBAI includes different colors,
shapes, poses, resolutions, and bird sizes range from 10px to
40px. The dataset contains different backgrounds of rivers,
vegetation, land, and mixtures between each type of
background. Overall, LBAI captures the diversity of real-life
situations for bird detection in shallow lake and wet lands across
the Midwest. Some of the birds have larger sizes, in higher
resolutions and homogenous backgrounds, which make them
easier to be identified. While others have smaller sizes, in lower
resolutions with blurry contours, making them hard to be
detected. LBAI is designed to identify the difficulties and
improve existing methods on small object detection.

Using the LBAI dataset, we compared a wide-range of
representative state-of-the-art deep learning methods. The
results shed a light on the strengths and weaknesses of different
deep neural network architectures for small object detection.
The contributions of this research include applying and adapting
leading deep-learning methods to the LBAI dataset, evaluating
performances of these methods on a common benchmark dataset
for small-object detection and segmentation, and automating the
time-consuming process of manual image processing from
waterfowl surveys.

 The rest of the paper is organized as follows. Section II
introduces deep learning methods on object detection, with an
emphasis on the techniques related to small-size object
detection. Section III presents the state-of-the-art object-
detection methods applied to LBAI for performance evaluation.
Section IV describes the properties of LBAI in detail. Section V

317

2018 IEEE Third International Conference on Data Science in Cyberspace

978-1-5386-4210-8/18/$31.00 ©2018 IEEE
DOI 10.1109/DSC.2018.00052

presents experimental results. Last, Section VI summarizes this
research.

II. RELATED WORK
There are two major approaches for object detection and

recognition. The first detection-based approach is the traditional
one that generates a bounding box of the detected objects and
then identifies the type of objects. The second approach, which
is a segmentation-based approach, can also be used for object
detection. This approach first generates labelling at the pixel
level and then tries to identify the class of the objects to which
each pixel belongs.

A. Object detection methods
Existing deep learning algorithms for object detection falls

into two categories: one-stage detectors and two-stage detectors
[1-9]. At first, two-stage detectors generate many region
proposals, which may potentially contain the objects. Then,
these sparse proposals are further classified into different object
categories. In general, two-stage detectors are more accurate, but
slow when compared to one-stage detectors. In one-stage
detectors, the bounding boxes proposal step is eliminated and
both, object localization and classification, are done in one pass.
This strategy significantly improves the speed of detection when
compared with two-stage detectors.

In a two-stage detector, the regions that potentially contain
objects are first proposed. Then, detection refinement is applied
to classify proposed regions and regress the bounding box
location. For example, the Selective Search method [1] is used
in R-CNN [2] to generate category-independent region
proposals to localize the regions that may contain the target
objects. R-CNN then uses a convolution neural network to refine
regions. Each region proposal is fed into the CNN
independently, which is a slow process. Fast R-CNN [3]
addressed these issues by only computing the convolutional
feature map once. Therefore, each region proposal shares the
computation of the same feature map. The region proposals are
generated in a Region of Interest (RoI) pooling format to feed
into fully connected layers [3].

Faster R-CNN [4] further improved the detection speed by
using a fully convolutional network, called Region Proposal
Networks (RPNs), to generate the region proposals, replacing
the Selective Search method used in previous methods. In the
second stage, a CNN is used for proposal refinement and object
classification. The main benefit of this design is that the RPN
shares the same convolutional layers with the object detection
network, which reduces the detection time [4]. Furthermore,
FPN was proposed to improve Faster R-CNN [12]. FPN used
the concept of a feature pyramid. Instead of applying a pyramid
on the input images, it used the feature map pyramid, since CNN
already provide a hierarchy between the different feature layers.
The idea was implemented in a bottom-up and top-down path
with lateral connections. FPN utilized a lower, high-resolution
feature layer, compared to other algorithms, which dramatically
improve detection accuracy, especially for small objects.

In one-stage detectors, the proposal generation stage is
removed, resulting with localization and classification being
performed in one stage. Recently, YOLO [5][6], SSD [7], and
their variations achieved promising results. YOLO [5] divided

input images into 7 × 7 cells and each cell predicts two bounding
boxes. The network has convolutional layers followed by fully
connected layers. Even though YOLO achieved a 45 frame per
second detection speed, which is extremely fast when compared
to other algorithms, the main drawbacks result from localization
prediction errors and low object detection recall [5].

DSSD [10] is a variation of SSD [7]. It improved the
performance of SSD, especially for small objects, by using a
larger network as well as adding additional context information
with de-convolutional neural networks. DSSD achieved higher
accuracy, especially for small objects. Recently, RetinaNet [13]
achieved state-of-the-art results for one-stage detection. It
outperformed existing two-stage detectors while maintaining a
fast detection time. The work in [13], found that the accuracy
gap between one-stage detectors and two-stage detectors was
mainly due to the positive and negative examples being highly
unbalanced, since there are extremely large amounts of
background examples overwhelming the process. Even though
each loss of the background examples is small, the large number
of the background cases result in dominating the total loss,
which results in a degenerated model. This problem was solved
by introducing a new loss function, called focal loss, to change
the weights between positive examples and negative examples,
so they cannot affect the loss function dramatically. Huang et.al.
in [11] compared the detection accuracy and detection time
between two-stage detectors and one-stage detectors. They
concluded that, on average, one-stage detectors are faster than
two-stage detectors, while two-stage detectors tend to be more
accurate than one-stage detectors. The performance of most
detection algorithms dropped dramatically when applied to
small-object detection. In addition, several one-stage detectors
were developed for small face detection, including Tiny Face [8]
and SSH [9].

B. Instance segmentation methods
FCN [15] is one of the first methods that use CNNs in the

semantic segmentation area. FCN employs CNNs without fully
connected layers, which allows the input image to have an
arbitrary size. This method laid the foundation for later methods.

A key issue of segmentation methods is the pooling layers.
Adding pooling layers can reduce the computation time and
increase the reception field size. U-Net is based on FCN [15],
with the encoder-decoder architecture to address the issue of
determining the appropriate numbers of pooling layers. It has a
U-shape architecture to balance the trade-off between good
localization accuracy and efficient context information.
Therefore, it only needs a small number of training images. In
the encoder stage, it uses pooling layers to gradually reduce the
layer size, whereas, in the decoder stage, it uses up-convolution
to gradually increase the layer size. Moreover, U-Net uses the
short-cut connection from encoder to decoder to help the
decoder recover fine-grain information. Regarding the trade-off
between reception field and localization accuracy, large
reception fields lead to lower localization accuracy. On the other
hand, when the reception field is too small, the localization
accuracy may also decrease due to the lack of context
information.

Mask R-CNN [14] is a recent work based on Faster R-CNN
and FCN. Faster R-CNN already provides two predictions:

318

bounding box localization and recognition. Mask R-CNN added
the third output on top of Faster R-CNN, which is the instance
mask prediction for segmentation. The Mask R-CNN
architecture can output bounding box localization, classification,
and segmentation at the same time. The improvement of Mask
R-CNN from FCN comes from the new ROIAlign layer,
multitask training, and a better backbone network [14] [15].

III. DEEP LEARNING METHODS APPLIED TO LBAI
In this section, the representative state-of-the-art object-

detection methods are presented. In our experiments, they were
applied to the LBAI dataset to evaluate their performances on
low-resolution small-object detection.

A. Object detection methods
(1) Single Shot MultiBox Detector (SSD) [7] is a one-stage
detector that performs object localization and classification in a
single forward pass of its CNN. SSD’s network is built on the
VGG-16 architecture, with the fully connected layer removed.
Instead of using a fully connected layer, several small
convolutional feature maps are added on top of VGG-16 to
predict the target objects. Moreover, to capture different object
scales, SSD generates different scales of feature maps for
detection. This will result with two predictions being generated,
one predicts the bounding box category and the other predicts
the location of the bounding box. At the end, non-maximum
suppression (NMS) is used to generate the final detection
results. SSD achieved good accuracy, comparable to two-stage
detectors, but much faster. However, SSD’s performance on
smaller objects was much worse. The reason is that small objects
may not appear on higher-level feature maps. Even though
increasing the input image size can help slightly, SSD cannot
address the problem well.

In our experiments on the new LBAI dataset, we used the
source code of SSD built on the Caffe [17] framework with a
VGG-16 architecture as the backbone network. VGG-16 is
pretrained on ImageNet [21] for image classification and fine-
tuned on our LBAI dataset. We used the same data augmentation
and hard negative mining as SSD: batch size set to 16, input
image size of 512 × 512, and a really small learning rate of 1e-
7. The results were poor and thus not report in the experimental
results section.

 (2) Single Stage Headless (SSH) [9] is one of the variations of
SSD, specifically designed for face detection. Like SSD, SSH is
also a single-stage detector and the architecture of SSH is built
on a VGG-16 network without fully connected layers. The
convolutional detection module is applied on top of three
different feature maps, corresponding to different strides, in
order to handle scales of variation. The detection module
consists of several convolutional layers and eventually generates
two results, classification prediction and bounding box
localization. Unlike SSD, SSH focuses on adding more context
information, especially for small objects. A context module is
designed inside of the detection module to increase the receptive
field size. With VGG-16 as a base-net, SSH outperformed the
ResNet-101 based methods. SSH achieved state-of-the-art
results on both the WIDER FACE dataset [18] and the FDDB
dataset [19]. Moreover, the inference time is fast. SSH achieved
21 FPS with an image resolution of 400 × 800 and 13 FPS with

a resolution of 600 × 1000, which is much faster than Tiny Face
[8].

In our experiments on the LBAI dataset, we used the source
code of SSH built on the Caffe [17] framework with a VGG-16
architecture as the backbone network. VGG-16 is pretrained on
ImageNet [21], for the task of image classification, and fine-
tuned on our LBAI dataset. We changed the number of output
classes to two, which is bird or not bird (i.e. background in our
case). The network was trained with the batch size equal to 128
and the input size equal to 512 × 512.We set the learning rate to
0.0004 for easy cases and to 0.004 for hard cases. The
momentum is equal to 0.9 and the weight decay was set to
0.0005. It took approximately two hours to train 10,000
iterations on a GTX 980M graphics processing unit (GPU) with
8GB memory. Both classification loss and regression loss
decreased during training.

(3) You Only Look Once (YOLO) v2 [5] is an improved
version of the original YOLO network with several adjustments.
Batch normalization on the convolutional layers is used to
stabilize network training. The performance is increased by
approximately 2% mAP with batch normalization. As found by
other research, higher resolution can capture more information,
especially for small objects [5]. This strategy increases the
performance by approximately 4% mAP. In YOLOv2, the fully
connected layers are removed. Instead of directly predicting the
location of bounding boxes, YOLOv2 adopted an anchor box
strategy similar to that used by Faster R-CNN. This can improve
the recall by a large margin while only slightly lowering
precision. A dimension clustering algorithm is used to find the
starting anchor box dimensions based on the data from the
training set. With dimension clustering and direct location
prediction, the location accuracy is improved by over 4%.
Finally, for improving performance on small objects, the lower
feature map is concatenated with the higher feature map.

In our experiments on LBAI, we used the source code for
YOLOv2 built on the Darknet framework. We loaded weights
from darknet53.conv.74 and fine-tuned them on the LBAI
dataset for 16,000 batches. We changed the number of output
classes to one and adjusted the last convolutional filter to 30.
The network was trained with a batch size of 64 and subdivisions
set to 8. We applied a jitter of .4 to the training set and used a
resolution of 448 × 448. We set the learning rate to 0.0001 with
a decay of 0.0005.

(4) Tiny Face [8] is one of the face detectors specifically
designed to detect small objects. In [8], experiments were
conducted to investigate the importance of scale, image
resolution, and contextual information. Separate detectors were
trained over different feature layers of a single CNN to tackle
the scale variant problem. The work in [8] claimed that context
is the key to finding small objects, especially for low-resolution
faces, and having a large reception field is good to detect small
faces. More context was introduced by combing feature maps
from multiple CNN layers. In addition, a two-times larger
resolution was found to be effective to find smaller faces. The
work showed that Tiny Face achieved state-of-the-art results on
both WIDER FACE and FDDB datasets. More importantly, it
achieved 82% mAP accuracy for small faces, whereas previous
methods only achieved 29-64% mAP. However, the image

319

pyramid pipeline slows down the method. The running time was
1.4 FPS on 1080 resolution images and 3.1 FPS on 720
resolution images, which is much slower than other one-stage
detectors.

In our experiments on LBAI, the source code of Tiny Face
was built on the Matconvent framework written in Matlab. The
original input size is 500 × 500. After we changed the input size
to 512 × 512, the algorithm randomly cropped a 500 × 500 image
region. We used a batch size of 12 and a learning rate equal to
1e-5 for easy cases and a learning rate equal to 1e-4 for hard
cases. The momentum was set to 0.9 and the weight decay set to
0.0005. We trained Tiny Face with ResNet-101 as the base
architecture for 50 epochs, which took approximately 5 hours.

B. Instance segmentation methods
(1) U-Net [15] is built on fully convolutional networks,
specifically designed for biomedical image segmentation. In the
contracting path, the convolutional layers are applied with
pooling layers to extract context features. In the expanding path,
the up-sampling layers are added to increase the localization
accuracy. More importantly, the feature maps from the
contracting path are concatenated with the up-sampling layers to
improve localization. In addition, elastic deformations are
applied as data augmentations during training. U-Net is the
winner of the ISBI challenge for segmentation and the ISBI cell
tracking challenge in 2015. With a 512 × 512 input image, the
inference time is less than one second.

In our experiments, the basic U-Net architecture was used to
train on the LBAI dataset. However, because of the significant
difference between the natural images in LBAI and bio-cell
images, we added zero-padding after each convolution operation
block, instead of cropping the reception field as in Isola [24] and
Zhu’s work [25]. This prevented the network from losing too
much pixel label information, which was needed because objects
in LBAI are very small. With padding, the U-Net architecture
would have the same size of input and output.

In order to apply the segmentation method for object
detection, instance segmentation labels were prepared as the
ground truth. However, it is time and labor consuming to
generate segmentations for every target object in LBAI. So,
instead of using object contours as labels, we used a 20 × 20
square as a ground truth mask, centered at the coordinate of each
object. After fixing the network architecture, specifically the
inputs and outputs, we fed 512 × 512 images into U-Net and
trained the network. In the training phase, we used the VGG-16
pretrained weights on ImageNet [21] as initial weights in all
encoder blocks and the Xavier initializer in all decoder blocks.
The learning rate was set to 0.001 with a learning rate decay
equal to 0.1 for every 7 epochs. The batch size was set to 2 in
the training phase and since we were using a GTX 980M GPU
with 8GB memory, the Adam optimizer was used. In the
inference phase, blob detection on the final output was used to
calculate the coordinates after running through the segmentation
network.

(2) Mask R-CNN [14] is a recent work for segmentation and
object detection, as explained in the related work section. The
major change in Mask R-CNN is that it solves the ROI pooling
problem that causes the feature maps and original image not to

be aligned. Mask R-CNN uses the ROIAlign layer to replace the
ROI pooling layer. In the ROIAlign layer, the rounding for
boundaries or bins are removed and bilinear interpolation is
applied to compute the exact values for the feature maps.
Moreover, Mask R-CNN uses a binary cross-entropy loss for the
instance mask, which avoids the competition among all classes.
Mask R-CNN achieved state-of-the-art results of instance
segmentation on the COCO [22] test dataset with a running time
of 5 FPS.

 When implementing Mask R-CNN on the LBAI dataset, we
used the same input and output described in the U-Net
implementation. In the training phase, we froze the weights of
ResNet-101 and trained all the other weights in the original
Mask R-CNN architecture. For the hyper-parameters, we used
the Adam optimizer with the value of 0.0001 as the learning rate
until the loss curve converged. Other implementation details for
the training and inference phases were the same as U-Net for a
direct comparison between these two methods, e.g. batch sizes
and blob detection.

IV. LBAI DATASET

Fig. 1. Examples of the new LBAI dataset for small object detection and
instance segmentation. Cropped images with different color, shape,
resolution, background, and scale are shown.

Black Mixed White

 Flying Ellipsoid Circular

 High Medium Low

Easy Medium Complicated

Large Medium Small

C
ol

or

Sh
ap

e
R

es
ol

ut
io

n
Ba

ck
gr

ou
nd

Sc
al

e

320

A. Dataset overview
The LBAI dataset was provided by the Illinois Natural

History Survey at the University of Illinois at Urbana-
Champaign. The total dataset has 230GB of data, with 440 high-
resolution images that have a resolution of 5760 × 3840, and an
altitude value of approximately 90 meters above ground level
(AGL). Fig. 1 shows examples of the cropped images, with
different color, shape, resolution, background, and scale. Due to
the large size of images, it is difficult to train CNNs directly on
the original images. From the original dataset, we created two
sub-datasets, LBAI-A and LBAI-B, with different cropping
scenarios as stated below.

LBAI-A: There were 336 images with high-resolution that
were used, and this dataset was divided into the training,
validation, and test sets based on these images. For each set, we
take the original image and crop it into the small patches with a
size of 512 × 512, without overlapping the patches. This will
insure that the original image does not get put into different sets
(e.g. a patch from the original image gets put into the training
set and another patch from the same original image gets put into
the validation set). The incomplete boundary regions were
discarded after cropping, since resizing may change the ratio and
shape of the birds. For the training set, there are a total of 3,158
cropped images with 24,836 birds. We only keep the small
patches with birds in the training and validation set. However,
the test set contains all the cropped images, both with birds and
without birds. After applying the various object-detection
methods on the cropped images to detect the birds, the detection
results from the patches were merged back into the original
images. In our experimental results on this dataset, the
performance comparisons of the various methods are based on
the merged patches which form the original images.

LBAI-B: We use a total of 336 images in dataset-B as well.
We used the same strategy as for dataset-A, i.e., no patch from
the same original image will be used across the training,
validation, and testing set. The original images were cropped
into small patches of size 512 × 512 without overlap. Incomplete
boundary images were not included. In the training, validation,
and test set, only the cropped images which contain birds are
used. In our experimental results on this dataset, performance
comparisons of the various methods are based on the cropped
image set, which only contains birds.

B. Dataset labelling
When we received this dataset, it contained the bird counting

labels, i.e. the number of birds per image, from the Illinois
Natural History Survey at the University of Illinois at Urbana-
Champaign. However, it did not contain the bounding box
locations for the birds, which is the labelling needed for
detection. We generated the annotations for the birds’ location,
so that the number of birds would match the total number of
birds received from the expert annotations. A labelling tool,
called Sloth, was used to label the images. For each image, a dot
was put at the center of each visible bird for all of the birds. This
dot label was used for blob detection to generate the bounding
box and pixel level labels. Next, we used image processing
techniques to find the contour of the labeled birds. A bounding
box was drawn around the bird’s contour to generate bounding
box labels. All labeled results are saved in an xml file. These

labels were created from multiple observers with varying levels
of training and experience.

C. Dataset seperation based on difficulty levels
The backgrounds of the LBAI images are very different,

which have a significant impact on the bird detection results.
Some images have clear backgrounds with uniform colors,
which usually correspond to rivers and water. In this case, the
main problem is to identify the birds among different colors,
shapes, and resolution situations. On the other hand, in the
images with backgrounds of land, trees, or vegetation, detection
of birds is much harder, even for humans with great eyes. It is
hard to distinguish emergent vegetation and submersed aquatic
vegetation from birds. Therefore, following ideas from other
datasets [16], we split each dataset into easy and hard cases
based on the background. In LBAI-A, 3,158 images are
categorized as easy cases, which contributed 52% of our labeled
data, and 2,907 images as hard cases. In LBAI-B, there are
2,416 easy case images and 2,056 hard case images. The
proportions of easy and hard cases are 54% and 46%,
respectively.

D. Image diversity
As shown in Fig. 1, LBAI contains images of birds of various

colors, shapes, poses, resolutions, scales, and backgrounds. The
properties are discussed as follows.

Color. For different species, birds have different features. Some
birds are all white, while others are all gray or blackish. Some
of the birds have darker stripes on their back, while others may
have darker dots around their heads. Different color features and
weather conditions add more variety to the dataset.

Shape and Pose. Birds have different shapes in our dataset.
Most of the birds have ellipsoidal shapes, i.e., the head and tail
are narrow, and the middle of the body is wide. However, this is
not true for all cases. Some of the birds are partially covered by
the vegetation area, which leads to circular shapes. Different
activities of the birds also led to different shapes and poses. For
example, most birds are swimming or floating, whereas others
are flying.

Resolution. LBAI contains images taken under different image
resolutions. In some images, the bird’s shape, color and angle
are clear to see. On the other hand, some birds are blurry and
hard to distinguish in both color and shape. This is due to the
variation of airplane altitude, weather conditions, and image
resolution from the camera when the images were taken.

Scale. LBAI contains birds ranging from the size of 10px to
40px, due to the different species and activities. Most of the
birds are in the range of 10px to 20px. Some flying birds or birds
of bigger species (i.e., ducks and geese) have larger sizes of 30px
to 40px.

Background. LBAI covers diverse background information,
including calm water, water waves, vegetation region, forest,
and many others. Background clutter is one of the major issues
for correctly identifying birds.

V. EXPERIMENT RESULTS
In this research, we evaluate the detection results and the

counting results of various deep learning methods on a common

321

dataset, the LBAI dataset. For detection, the performance
metrics include precision, recall, and F1 score. Precision is the
percentage of correctly predicted instances over the total number
of predictions, while recall is the percentage of correctly
predicted instances over the total amount of instances, defined
as follows:

where is true positive, is false positive, and is the false
negative instances.

 F1 is the harmonic mean of precision and recall:

For counting results, the performance metric is the mean
absolute error (MAE), i.e., the difference between the predicted
count of birds in an image and the true count based off the labels
described in the previous section.

A. Performance comparion using LBAI-A
Using LBAI-A, we compared the performance of five

representative state-of-the-art deep learning methods, including
YOLOv2, SSH, Tiny Face, Mask R-CNN, and U-Net.

TABLE I. PERFORMANCES OF DIFFERENT DEEP LEARNING TECHNIQUES
ON THE EASY CASES IN THE LBAI-A DATASET.

TABLE II. PERFORMANCES OF DIFFERENT DEEP LEARNING TECHNIQUES
ON THE HARD CASES IN THE LBAI-A DATASET.

Fig. 2 shows the examples of bird detection results of the
five deep learning methods on the three different types of LBAI
images. The green bounding boxes are the prediction results
and the red bounding boxes are the ground truth. In Image 1,
the background is uniform, with calm water surfaces, which is
an easy case. Looking at Image 2, which is still an easy case,

there are vegetation areas, making it harder to identify the birds.
Image 3 represents an example of land as the background,
although there are only four birds in the water, a significant
number of false positives were generated by all methods in the
land regions, which is why this is a hard case.

The results on the test cases are shown in Table I and II.
There is a total of 944 test images for the easy cases and 944
images for the hard cases in LBAI-A. As shown in Table I, on
the easy cases in LBAI-A, U-Net and SSH obtained the highest
F1 score, 81.9% and 81.8%, respectively, which were much
higher than the other three methods. In terms of precision, U-
Net was the best, while YOLOv2 was second. In terms of recall,
Mask R-CNN was the best, while SSH was second. In terms of
MAE, U-Net was much better than the other methods,
outperforming them by at least 17%.

As shown in Table II, focusing on the hard cases in LBAI-
A, the precision, recall, and F1 scores of all methods were much
worse than their corresponding results on the easy cases in
Table I. The best F1 score on the hard cases in LBAI-A was
54.7%, generated by Tiny Face. U-Net and SSH had results
similar to Tiny Face. However, YOLOv2 and Mask R-CNN
had significantly lower F1 scores. Mask R-CNN had the highest
recall rate, but lowest precision because it generated too many
false positives. In terms of MAE metrics, U-Net and SSH
performed the best, slightly better than Tiny Face and
YOLOv2. Mask R-CNN performed very poorly.

B. Performance comparion using LBAI-B

TABLE III. PERFORMANCES OF DIFFERENT DEEP LEARNING TECHNIQUES
ON THE EASY CASES IN THE LBAI-B DATASET.

TABLE IV. PERFORMANCES OF DIFFERENT DEEP LEARNING TECHNIQUES
ON THE HARD CASES IN THE LBAI-B DATASET.

Using LBAI-B, we compared the performance of the same
five deep learning methods on the cropped images. The results
on the test cases are shown in Table III and IV. There are 202
and 93 testing images for easy and hard cases, respectively. The
number of testing images are much smaller than LBAI-A

Methods Precision Recall F1 Score MAE

YOLOv2 0.831 0.745 0.785 49.3

SSH 0.801 0.836 0.818 46.4

Tiny Face 0.613 0.809 0.697 103.2

Mask R-CNN 0.772 0.842 0.805 49.0

U-Net 0.861 0.781 0.819 38.5

Methods Precision Recall F1 Score MAE

YOLOv2 0.568 0.238 0.335 22.0

SSH 0.46 0.62 0.53 20.3

Tiny Face 0.552 0.542 0.547 21.2

Mask R-CNN 0.193 0.659 0.299 89.5

U-Net 0.55 0.51 0.53 20.1

Methods Precision Recall F1 Score

YOLOv2 0.886 0.878 0.882

SSH 0.909 0.941 0.925

Tiny Face 0.936 0.879 0.907

Mask R-CNN 0.845 0.956 0.902

U-Net 0.921 0.897 0.909

Methods Precision Recall F1 Score

YOLOv2 0.742 0.698 0.720

SSH 0.766 0.810 0.787

Tiny Face 0.903 0.722 0.802

Mask R-CNN 0.656 0.721 0.687

U-Net 0.867 0.592 0.704

322

because we only included the patches containing birds. The
patches that did not contain birds were discarded in LBAI-B.
Therefore, in our results, we didn’t calculate MAE for LBAI-B
because MAE is only calculated for the original sized images.
However, with only patches containing birds, we would not be
able to reconstruct the original images.

As shown in Table III, focusing on the easy cases in LBAI-
B, SSH obtained the highest F1 score of 92.5%. This is
significantly higher than the other methods. Whereas, YOLOv2
was the worst out of all the methods. In terms of precision, Tiny
Face was the best, while YOLOv2 was the worst. In terms of
recall, Mask R-CNN was the best, while SSH was a close
second.

As shown in Table IV, focusing on the hard cases, the
precision, recall, and F1 scores of all methods were again much
worse than their corresponding results on the easy cases in
Table III, resulting in a greater than 10% difference. The best
F1 score on the hard cases was 80.2%, generated by Tiny Face.
SSH was a close second. SSH had the highest recall rate,
whereas Tiny Face had the highest precision.

C. Running time comparision
 The execution times of the methods were measured as
frames per second (FPS) to predict the results. All of the FPS
were generated on a GTX 980M GPU with 8GB memory. Given
the input size of 512 × 512, SSH was the fastest, reaching 14
FPS. The running time for U-Net and Mask R-CNN are both 5
FPS. TinyFace runs the slowest with 1.4 FPS, due to its image
pyramid multi-scale architecture.

VI. SUMMARY
In this paper, we have presented a new aerial imagery dataset

based on real-life images including waterfowl and other water
birds in wetlands around the Midwest. Different from most of
the existing datasets, the new LBAI dataset contains small birds
of sizes ranging from 10px to 40px. Several state-of-the-art deep
learning object detection and instance segmentation techniques
have been applied to the LBAI database and obtained a range of
performance results. Among object detection methods, SSH
performed the best on the easy cases, while Tiny Face achieved
the best accuracy on the hard cases. Between instance
segmentation methods, U-Net achieved better performance than
Mask R-CNN. These results are useful for identifying the
strengths and weaknesses of existing methods and the
development of future methods with improved performance.

REFERENCES
[1] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders,

“Selective search for object recognition,” In IJCV, 2013.

[2] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,” In
CVPR, 2014.

[3] R. Girshick, “Fast r-cnn,” In ICCV, 2015.
[4] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards realtime

object detection with region proposal networks,” In NIPS, 2015.
[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:

Unified, real-time object detection,” In CVPR, 2016.
[6] J. Redmon and A. Farhadi. “YOLO9000: Better, faster, stronger,” In

CVPR, 2017.
[7] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.

Berg, “SSD: Single shot multibox detector,” In ECCV, 2016.
[8] Hu, Peiyun and Ramanan, Deva, “Finding Tiny Faces,” In CVPR, 2017
[9] Najibi, Mahyar and Samangouei, Pouya and Chellappa, Rama and Davis,

Larry, “SSH: Single Stage Headless Face Detector,” In ICCV 2017.
[10] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg. “DSSD:

Deconvolutional single shot detector,” arXiv:1701.06659, 2016.
[11] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,

Z. Wojna, Y. Song, S. Guadarrama et al., “Speed/accuracy trade-offs for
modern convolutional object detectors,” In CVPR, 2017.

[12] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie.
“Feature pyramid networks for object detection,” In CVPR, 2017.

[13] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. “Focal loss for
dense object detection,” arXiv preprint arXiv:1708.02002, 2017.

[14] .K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,”
arXiv:1703.06870, 2017.

[15] O. Ronneberger, P. Fischer, and T. Brox. “U-net: Convolutional networks
for biomedical image segmentation,” In MICCAI, pages 234–241.
Springer, 2015.

[16] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” In CVPR, 2015.

[17] C. Zitnick and P. Dollar, “ Edge boxes: Locating object proposals from
edges,” In ECCV, 2014.

[18] S. Yang, P. Luo, C.-C. Loy, and X. Tang. “Wider face: A face detection
benchmark,” In ICCV, June 2016.

[19] V. Jain and E. Learned-Miller. “Fddb: A benchmark for face detection in
unconstrained settings,” Technical Report UMCS-2010-009, University
of Massachusetts, Amherst, 2010.

[20] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, T. Darrell, “Caffe: Convolutional architecture for fast
feature embedding,” Proceedings of the 22nd ACM international
conference on Multimedia, 675-678, 2014.

[21] K. Simonyan and A. Zisserman. “Very deep convolutional networks for
large-scale image recognition,” In ICLR, 2015.

[22] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P.
Dollar, and C. L. Zitnick. “Microsoft COCO: Common objects in
context,” In ECCV. 2014.

[23] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman.
“The Pascal Visual Object Classes (VOC) Challenge,” IJCV, pages 303–
338, 2010.

[24] Isola, P., Zhu, J.Y., Zhou, T. and Efros, A.A., 2017. “Image-to-image
translation with conditional adversarial networks,” arXiv preprint.

[25] Zhu, J.Y., Park, T., Isola, P. and Efros, A.A., 2017. “Unpaired image-to-
image translation using cycle-consistent adversarial networks,” arXiv
preprint arXiv:1703.10593.

323

 Image 1: number of birds = 295 (ground truth) Image 2: number of birds = 83 (ground truth) Image 3: number of birds = 4 (ground truth)

 YOLOv2: number of detected birds = 247 YOLOv2: number of detected birds = 146 YOLOv2: number of detected birds = 49

 SSH: number of detected birds = 273 SSH: number of detected birds = 173 SSH: number of detected birds = 168

 TinyFace: number of detected birds = 173 TinyFace : number of detected birds = 95 TinyFace : number of detected birds = 300

 Mask R-CNN: number of detected birds = 290 Mask R-CNN : number of detected birds = 223 Mask R-CNN : number of detected birds = 111

 U-Net: number of detected birds = 248 U-Net : number of detected birds = 86 U-Net : number of detected birds = 109

YOLOv2

Fig. 2. Examples of bird detection results of the 5 deep learning methods using 3 different types of LBAI images. The green bounding boxes are the prediction
results. The red bounding boxes are the ground truth. In Image 1, the background is uniform, calm water surfaces. In Image 2, there are ice in the bottom half
of the image and vegetation scattered in the image, making it harder to identify the birds. In Image 3, as an example of land background, although there are
only 4 birds in the water, a lot of false positives are generated by all the methods in the land regions.

SSH

Tiny

Face

Mask

R-CNN

U-Net

324

