Accepted Manuscript

Improving efficiency in convolutional neural networks with multilinear

filters

Dat Thanh Tran, Alexandros losifidis, Moncef Gabbouj

PII:
DOI:
Reference:

To appear in:

Received date :

Revised date :

Accepted date :

Please cite this article as: Tran, D.T., losifidis, A., Gabbouj, M., Improving efficiency in
convolutional neural networks with multilinear filters. Neural Networks (2018),

S0893-6080(18)30179-5
https://doi.org/10.1016/j.neunet.2018.05.017
NN 3963

Neural Networks

23 October 2017
8 May 2018
25 May 2018

https://doi.org/10.1016/j.neunet.2018.05.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the

content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.neunet.2018.05.017

*Manuscript

Click here to view linked References

Improving Efficiency in Convolutional Neural Networks
with Multilinear Filters

Dat Thanh Tran'*, Alexandros losifidis?, Moncef Gabbou;j*
LLaboratory of Signal Processing, Tampere University of Technology, Finland

2Department of Engineering, Electrical and Computer Engineering, Aarhus University

Abstract

The excellent performance of deep neural networks has enabled us to solve sev-
eral automatization problems, opening an era of autonomous devices. However,
current deep net architectures are heavy with millions of parameters and require
billions of floating point operations. Several works have been developed to com-
press a pre-trained deep network to reduce memory footprint and, possibly, com-
putation. Instead of compressing a pre-trained network, in this work, we propose
a generic neural network layer structure employing multilinear projection as the
primary feature extractor. The proposed architecture requires several times less
memory as compared to the traditional Convolutional Neural Networks (CNN),
while inherits the similar design principles of a CNN. In addition, the proposed
architecture is equipped with two computation schemes that enable computation
reduction or scalability. Experimental results show the effectiveness of our com-
pact projection that outperforms traditional CNN, while requiring far fewer pa-
rameters.

Keywords: Convolutional Neural Networks, Multilinear Projection, Network
Compression

1. Introduction

In recent years, deep neural network architectures have excelled in several
application domains, ranging from machine vision [1, 2, 3], natural language pro-
cessing [4, 5] to biomedical [6, 7] and financial data analysis [8, 9] . Of those

*Corresponding author: Tel.: +358 401592373
Email address: dat .tranthanh@tut.fi (Dat Thanh Tran')

Preprint submitted to Neural Networks May 8, 2018

important developments, Convolutional Neural Network (CNN) has evolved as
a main workhorse in solving computer vision tasks nowadays. The architecture
was originally developed in the 1990s for handwritten character recognition us-
ing only two convolutional layers [10]. Over the years, with the development of
Graphical Processing Units (GPUs) and efficient implementation of convolution
operation, the depth of CNNs has been increased to tackle more complicated prob-
lems. Nowadays, prominent architectures such as Residual Network (ResNet)
[11] or Google Inception [12] with hundreds of layers have become saturated. Re-
searchers started to wonder whether millions of parameters are essential to achieve
such performance. In order to extend the benefit of such deep nets to embedded
devices with limited computation power and memory, recent works have focused
on reducing the memory footprint and computation of a pre-trained network, i.e.
they apply network compression in the post-training stage. In fact, recent works
have shown that traditional network architectures such as Alexnet, VGG or In-
ception are highly redundant structures [13, 14, 15, 16, 17, 18, 19, 20, 21, 22].
For example, in [13] a simple heuristic based on magnitude of the weights was
employed to eliminate the connections in a pre-trained network, which achieved
considerable amount of compression without hurting the performance much. Ad-
ditionally, representing network parameters with low bitwidth numbers, like in
[23, 24, 25], has shown that the performance of a 32-bit network can be closely re-
tained with only 4-bit representations. It should be noted that the two approaches
are complementary to each other. In fact, a compression pipeline called “Deep
Compression” [13] which consists of three compression procedures, i.e. weight
pruning, weight quantization and Huffman-based weight encoding, achieved ex-
cellent compression performance on AlexNet and VGG-16 architectures.

Along pruning and quantization, low-rank approximation of both convolu-
tional layers and fully connected layers was also employed to achieve compu-
tational speed up [26, 27, 28]. Viewed as high-order tensors, convolutional layers
were decomposed using traditional tensor decomposition methods, such as CP
decomposition [21, 20, 29] or Tucker decomposition [30], and the convolution
operation is approximated by applying consecutive 1D convolutions.

Overall, efforts to remove redundancy in already trained neural networks have
shown promising results by determining networks with a much simpler structure.
The results naturally pose the following question: why should we compress an
already trained network and not seek for a compact network representation that
can be trained from scratch?. Subsequently, one could of course exploit the above
mentioned compression techniques to further decrease the cost. Under this per-
spective, the works in [19, 22] utilizing a low-rank approximation approach were

2

among the first to report simplified network structures.

The success of Convolutional Neural Networks can be attributed to four im-
portant design principles: sparse connectivity, parameter sharing, pooling and
multilayer structure. Sparse connectivity (in convolutional layers) only allows
local interaction between input neurons and output neurons. This design princi-
ple comes from the fact that in many natural data modalities such as images and
videos local/neighboring values are often highly correlated. These groups of local
values usually contain certain distinctive patterns, e.g. edges and color blobs, in
images. Parameter sharing mechanism in CNNs enables the underlying model to
learn location invariant cues. In other words, by sliding the filters over the input,
the patterns can be detected regardless of the location. Pooling and multilayer
structure design of deep neural networks in general and CNN in particular, cap-
tures the compositional hierarchies embedded within many natural signals. For
example, in facial images, lower level cues such as edges, color and texture pat-
terns form discriminative higher level cues of facial parts, like nose, eyes or lips.
Similar compositional structure can be seen in speech or text, which are composed
of phonemes, syllables, words and sentences. Although the particular structure of
a deep network has evolved over time, the above important design principles re-
main unchanged. At the core of any convolution layer, each filter with d x d x C'
elements operates as a micro feature extractor that performs linear projection of
each data patch/volume from a feature space of d*C' dimensions to a real value. In
order to enhance the discrimination power of this micro feature extractor, the au-
thors of [31] proposed to replace the GLM model by a general nonlinear function
approximator, particularly the multilayer perceptron (MLP). The resulting archi-
tecture was dubbed Network in Network (NiN) since it consists of micro networks
that perform the feature extractor functionality instead of simple linear projection.

In this paper, instead of seeking a more complex feature extractor, we propose
to replace the linear projection of the traditional CNN by multilinear projection in
the pursuit of simplicity. There has been a great effort to extend traditional linear
methods to multilinear ones in an attempt to directly learn from the natural rep-
resentation of the data as high order tensors [32, 33, 34, 35, 36, 37]. The beauty
of multilinear techniques lies in the property that the input tensor is projected si-
multaneously in each tensor mode, allowing only certain connections between the
input dimensions and output dimensions, hence greatly reducing the number of
parameters. Previous works on multilinear discriminant learning and multilinear
regression [38, 32, 33, 34, 35, 36] have shown competitive results of multilinear-
based techniques. The proposed architecture still inherits the four fundamental
design properties of a traditional deep network while utilizing multilinear projec-

tion as a generic feature extractor. The complexity of each feature extractor can be
easily controlled through the “rank” hyper-parameter. Besides a fast computation
scheme when the network is compact, we also propose an alternative computation
method that allows efficient computation when complexity increases.

The contribution of our paper can be summarized as follows:

e We propose a generic feature extractor that performs multilinear mapping
to replace the conventional linear filters in CNNs. The complexity of each
individual feature extractor can be easily controlled via its rank, which is
a hyperparameter of the method. By having the ability to adjust individ-
ual filter’s complexity, the complexity of the entire network can be adjusted
without the need of increasing the number of filters in a layer, i.e. the width
of the layer. Since the proposed mapping is differentiable, the entire net-
work can be easily trained end-to-end by using any gradient descent-based
training process.

e We provide the analysis of computation and memory requirements of the
proposed structure. In addition, based on the properties of the proposed
mapping, we propose two efficient computation strategies leading to two
different complexity settings.

e The theoretical analysis of the proposed approach is supported by exper-
imental results in real-world classification problems, in comparison with
CNN and the low-rank scheme in [19].

The remainder of the paper is organized as follows: In section 2, we provide
an overview of the related works focusing on designing compact network struc-
tures. Section 3 gives the necessary notations and definitions before presenting
the proposed structure and its analysis. In section 4, we provide details of our
experiment procedures, results and quantitative analysis. Section 5 concludes our
work and discusses possible future extensions.

2. Related Work

Research focusing on the design of a less redundant network architecture has
gained much more attention recently. One of the prominent design pattern is the
bottleneck unit which was first introduced in the ResNet architecture [11]. The
bottleneck pattern is formed by two 1 x 1 convolution layers with some 3 x 3
convolution layers in between. The first 1 x 1 convolution layer is used to reduce

the number of input feature maps while the latter is used to restore the number
of output feature maps. Several works such as [39, 40, 41] have incorporated the
bottleneck units into their network structure to reduce computation and memory
consumed. By utilizing a dense pattern of residual connections, DenseNet archi-
tecture [42] has been shown to outperform the original ResNet architectures with
fewer parameters. Recently, MobileNet architecture [43] was proposed which re-
placed normal convolution operation by depthwise separable convolution layers.
Constituted by depthwise convolution and pointwise convolution, the depthwise
separable convolution layer performs the filtering and combining steps indepen-
dently. The resulting structure is many times more efficient in terms of memory
and computation. It should be noted that bottleneck design or depthwise separable
convolution layer is a design on a macro level of the network structure in which
the arrangements of layers are investigated to reduce computation.

On a micro level, the works in [19] and [22] assumed a low rank structure of
convolutional kernels in order to derive a compact network structure. In fact, low
rank assumption has been incorporated into several designs prior to deep neural
networks, such as dictionary learning, wavelet transform of high dimensional data.
The first incorporation of low rank assumption in neural network compression was
proposed in [21, 29, 20]. In [29], CP decomposition was proposed to decompose
the entire 4D convolutional layer into four 1D convolutions. Although the effec-
tive depth of the network remains the same, replacing one convolution operation
by four can potentially lead to difficulty in training the network from scratch. With
a carefully designed initialization scheme, the work of [22] was able to train a mix-
ture of low-rank filters from scratch with competitive performances. Improving on
the idea of [29], a different low-rank structure that allows both approximating an
already trained network and training from scratch was proposed in [19]. Specifi-
cally, let us denote a convolution layer of N kernels by W € R4*4*C*N ‘ywhere
and d are the number of input feature maps and spatial size of the kernel, respec-
tively. [19] proposed to approximate V using a vertical kernel V € R 1XCxK
and a horizontal kernel H € R'*4*E*N The approximation is in the following
form:

K
We =~ > Vi(H), (1)

k=1
where the superscript and subscript denote the index of the channel and the kernel
respectively. K is a hyper-parameter controlling the rank of the matrix approxi-
mation. Here Wy is just the 2D kernel weight of the n-th filter applied to the c-th

channel of the input feature map; V¢ and HF are just d-dimensional vectors.

As can be seen from (1), the authors simplify a convolutional layer by two
types of parameter sharing. The first is the sharing of right singular vectors (H*)
across all C' input channels within the n-th filter while the second enforces the
sharing of left singular vectors (V}) across all N filters. The work in [19] is
closely related to ours since we avoid designing a particular initialization scheme
by including a Batch Normalization step [44]. The resulting structure was eas-
ily trained from scratch with different network configurations. However, different
from [19], our work does not enforce parameter sharing across filters within one
convolution layer to achieve compactness. Moreover, using the proposed multi-
linear projection, each individual filter in the same layer could possess different
complexity by having different rank hyper-parameter value. On the contrary, the
rank hyper-parameter is shared across filters within the same layer in [19]. It is
worth noting that the proposed mapping is complementary to recent developments
in architectural level such as ResNet or DenseNet to further reduce the number of
parameters required.

3. Proposed Method

We start this section by introducing some notations and definitions related to
our work. We denote scalar values by either low-case or upper-case characters
(x,y,X,Y ...), vectors by low-case bold-face characters (x,y, ...), matrices by
upper-case bold-face characters (A, B, ...) and tensors by calligraphic capital
characters (X,)),...). A tensor is a multilinear matrix with X modes, and is
defined as X € RI2xxIk \where I denotes the dimension in mode-k. The
entry in the 7;th index in mode-k for £ = 1,..., N is denoted as &}, ;, .-

3.1. Multilinear Algebra Concepts

Definition 1 (Mode-% Fiber and Mode-k Unfolding). The mode-Fk fiber of a ten-
sor X € RIv<I2x-xIx g g vector of Ij,-dimensional, given by fixing every index
but ij. The mode-k unfolding of X, also known as mode-k matricization, trans-
forms the tensor X to matrix X i), which is formed by arranging the mode-k fibers

as columns. The shape of Xy is R with I, = Hfil ian Lie

Definition 2 (Mode-i Product). The mode-k product between a tensor X = [x;,, . ..

RI%1x and a matrix W € R7%*Ix is another tensor of size I, x --- x Jj, X
- X I and denoted by X X, W. The element of X X, W is defined as

I
[X Xk W]il7--~aik711jkaik+17-~-7iK = Zif:l[X]ilwuyik—lyikwnilf [W]Jk,lk

6

7xiK] €

s /’/,’ (1) T
w
E ws(1)”
wo(1)T
%3, = < ||| = Dz)= &
’ Ixdx1 Ix1x1
dxdxC ¥ EgaEdl @
l’] @Zyi,j
) W3(2)T W1(2) ﬁ
wi(2)"
= X3 = X1 = D Xa) = &
Ixdx1 1x1x1
G, dxdx1

Figure 1: Illustration of the proposed multilinear mapping according to equation (6) with R = 2
in sequence: mode-3, mode-1 and mode-2. Here the bias term is omitted.

For convenience, we denote X x; W X -+ X Wi by X Hszl X Wi.
One of the nice properties of mode-£ product is that the result of the projection
does not depend on the order of projection, i.e.

(X Xy A) XkQB: (X X ko B) Xy A. (2)

The above property allows efficient computation of the projection by selecting
the order of computation.

3.2. Multilinear filter as generic feature extractor

Let X; ; € R4 and W € R¥*?*C denote the input patch centered at spatial
location (4, 7) and the convolution filter respectively. At the core of a classic CNN,
each convolution filter operates as a feature extractor sliding through the input
tensor to generate a higher level representation. Specifically, the filter performs
the following linear mapping:

Vij = F(XijiWib) = (X ;,W) +b, (3)

where); ; and b denotes the response at (¢, j) and the intercept term respectively.
(+,+) denotes the dot-product between two tensors. After the above linear projec-
tion, a nonlinearity is applied to); ; using the layer’s activation function.

We propose to replace the above linear projection by the following multilinear

mapping:
Vij = F(X 5 W;b) ZX,Jkawk b,)
r=1

where R is the rank hyper-parameter of the projection and wy(r) denotes the pro-
jection along mode-k. In our case, wi(r) € R% wy(r) € R, ws(r) € RY,Vr =
1,...,R.

It should be noted that Eq. (4) represents the mapping of an individual filter,
hence, different filters within one layer could have different ranks. Since the map-
ping in Eq. (4) operates on similar input patch and yields a scalar response as a
linear mapping does in CNNs, the proposed multilinear mapping acts as a generic
feature extractor and can be incorporated into any design of the CNN topology,
such as AlexNet [45], VGG [46], Inception [41] or ResNet [11]. In addition, since
the mapping in Eq. (4) is differentiable with respect to each individual weight
vector wy(r), the resulting network architecture can be trained in an end-to-end
fashion by back propagation algorithm. We hereby denote the layer employing
our proposed multilinear mapping as MLconv.

Recently, mode-£ multiplication has been introduced as a tensor contraction
layer in [47] to project the entire input layer as a high-order tensor to another
tensor. This is fundamentally different from our approach since the tensor con-
traction layer is a global mapping which does not incorporate sparse connectivity
and parameter sharing principles. In general, mode-k multiplication can be ap-
plied to an input patch/volume to output another tensor instead of a scalar as in
our proposal. We restrict the multilinear projection in the form of Eq. (4) to
avoid the increase in the output dimension which leads to computation overhead
in the next layer. Moreover, tensor unfolding operation required to perform the
multilinear projection that transforms a tensor to another tensor will potentially
increase the computation. On the contrary, our proposed mapping is a special
case of the general multilinear mapping using mode-% product in which the out-
put tensor degenerates to a scalar. This special case allows efficient computation
of the projection, as shown in the next section.

3.3. Memory and Computation Complexity

For simplicity, in the following section, we consider only the case when all
filters in one network having the hyper-parameter /2. One the most obvious ad-
vantages of the mapping in Eq. (4) is that it requires far fewer parameters to
estimate the model, compared to the linear mapping in a CNN. In a CNN utiliz-
ing the mapping in Eq. (3), a layer with NV kernels requires the storage of d>?C N
parameters. On the other hand, a similar layer configuration with N mappings
utilizing the projection in Eq. (4) requires only R(2d + C')N parameters. The
gain ratio is:

d*C
R(2d+C)’

As compared to a similar CNN topology, the memory reduction utilizing the
mapping in Eq. (4) varies for different layers. The case where C' >> d (which is
the usual case) leads to a gain ratio approximately equal to d*/R. In our experi-
ments, we have seen that with d = 3 and R = 2 in all layers, memory reduction
is approximately 4 x, while having competitive performance compared to a CNN
with similar network topology.

Let us denote by &; € R**Y*C and W, € R¥*4XEXN the input and N kernels
of the /-th convolutional layer having C' input feature maps and N output feature
maps. In addition, we assume zero-padding and sliding window with stride of 1.
By using linear projection as in case of CNN, the computational complexity of
this layer is O(d*>XY CN). Before evaluating the computational cost of a layer
using the proposed method, it should be noted that the projection in Eq. (4) can be
efficiently computed by applying three consecutive convolution operations. De-
tails of the convolution operations depend on the order of three modes. Therefore,
although the result of the mapping in Eq. (4) is independent of the order of mode-
k projection, the computational cost actually depends on the order of projections.
For C' >> d, it is computationally more efficient to first perform the projection
in mode-3 in order to reduce the number of input feature maps for subsequent
mode-1 and mode-2 projection:

o)

R
Vij =Y Xijxzws(r)" sy wi(r)" xaway(r)" +b. (6)
r=1

The response) ; in Eq. (6) is the summation of 12 independent projections
with each projection corresponding to the following three consecutive steps, as
illustrated in Figure 1:

e Projection of X; ; along the third mode which is the linear combination of
C input feature maps. The result is a tensor XS) of size d X d x 1.

e Projection of Xi(j) along the first mode which is the linear combination of d

rows. The result is a tensor XiS}) of size 1 x d x 1.

o)

e Projection of X

of d elements.

along the second mode which is the linear combination

With the aforementioned configuration of the [-th layer, the computational com-
plexity of the [-th MLconv layer utilizing our multilinear mapping is as follows:

e Mode-3 projection that corresponds to applying N R convolutions to the
input X; with kernels of size 1 x 1 x C elements, having computational
complexity of O(XY CNR). The output of the projection along the third
mode is a tensor of size X X Y x NR.

e Mode-1 projection is equivalent to applying convolution with one d x 1 x
N R separable convolution kernel, having complexity of O(dXY N R). This
results in a tensor of size X X Y x NR.

e Mode-2, similar to mode-1 projection, can be computed by applying con-
volution with one 1 X d X NR separable convolution kernel, requiring
O(dXY N R) computation. This results in a tensor of size X x Y x NR. By
summing over 12 ranks, we arrive at the output of layer [of size X XY X N.

The total complexity of layer [using our proposed mapping is thus O(XY N R(C'+
2d)). Compared to linear mapping, our method achieves computational gain of:

d*C

R(C +2d)’)

From Eqgs. (5) and (7), we can conclude that the proposed feature extrac-
tor achieves approximately d?/ R savings in both computation and memory when
C >>d.

3.4. Initialization with pre-trained CNN

The proposed mapping in Eq. (4) can be viewed as a constrained form of
convolution kernel as follows:

Vij = (X, W)+, (8)

10

where W is expressed in Kruskal form W = Zle w1 (1) o wa(r) o ws(r) as the
outer-product of the corresponding projection in three modes. By calculating) ;
using mode-£ product definition as in Eq. (4) and using dot-product as in Eq. (8),
the equivalance of Eq. (4) and Eq. (8) can be found [48].

Consequently, a convolution layer can be converted to an MLconv layer by
decomposing each 3D convolution filter into Kruskal form using any CP decom-
position method [48]. It should be noted here that, since there is no closed-form
solution of the CP decomposition, such a conversion corresponds to an approxi-
mation step. Under this perspective, a pre-trained CNN can be used to initialize
our network structure to speed up the training process. However, as we will show
in the experimental section, random initialization of multilinear filters can lead to
better performance.

In addition to an initialization scheme, Eq. (8) also complements our proposed
mapping with an efficient computation strategy when R is large. The computa-
tion cost discussed in the previous subsection depends linearly with parameter 1.
When R is large, it is more efficient to compute the mapping according to Eq.
(8) by first calculating W and then convolving the input with W. The computa-
tional complexity of the first step is O(d*>C RN) while for the convolution step is
O(d*XY C'N), resulting to an overall complexity of O(d?*C RN + d*XY CN) for
the entire layer. The ratio between normal convolution layer and MLconv layer
using this computation strategy is:

XY

R XV ©)

It is clear that XY is usually much larger than R, therefore, the increase in compu-
tation as compared to normal convolution is marginal. Following this calculation
strategy, a rank 6 network is marginally slower than a rank 1 network or a CNN.
This will be demonstrated in our experiment section. In conclusion, the compu-
tation method discussed in this subsection allows the scalability of our proposed
mapping when R is large while previous subsection proposes an efficient compu-
tation scheme that allows computation savings when R is small. Overall, we can
conclude that the computation of the proposed layer structure is efficient while,
as will be shown in the experimental evaluation, changing the rank of the adopted
tensor definitions can increase performance.

11

4. Experiments

In this section, we provide experimental results to support the theoretical anal-
ysis in section 3. The experimental protocol and datasets are described first, fol-
lowed by the discussion of the experimental results.

4.1. Datasets

4.1.1. CIFAR-10 and CIFAR-100

CIFAR dataset [49] is an object classification dataset which consists of 50k
color images for training and 10k for testing with the resolution 32 x 32 pixels.
CIFAR-10 refers to the 10-class classification problem of the dataset in which each
class has 5000 images for training and 1000 images for testing while CIFAR-100
refers to a more fine-grained classification of the images into 100 classes.

4.1.2. SVHN

SVHN [50] is a well-known dataset for hand-written digit recognition problem
which consists of more than 600k images of house numbers extracted from natural
scenes with varying number of samples from each class. This dataset poses a
much harder character recognition problem as compared to the MNIST dataset
[10]. We used 32 x 32 cropped images provided by the database from which each
individual image might contain some distracting digits on the sides.

4.2. Tiny-ImageNet

Tiny-ImageNet dataset! is an object classification dataset with images coming
from the ImageNet dataset [51]. The dataset contains real-world images belonging
to 200 classes with 100k images for training and 50k for validation. All of the
images are down-sampled to the same resolution, 64 x 64 pixels.

4.3. Network Topology

Traditional CNN topology consists of two modules: feature extractor module
and classifier module. Several convolution and pooling layers stacked on top of
each other act as feature extractor while one or two fully-connected layers act as
the classifier. In order to evaluate the effectiveness of the proposed multilinear
filter, we constructed the network architectures with only feature extractor layers,
i.e. convolution layer or MLconv layer together with pooling layer while skipping

Thttps://tiny-imagenet.herokuapp.com/

12

fully-connected layer. As the name suggests, fully-connected layer has dense con-
nections, accounting for large number of parameters in the network while being
prone to overfitting. Moreover, a powerful and effective feature extractor module
is expected to produce a highly discriminative latent space in which the classifica-
tion task is made simple. Such fully-convolutional networks have attracted much
attention lately due to their compactness and excellent performance in image-
related problems like semantic segmentation, object localization and classification
[31, 2, 52]

In our experiments, we have tested two different network topologies: a 9-layer
convolution topology similar to [53] on CIFAR and SVHN datasets and an 18-
layer convolution topology with residual connections that resembles ResNet18
[54] on Tiny-ImageNet dataset. Details of the network configurations can be
found in the Appendix A.

Based on the configuration of the network topologies, we compare the perfor-
mance between standard linear convolution kernel (CNN), our proposed multilin-
ear kernel (MLconv) and the low-rank (LR) structure proposed in [19].

4.4. Experimental settings

All networks were trained using both SGD optimizer [55] as well as Adam
[56]. While the proposed structure tends to arrive at better minimas with Adam,
this is not the case for the other two methods.

Regarding data augmentation, for CIFAR dataset, random horizontally flipped
samples were added as well as random translation of the images by maximum 5
pixels were performed during the training process; for SVHN dataset, only ran-
dom translation of maximum 5 pixels was performed; for Tiny-ImageNet, random
crops of sizes between 56 and 64 pixels were taken during training and 10 random
crops were taken during evaluation. For all datasets, no further preprocessing step
was applied. For regularization, both weight decay and max-norm [57] are in-
dividually and together exploited in our experiments. Max-norm regularizer was
introduced in [57] where it was used together with Dropout.

Table 1: CIFAR-10 Classification error (%)
CNN MLconv1 LR26 MLconv2 LR53 MLconv4 | LR106
Scratch 7.47 8.54 9.14 7.68 8.31 7.34 8.00
Pretrained — 8.17 8.64 7.76 7.49 7.38 7.10
Parameters | ~ 1.38M | ~ 0.20M | ~ 0.20M | = 0.35M | ~0.35M | ~ 0.65M | =~ 0.64M

13

Details of the optimizer settings, learning rate schedules and regularization
parameters are given in the Appendix B.

For MLconv and LR structures, we experimented with several values for the
rank parameter, namely R for the proposed mapping and K in Eq. (1) from [19].
In all of our experiments, we made no attempt to optimize R and K for each in-
dividual filter and layer in order to get the maximal compact structure, since such
an approach is impractical in real cases. We instead used the same rank value
throughout all layers. The experiments are, hence, different from [19] where
the authors reported performance for different values of K at each layer with-
out discussing the rank selection method. The experiments were conducted with
R =1,2,4 and the corresponding structures are denoted as MLconv1, MLconv2,
MLconv4. The values of K are selected so that the number of parameters in an
LR network is similar to the number of parameters of its MLconv counterpart
with given R. The corresponding LR structures are denoted as LR26, LR53 and
LR106 for 9-layer configuration and LR35, LR70, LR140 for 18-layer configura-
tion, where the number denotes the value of K.

All of three competing structures training from scratch were initialized with
random initialization scheme proposed in [54]. For CIFAR dataset, we addition-
ally trained MLconv and LR structure with weights initialized from an optimal
pre-trained CNN. The aforementioned protocols were also applied for this con-
figuration. The weights of MLconv were initialized with CP decomposition using
canonical alternating least square method [48], while for the LR structure we fol-
lowed the calculation proposed in [19].

4.5. Experimental results

After obtaining the optimal hyper-parameter values, each network was trained
for five times and the median value is reported.

4.5.1. CIFAR and SVHN on 9-layer configuration
The second row of Table 1 and 2 shows the classification errors of all com-
peting methods trained from scratch on CIFAR-10 and CIFAR-100, respectively,

Table 2: CIFAR-100 Classification error (%)
CNN MLconv1 LR26 | MLconv2 | LR53 | MLconv4 | LR106
Scratch 29.60 31.32 35.79 29.10 31.45 28.27 30.11
Pretrained — 31.88 33.98 29.86 30.00 28.45 28.40
Parameters | =~ 1.39M | ~ 0.21M | = 0.21M | =~ 0.37TM | = 0.37TM | ~ 0.67TM | =~ 0.67TM

14

. LR26 CNN
9.0 - MLconv
o LR
o LR26i MLc.onv-l
= ‘ Y LR
O g5 MLconvl
c
2 @ =53
X
5 * MLconvli
utJ 8.0 - . LR106
_5 MLconv2i
; &
()
% MLconv2 ' CNN
£ 7.57) ¢ LR53i MLconv4i .
© ‘ MLconv4
70 L T T T I_R:L06|I T T T
0.2 0.4 0.6 0.8 1.0 1.2 1.4

Number of parameters (10e6)

Figure 2: Model size versus Classification Error on CIFAR-10 for different structures. MLconv
and LR network initialized with CNN marked with 1" at last

while the third row shows the performance when initialized with a pre-trained
CNN. The last row reports the model size of each network. As can be seen from
both Tables 1 and 2, using the proposed multi-linear filters leads to a 2 x reduction
in memory, while outperforming the standard convolution filters in both coarse
and fine-grained classification in CIFAR datasets. More interestingly, in CIFAR-
100, a rank 4 multi-linear filter network attains an improvement over 1%. In
both CIFAR-10 and CIFAR-100, constraining R = 2 gains 4x memory reduction
while keeping the performance relatively closed to the baseline CNN with less
than 0.5% increment in classification error. Further limiting R to 1 maximizes the
parameter reduction to nearly 7x with the cost of 1.07% and 1.72% increase in
error rate for CIFAR-10 and CIFAR-100, respectively. A graphical illustration of
the compromise between number of network’s parameters and classification error
on CIFAR-10 and CIFAR-100 is illustrated in Figures 2 and 3, respectively. Fig-
ures 4 and 5 show the training and validation accuracies of the proposed MLconv

15

3%71 @Lr2s CNN
MLconv
o 357 LR
o .
i LR26i MLconv-i
o .
4 _
< 3 * Y LR-i
O
S 33
9
S 32 4 * MLconvli
LI @ rs3
S 314 MLconvl
E
€ 30- MLconv2i (@LR106 NN
0 LR53i
© 59 .MLconvZ
MLconv4i
LR106i
28 MLconv4
0.2 0.4 0.6 0.8 1.0 1.2 1.4

Number of parameters (10e6)

Figure 3: Model size versus Classification Error on CIFAR-100 for different structures. MLconv
and LR network initialized with CNN marked with 1" at last

and CNN networks on CIFAR datasets. As can be observed, the MLconv and
CNN networks lead to similar performance curves, for both training and valida-
tion sets, while all networks having similar speed of convergence. Moreover, It
can be seen in Figure 4 that CNN tends to overfit on the training data.

The classification error of each competing network trained from scratch on
SVHN dataset is shown in Table 3. Using our proposed MLconv layers, we
achieved 4 x reduction in model size while slightly outperforming CNN. At the
most compact configuration of MLconv structure, i.e. MLconvl, we only ob-
served a small increment of 0.12% in classification error as compared to CNN
baseline. While the gaps between all competing methods in SVHN dataset are
relatively small, MLconv consistently outperforms LR structures in all configura-
tions. This also shows that with an easier problem, we only need 200k parameters
to achieve similar accuracy with traditional CNN instead of 1.38 million parame-
ters.

16

CIFAR10 Accuracy

0 ———

N TSR AP DRSS

0.8 1

accuracy
o
(=]
|

—— CNN_train
MLconvl_train
%41 ——— MLconv2_train
—— MLconv4_train
——- CNN_validation
==+ MLconvl_validation
MLconv2_validation

— =+ MLconv4_validation

0.2 1

0 50 100 150 200 250 300
epochs

Figure 4: Training and validation curves on CIFAR10

Comparing the proposed multi-linear filter with the low rank structure LR, all
configurations of MLconv network significantly outperform their LR counterparts.
Specifically, in the most compact configuration, MLconv1 is better than LR26 by
0.6% and 4.47% on CIFAR-10 and CIFAR-100, respectively. The margin shrinks
as the complexity increases but the proposed structure consistently outperforms
LR when training the network from scratch. Similar comparison results can be
observed on SVHN dataset. As opposed to the experimental results reported in
[19], we observed inferior results of the LR structure compared to standard CNN
when training from scratch. The difference might be attributed to two main rea-
sons: we incorporated batch normalization into the baseline CNN which could
potentially improve the performance of the baseline CNN; our baseline configu-
ration has no fully-connected layer to solely benchmark the efficiency of different
filter structures as a feature extractor.

One interesting phenomenon was observed when we initialized MLconv and

17

CIFAR100 Accuracy

1.0 A

0.8 1

S P P
Ml Yo o) S e e

[~y st L5 s o finphafigiapdy il
{"’m; .t 4“‘"“""-';"" =

| LRI

0.6 - L

daccuracy

—— CNN_train
MLconvl_train
—— MLconv2_train
—— MLconv4_train
——- CNN_validation
==+ MLconvl_validation
MLconv2_validation
— =+ MLconv4_validation

0.4 1

0.2 1

0.0 1

0 50 100 150 200 250 300
epochs

Figure 5: Training and validation curves on CIFAR100

LR with a pre-trained CNN. For the LR structure, most configurations enjoy sub-
stantial improvement by initializing the network with weights decomposed from a
pre-trained CNN on CIFAR dataset. The contrary happens for our proposed ML-
conv structure, since most configurations observe a degradation in performance.
This can be explained by the fact that LR structure was designed to approximate
each individual 2D convolution filter at every input feature map and the resulting
structure comes with a closed-form solution for the approximation. With good
initialization from a CNN, the network easily arrived at a good minimum while
training a low-rank setting from scratch might have difficulty at achieving a good
local minimum. Although the proposed mapping can be viewed as a form of con-
volution filter, the mapping in Eq. (4) embeds a multi-linear structure, hence pos-
sessing certain degree of difference. Initializing the proposed mapping by apply-
ing CP decomposition, which has no closed-form solution, may lead the network
to a suboptimal state.

18

Table 3: SVHN Classification error

Error (%) | #Parameters
| CNN 1.80 ~ 1.38M
MLconvl 1.92 ~ 0.20M
LR26 1.96 ~ 0.20M
MLconv2 1.76 ~ 0.35M
LR53 1.85 ~ 0.35M
MLconv4 1.75 ~ 0.65M
LR106 1.78 ~ 0.64M

Table 4: Tiny-ImageNet classification errors

Error (%) | #Parameters
| CNN 47.83 | ~5.26M
MLconvl 43.44 ~ 0.755M
LR26 49.44 ~ 0.755M
MLconv2 41.92 ~ 1.34M
LR53 48.45 ~ 1.34M
MLconv4 40.76 ~ 2.50M
LR106 47.81 ~ 2.50M

4.5.2. Tiny-ImageNet on 18-layer topology

Table 4 shows the classification errors on Tiny-ImageNet dataset. The evalu-
ated topology has 18 convolution layers, many of which have far more filters than
the 9-layer topology used to classify CIFAR and SVHN dataset. As a result, even
with a rank 1 network, we achieved a lower classification error on the validation
set with a 4% margin compared to CNN and with the cost of only 14% of param-
eters of the CNN, i.e. 7x less. As the complexity of the filters in our MLconv
networks increases, we observe similar improvements in the classification errors,
particularly 41.92% and 40.76% for rank 2 and rank 4 configuration respectively.
Compared with LR networks, our MLconv networks establish a consistent margin
of about 7% lower in classification errors in all 3 configurations of complexity.

Figure 6 and Figure 7 visualize 64 filters in the first convolution layer of the
18-layer topology coming from CNN versus MLconv2 and LR70 configuration
respectively. Images of the filters from other configurations such as MLconvl,
MLconv4, LR35, LR140 are given in the Appendix C. While the filtering pat-
terns of the baseline CNN and LR network are very much similar, filters in our
MLconv networks have very distinctive patterns. Since the proposed mapping is a

19

BEERVREY S0 SENE™

MLconv2

Figure 6: Filters in the first convolution layer of 18-layer topology. Left side: CNN, Right side:
MLconv2

multilinear mapping, the MLconv filters model the linear dependencies along the
horizontal, vertical and the depth dimension, producing a variety of patterns on
the right side of Figure 6 such as the low-pass filters represented by a single blob
(top left and bottom left filter) or the high-pass filters in the horizontal axis (posi-
tion (8,8), (5,3), (8,4),...) or the high-pass filters in the vertical axis (position (7,8),
(5,8)) and high-pass filters in both directions with grid-like patterns. Although the
proposed mapping can be seen as a form of low-rank approximation of the CNN
filter as discussed in Section 3.4, Figure 6 shows that the proposed filters clearly
have distinctive filtering patterns as compared to CNN or LR. The rich filtering
patterns appeared in our MLconv networks might explain why MLconv networks
largely outperform other competing structures.

Experiments on Tiny-ImageNet with a large topology indicates the advantage
of the proposed mapping: while increasing the hierarchical representation of a
topology by increasing the number of layers and filters, MLconv networks scale
favourably in terms of capacity, i.e. the number of parameters. Even with 18
layers with more than a hundred of filters each, a rank 1 MLconv configuration
only requires 800k parameters.

20

WL RS- EET
EMALREE S W
BRSNS G
e EALTEN W
DERERCRRY &
L IS
TfaRERE K8
K™ Sl

Figure 7: Filters in the first convolution layer of 18-layer topology. Left side: CNN, Right side:
LR70

4.5.3. Computational complexity

Table 5 and 6 report the average forward propagation time of a single sample
measured on CPU for all three network structures on 9-layer topology and 18-
layer topology respectively. The second row reports the theoretical gain measured
by the number of multiply-accumulate operations while the third row reports the
actual computation time measured on the same machine with the same setup. Both
rows show the normalized numbers with respect to their convolution counterparts.
For the proposed MLconv structure, we report the computation cost of both cal-
culation strategies discussed in Section 3. We refer to the first calculation strategy
using the separable convolution as Schemel, while the latter one using Krushkal
form and normal convolution as Scheme2. Results from Scheme?2 are denoted
with the asterisk (*). All the networks are implemented using Keras library [58]

Table 5: Forward computation time on 9-layer topology (normalized with respect to CNN)

MLconvl | LR26 | MLconv2 | LR53 | MLconv4 | LR106 | MLconv1* | MLconv2* | MLconv4*
Theory 8.14x 6.48 % 4.11x 3.20x 1.60x 1.38% 0.997x 0.993x 0.987x
Implementation | 1.77x 1.79x 1.33x 1.54x 1.03x 1.23x 0.990x 0.980x 0.960x

21

Table 6: Forward computation time on 18-layer topology (normalized with respect to CNN)

MLconvl | LR35 | MLconv2 | LR70 | MLconv4 | LR140 | MLconv1* | MLconv2* | MLconv4*
Theory 6.18x 3.14x 3.58x 1.58x% 1.94 % 0.79x 0.998 x 0.995x 0.990x
Implementation | 2.07x 1.75% 1.44x 1.37x 0.97x 0.96 x 0.961x 0.925x 0.917x

with Tensorflow [59] backend.

Here we should note that the actual time taken of a network is not neccesarily
proportional to the number of multiply-accumulate operations since some of the
operations can be performed in a concurrent manner while others have to be in a
sequential manner. This can be observed from the statistic of the LR140 config-
uration in 18-layer topology. Although the number of multiply-accumulate of the
corresponding CNN network is almost 20% less than the LR 140 configuration, the
actual computation time of the two networks is similar. This could be explained
by the fact that the LR structure decomposes a standard convolution layer into
two smaller convolution layers that require fewer memory. Since each convolu-
tion layer in the LR structure requires fewer parameters, all parameters and the
input can potentially fit into CPU cache, allowing more efficient computation as
compared to the CNN, especially in case of a CNN with large layers.

Another point worth noting is that the number of multiply-accumulate opera-
tions still reflects the total amount of computation required by a structure, which
is proportional to the energy consumption of the structure, playing an important
role in mobiles or embedded systems. In this aspect, it is clear that the proposed
MLconv structures require fewer computations as compared to the LR structures,
being more energy-efficient for power-hungry devices.

While the actual speed-up of the MLconv and the LR method are on the same
order, our proposed MLconv networks have the potential to improve on the ac-
tual computation time since our current implementation relies on an unoptimized
depthwise convolution operator that performs a for loop over the input channels.
In fact, at the time of writing, implementation of depthwise convolution operation
is still missing in most libraries since there exists no dedicated CUDA kernel for
this operation.

Since the computation Scheme? relies on the standard convolution operation
similar to CNN, the only additional computation step is the calculation of the
Kruskal form as presented in Section 3.4. Thus, the actual computation time taken
by Scheme? is just slightly longer than the CNN counterparts for all ranks. This
shows the scalability of the proposed projection with high complexities, i.e. high

22

Table 7: 9-layer topology
Input layer

3% 3x96-BN-LReLU

3% 3 x 96 - BN - LReLU

3 x 3 x 96 - BN - LReLU
2 x 2 MaxPooling

3x3x192-BN-LReLU

3x3x192-BN-LReLU

3 x3x192-BN-LReLU
2 x 2 MaxPooling

3 x 3 x192-BN-LReLU

1 x1x192-BN-LReLU

1 x 1 x #class LReLU
Global Average over spatial dimension

softmax activation

ranks.

5. Conclusions

In this paper, we proposed a multilinear mapping to replace the conventional
convolution filter in Convolutional Neural Networks. The resulting structure’s
complexity can be flexibly controlled by adjusting the number of projections in
each mode through a hyper-parameter 2. The proposed mapping comes with
two computation schemes which either allow memory and computation reduction
when R is small, or the scalability when R is large. Numerical results showed that
with far fewer parameters, architectures employing our mapping could outperform
standard CNNs. This are promising results and opens future research directions
focusing on optimizing parameter /2 on individual convolution layers to achieve
the most compact structure and performance.

Appendix A. Network Topology

The configuration of the two topologies adopted in our experiment benchmark
is shown in Table 7 and Table 8 where 3 x 3 x N denotes /N kernels with 3 x 3
spatial dimension, BN denotes Batch Normalization [44] and LReLU, ReL.U de-
note Leaky Rectified Linear Unit [60] with o« = 0.2 and Rectified Linear Unit
respectively. While the 9-layer topology is similar to the one proposed in [53],
the 18-layer topology resembles ResNet-18 in [54]. There are, however, some

23

Table 8: 18-layer topology with residual connections
Input layer
5 x5 x 64 - BN - ReLU
3 X 3 x 64 - Residual block
3 x 3 x 64 - Residual block
2 x 2 MaxPooling
3 x 3 x 128 - Residual block
3 x 3 x 128 - Residual block
2 x 2 MaxPooling
3 X 3 x 256 - Residual block
3 X 3 x 256 - Residual block
2 x 2 MaxPooling
3 x 3 x 256 - Residual block
3 x 3 x 256 - Residual block
1 x 1 x 200 LReLU
Global Average over spatial dimension
softmax activation

key differences. Firstly, we choose to retain a proper pooling layer instead of per-
forming convolution with a stride of 2 in 9-layer topology as proposed in [53].
Secondly, Batch Normalization was applied after every convolution layer except
the last one where the output goes through softmax to produce the class probabil-
ity. In addition, LReLLU activation was used in 9-layer topology while in 18-layer
topology we used ReLLU activation unit. As the experiment results in Section 4.5
show that our proposed mapping acts as a generic feature extractor that works well
with both type of activations.

Appendix B. Training configuration

For SGD optimizer, the momentum was fixed to 0.9. In CIFAR and SVHN
dataset, we adopted two sets of learning rate schedule SC; = {0.01,0.005,0.001, 0.0005, 0.0001 }
and SCy; = {0.01,0.001,0.0001}. Each schedule has initial learning rate v €
0.01,0.001 and decreases to the next value after &/ epochs where £/ was cross-
validated from the set {40, 50, 60, 100, 120}. We trained each network with max-
imum of 300 and 100 epochs for CIFAR, SVHN. The batch size was fixed to
200 samples for all competing networks. In Tiny-ImageNet experiments, the
learning rate schedule of LR and CNN networks is 0.01,0.001,0.0001 which
changes at epoch 60, 120. For MLconv structure, the learning rate schedule is
0.001,0.0001, 0.00001 which changes at epoch 80 and 110. All networks were
trained for maximum 140 epochs on Tiny-ImageNet dataset.

24

Ny
EN N
HM
=

E

conv1i MLconv4

Figure A.8: Filters in the first convolution layer of 18-layer topology. Left side: MLconv1, Right
side: MLconv4

BEF0EERE el SUrl
« ARSORE . SESCERGVE
HEERENVE - VRN SES
SAENSISEE “NEESENSE
MEEMIERE & SN
SR - wR N L
RERGOYE DOEERSEE
- OEECE IaCrSIEN

LR35 LR140

Figure A.9: Filters in the first convolution layer of 18-layer topology. Left side: LR35, Right side:
LR140

25

During the training process, the /5 norm of each individual filter is constrained
to lie inside the ball of a given radius r which was cross-validated from the set
{0.8,1.0,2.0,4.0,6.0,8.0}. The weight decay hyper-parameter A was searched
from the set {0.001,0.0005,0.0001}. In addition, Dropout with p; = 0.2 was
applied to the input and Dropout with p = p, was applied to the output of
all pooling layers in 9-layer topology with the optimal p, obtained from the set
{0.1,0.2,0.3,0.4,0.5}. No dropout was applied to the residual topology similar
to [54].

Due to the differences between the three competing structures, we observed
that while the baseline CNN and LR networks work well with weight decay, ap-
plying weight decay to the proposed network structure tends to drive all the weight
values close to zeros when A is large, or the regularization effect is marginal when
using a small value for)\, leading to the exhaustive search of suitable hyper-
parameter A\. On the other hand, max-norm regularization works well with our
method without being too sensitive to the performance.

Appendix C. Filters Visualization

The filters in the first layer of MLconvl and MLconv4 networks are shown in
Figure A.8 and the corresponding filters of LR35 and LR140 networks are shown
in Figure A.9. Generally, the two approaches show different filter patterns but the
patterns generated by the same method are similar when changing the complexity,
i.e. the ranks.

References

[1] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for
accurate object detection and semantic segmentation, in: Proceedings of the
IEEE conference on computer vision and pattern recognition, 2014, pp. 580-
587.

[2] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Uni-
fied, real-time object detection, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 779-788.

[3] M. A. Waris, A. Iosifidis, M. Gabbouj, Cnn-based edge filtering for object
proposals, Neurocomputing.

26

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research
groups, IEEE Signal Processing Magazine 29 (6) (2012) 82-97.

A. Graves, A.-r. Mohamed, G. Hinton, Speech recognition with deep recur-
rent neural networks, in: Acoustics, speech and signal processing (icassp),
2013 ieee international conference on, IEEE, 2013, pp. 6645-6649.

M. Zabihi, A. B. Rad, S. Kiranyaz, M. Gabbouj, A. K. Katsaggelos, Heart
sound anomaly and quality detection using ensemble of neural networks

without segmentation, in: Computing in Cardiology Conference (CinC),
2016, IEEE, 2016, pp. 613-616.

X. An, D. Kuang, X. Guo, Y. Zhao, L. He, A deep learning method for clas-
sification of eeg data based on motor imagery, in: International Conference
on Intelligent Computing, Springer, 2014, pp. 203-210.

A. Tsantekidis, N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, A. Iosi-
fidis, Using deep learning to detect price change indications in financial mar-
kets, in: European Signal Processing Conference (EUSIPCO), Kos, Greece,
2017.

A. Tsantekidis, N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, A. Iosi-
fidis, Forecasting stock prices from the limit order book using convolutional
neural networks, in: Business Informatics (CBI), 2017 IEEE 19th Confer-
ence on, Vol. 1, IEEE, 2017, pp. 7-12.

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied
to document recognition, Proceedings of the IEEE 86 (11) (1998) 2278—
2324.

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recogni-
tion, in: Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770-778.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1-9.

27

[13] S. Han, H. Mao, W. J. Dally, Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and huffman coding, arXiv
preprint arXiv:1510.00149.

[14] Y. Guo, A. Yao, Y. Chen, Dynamic network surgery for efficient dnns, in:
Advances In Neural Information Processing Systems, 2016, pp. 1379-1387.

[15] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, Y. Chen, Compressing
convolutional neural networks, arXiv preprint arXiv:1506.04449.

[16] W. Wen, C. Wu, Y. Wang, Y. Chen, H. Li, Learning structured sparsity in
deep neural networks, in: Advances in Neural Information Processing Sys-
tems, 2016, pp. 2074-2082.

[17] Y. Gong, L. Liu, M. Yang, L. Bourdev, Compressing deep convolutional
networks using vector quantization, arXiv preprint arXiv:1412.6115.

[18] D. Lin, S. Talathi, S. Annapureddy, Fixed point quantization of deep convo-
lutional networks, in: International Conference on Machine Learning, 2016,
pp- 2849-2858.

[19] C. Tai, T. Xiao, Y. Zhang, X. Wang, E. Weinan, Convolutional neural net-
works with low-rank regularization, arXiv preprint arXiv:1511.06067.

[20] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, R. Fergus, Exploiting lin-
ear structure within convolutional networks for efficient evaluation, in: Ad-
vances in Neural Information Processing Systems, 2014, pp. 1269-1277.

[21] M. Jaderberg, A. Vedaldi, A. Zisserman, Speeding up convolutional neural
networks with low rank expansions, arXiv preprint arXiv:1405.3866.

[22] Y. Ioannou, D. Robertson, J. Shotton, R. Cipolla, A. Criminisi, Training
cnns with low-rank filters for efficient image classification, arXiv preprint
arXiv:1511.06744.

[23] 1. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, Quantized
neural networks: Training neural networks with low precision weights and
activations, arXiv preprint arXiv:1609.07061.

[24] P. Gysel, M. Motamedi, S. Ghiasi, Hardware-oriented approximation of con-
volutional neural networks, arXiv preprint arXiv:1604.03168.

28

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

S.-C. Zhou, Y.-Z. Wang, H. Wen, Q.-Y. He, Y.-H. Zou, Balanced quanti-
zation: An effective and efficient approach to quantized neural networks,
Journal of Computer Science and Technology 32 (4) (2017) 667—682.

M. Denil, B. Shakibi, L. Dinh, N. de Freitas, et al., Predicting parameters
in deep learning, in: Advances in Neural Information Processing Systems,
2013, pp. 2148-2156.

A. Novikov, D. Podoprikhin, A. Osokin, D. P. Vetrov, Tensorizing neural
networks, in: Advances in Neural Information Processing Systems, 2015,
pp. 442-450.

S. Lin, R. Ji, X. Guo, X. Li, et al., Towards convolutional neural networks
compression via global error reconstruction., in: IJCAI, 2016, pp. 1753—
1759.

V. Lebedev, Y. Ganin, M. Rakhuba, 1. Oseledets, V. Lempitsky, Speeding-
up convolutional neural networks using fine-tuned cp-decomposition, arXiv
preprint arXiv:1412.6553.

Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, D. Shin, Compression of deep
convolutional neural networks for fast and low power mobile applications,
arXiv preprint arXiv:1511.06530.

M. Lin, Q. Chen, S. Yan, Network in network, arXiv preprint
arXiv:1312.4400.

Q. Li, D. Schonfeld, Multilinear discriminant analysis for higher-order ten-
sor data classification, IEEE transactions on pattern analysis and machine
intelligence 36 (12) (2014) 2524-2537.

S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, H.-J. Zhang, Discriminant analy-
sis with tensor representation, in: Computer Vision and Pattern Recognition,
2005. CVPR 2005. IEEE Computer Society Conference on, Vol. 1, IEEE,
2005, pp. 526-532.

H. Zhou, L. Li, H. Zhu, Tensor regression with applications in neuroimag-
ing data analysis, Journal of the American Statistical Association 108 (502)
(2013) 540-552.

29

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

D. T. Thanh, J. Kanniainen, M. Gabbouj, A. Iosifidis, Tensor representation
in high-frequency financial data for price change prediction, arXiv preprint
arXiv:1709.01268.

D. Tao, X. Li, X. Wu, S. J. Maybank, General tensor discriminant analysis
and gabor features for gait recognition, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 29 (10).

H. Lu, K. N. Plataniotis, A. N. Venetsanopoulos, Mpca: Multilinear prin-
cipal component analysis of tensor objects, IEEE Transactions on Neural
Networks 19 (1) (2008) 18-39.

W. Guo, I. Kotsia, I. Patras, Tensor learning for regression, IEEE Transac-
tions on Image Processing 21 (2) (2012) 816-827.

X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices, arXiv preprint
arXiv:1707.01083.

M. Wang, B. Liu, H. Foroosh, Design of efficient convolutional layers us-
ing single intra-channel convolution, topological subdivisioning and spatial
bottleneck structure.

C. Szegedy, S. loffe, V. Vanhoucke, A. A. Alemi, Inception-v4, inception-
resnet and the impact of residual connections on learning., in: AAAI, 2017,
pp. 4278-4284.

G. Huang, Z. Liu, K. Q. Weinberger, L. van der Maaten, Densely connected
convolutional networks, in: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, Vol. 1, 2017, p. 3.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, H. Adam, Mobilenets: Efficient convolutional neural net-
works for mobile vision applications, arXiv preprint arXiv:1704.04861.

S. loffe, C. Szegedy, Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift, in: International Conference on Ma-
chine Learning, 2015, pp. 448—456.

A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep
convolutional neural networks, in: Advances in neural information process-
ing systems, 2012, pp. 1097-1105.

30

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

K. Simonyan, A. Zisserman, Very deep convolutional networks for large-
scale image recognition, arXiv preprint arXiv:1409.1556.

J. Kossaifi, A. Khanna, Z. C. Lipton, T. Furlanello, A. Anandkumar,
Tensor contraction layers for parsimonious deep nets, arXiv preprint
arXiv:1706.00439.

T. G. Kolda, B. W. Bader, Tensor decompositions and applications, STAM
review 51 (3) (2009) 455-500.

A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny
images.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, Reading digits
in natural images with unsupervised feature learning, in: NIPS workshop on
deep learning and unsupervised feature learning, Vol. 2011, 2011, p. 5.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-
scale hierarchical image database, in: Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on, IEEE, 2009, pp. 248-255.

O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for
biomedical image segmentation, in: International Conference on Medical
Image Computing and Computer-Assisted Intervention, Springer, 2015, pp.
234-241.

J. T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for sim-
plicity: The all convolutional net, arXiv preprint arXiv:1412.6806.

K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, in: Proceedings of the
IEEE international conference on computer vision, 2015, pp. 1026-1034.

D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al., Learning representa-
tions by back-propagating errors, Cognitive modeling 5 (3) (1988) 1.

D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting., Journal
of machine learning research 15 (1) (2014) 1929-1958.

31

[58] F. Chollet, keras, https://github.com/fchollet/keras (2015).

[59] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-

[60]

rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-
sudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous sys-
tems, software available from tensorflow.org (2015).

URL https://www.tensorflow.org/

A. L. Maas, A. Y. Hannun, A. Y. Ng, Rectifier nonlinearities improve neural
network acoustic models, in: Proc. ICML, Vol. 30, 2013.

32

