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Abstract

Spiking neural networks are being regarded as one of the promising alterna-

tive techniques to overcome the high energy costs of artificial neural networks.

It is supported by many researches showing that a deep convolutional neural

network can be converted into a spiking neural network with near zero accu-

racy loss. However, the advantage on energy consumption of spiking neural

networks comes at a cost of long classification latency due to the use of Poisson-

distributed spike trains (rate coding), especially in deep networks. In this paper,

we propose to use weighted spikes, which can greatly reduce the latency by as-

signing a different weight to a spike depending on which time phase it belongs.

Experimental results on MNIST, SVHN, CIFAR-10, and CIFAR-100 show that

the proposed spiking neural networks with weighted spikes achieve significant

reduction in classification latency and number of spikes, which leads to faster

and more energy-efficient spiking neural networks than the conventional spiking

neural networks with rate coding. We also show that one of the state-of-the-

art networks the deep residual network can be converted into spiking neural

network without accuracy loss.

Keywords: Spiking neural network, weighted spike, supervised learning

∗Corresponding author.
Email address: kchoi@snu.ac.kr (Kiyoung Choi)

Preprint submitted to Neurocomputing May 30, 2018



ACCEPTED MANUSCRIPT

1. Introduction

Nowadays deep neural networks (DNN s) are continuously expanding their

influences on application areas such as image classification [1], speech recogni-

tion [2], natural language processing [3] and many others. However, its heavy

computational load and high energy consumption still block the broader use5

of DNNs in practical applications that require large-scale data processing in

real-time [4]. As an alternative, spiking neural networks (SNN s) have been

studied by many researchers for the purpose of building neuromorphic hard-

ware [5, 6, 7, 8, 9] with low energy consumption. A spiking neural network

consists of spiking neurons, each of which fires an output spike only when its10

membrane potential is charged above a certain threshold [10]. The generated

spike is propagated into the neurons in the next layer and increases/decreases

their membrane potentials. In this manner, the communication between neu-

rons is performed by spikes. In SNNs, the processing of each input spike in a

neuron accompanies only a single simple addition operation onto the membrane15

potential, while conventional artificial neural networks (ANNs) require multi-bit

input signals and a multiplication operation in addition to accumulation, which

consumes much larger energy.

There are various approaches to train a spiking neural network. Among

those, one popular way is to train an ANN with the same topology and then20

convert the synaptic weights to those of the SNN. The resulting SNN achieves

high classification accuracy comparable to the ANN even for a deep topology.

Most of the ANN-to-SNN conversion approaches use Poisson-distributed rate

coding [11], where spike firing rate or the number of spikes generated within a

certain time interval approximates the signal intensity. Rate coding inevitably25

requires a long time to represent high precision information, which means it has

a low information capacity. Because of this, the classification latency increases

much longer if the depth of SNN increases since spikes can be propagated into

next neurons only after the membrane potentials of the current neurons are

charged over the given threshold. Moreover, the information represented by the30
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spike firing rate becomes more error-prone in deeper layers of the network [12],

and thus larger number of spikes is required to reduce the approximation errors

in deep neural networks. Since the number of additions is proportional to the

number of spikes arriving at neurons in SNNs, larger number of spikes incurs

more dynamic energy consumption and significantly diminishes the merit of low35

energy consumption in deep SNNs.

In this paper, we propose a deep spiking neural network with weighted spikes

(SNN-WS ) 1 to perform the image classification with shorter classification la-

tency and less number of spikes compared to the SNN with conventional Poisson-

distributed rate coding (SNN-RC ). It assumes that a neuron can fire at most40

one spike within a time step. It assigns different weights to spikes depending

on their phases (relative position of their time steps within a period) in order

to transfer more information to the deeper layers in a short time. This scheme

is partly inspired by the phase coding [13, 14] in neural coding field of neuro-

science. Exploiting the characteristics of the weighted spikes, we also propose45

an early decision algorithm to take the trade-off between classification accuracy

and energy. We validate the proposed idea through experiments performed on

various datasets such as MNIST, SVHN [15], CIFAR-10, and CIFAR-100 [16]

with various network topologies.

The contributions of this paper are enumerated below.50

• Proposing a novel spiking neural network model with weighted spikes in-

spired by phase coding, which has shorter classification latency and lower

energy consumption than conventional SNN-RC.

• Providing a mathematical formulation showing that SNN-WS approxi-

mates the ReLU activations of ANN.55

• Devising an update skipping scheme that reduces the effect of noise spikes

and increases the convergence speed.

1Note that the weight in this context does not mean synaptic weight.
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• Combining an early decision scheme for further energy saving by allowing

a small accuracy loss.

• Extensive experimental results on MNIST, SVHN, CIFAR-10, and CIFAR-60

100 datasets.

The rest of the paper is organized as follows. Section 2 enumerates the previ-

ous researches related to this work. Section 3 explains the basics of conventional

spiking neural network with rate coding. Section 4 describes the details of the

proposed weighted spike scheme, and Section 5 introduces further optimization65

techniques. Section 6 and 7 shows the experimental conditions and results, and

Section 8 gives concluding remarks.

2. Related work

2.1. Training SNNs

Many approaches have been proposed for more efficient and accurate training70

of SNNs. However, it is not trivial and often suffers from a significantly low

accuracy. One approach is an unsupervised learning by implementing spike

timing-dependent plasticity (STDP) [17, 18], which is inspired by the learning

behavior of biological neural networks in brains. However, the existing methods

based on the STDP learning suffer from low classification accuracy and training75

difficulty on deep networks [19, 20, 21, 22, 23].

Another approach is a supervised learning by exploiting backpropagation

algorithm [24], which is a very popular method used to train conventional ANNs.

Many previous researches have applied the backpropagation algorithm in order

to train SNNs, and most of them have achieved significantly better classification80

accuracy and training stability even in deep networks. The SNN researches using

the backpropagation algorithm can be categorized into two groups.

One is to train synaptic weights of SNNs directly by using the spikes which

are propagated in the networks. SpikeProp [25] is one of the first supervised

learning algorithm for SNNs. It extends the traditional backpropagation algo-85

rithm to transfer the information in the timing of spikes. It shows that the
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learning algorithm can be used to solve real-world classification problems, and

its learning efficiency has been improved by following researches [26, 27, 28, 29].

However, they can control the timing of single-spike output only and limit the

information capacity they can handle. To overcome the problem, a multi-spike90

learning method called remote supervised learning method (ReSuMe) is pro-

posed [30]. It trains SNNs to produce desired output spike train by exploiting

STDP and anti-STDP processes based on the Widrow-Hoff rule [31, 32]. DL-

ReSuMe [33], which combines delay shifting on the ReSuMe, is proposed to

enhance the learning performance further. The work in [34, 35] exploits percep-95

tron neurons to improve training speed significantly, and the recent work in [36]

proposes relative ordering learning (ROL) to remove the strict timing constraint

of the previous work for more robust learning. These learning methods of direct

spike handling are shown to be successful for SNNs. However, only easy prob-

lems are solved by the methods and the networks used in the experiments are100

small and shallow compared to the networks used in conventional ANNs. There

has been no attempt yet to show the feasibility of those methods for problems

more complex than MNIST [37].

The other is to convert the synaptic weights of an ANN with the same

topology to those of the SNN. The ANN-to-SNN conversion achieves accuracy105

nearly the same as that of the ANN even for deep networks and more complex

datasets, because it uses synaptic weights well optimized by the backpropagation

algorithm for ANNs. Early researches on the ANN-to-SNN conversion [38, 39]

use more biologically realistic neurons with leakage and refractory periods, but

suffer from significant accuracy loss. The work in [40] exploits ReLU activation110

function [41] to achieve more accurate results. The work in [42] achieves nearly

lossless accuracy compared to ANNs on MNIST dataset. They propose an

ANN-to-SNN conversion method by fixing the threshold of neurons to 1.0 and

normalizing synaptic weights such that the maximum possible positive input to

a neuron can only generate one spike to avoid the approximation error caused115

by activation values larger than 1.0. There is a similar weight normalization

technique [12] tested on more complex CIFAR-10 [16] dataset. It analyzes the
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distribution of ReLU activation values and selects the 99.9th percentile value

instead of the maximum activation as a normalization factor, which leads to

faster classification.120

2.2. Spike coding schemes

Rate coding [43, 11] is the most frequently used coding technique for spikes

in SNNs. Thus we use it as the control group in our experiments. In rate coding,

the number of spikes occurred within a period of time is counted, and the spike

firing rate is used as the signal intensity. As a result, rate coding has much125

redundancy and also tolerance to a certain amount of noise. For this reason,

along with the fact that it fits well with the nature of SNNs, it is often used in

many of SNN researches [38, 39, 42, 12]. However, it often suffers from a long

classification latency.

While the rate coding drops out most of the timing information of the spikes,130

various approaches of temporal coding have been proposed to use timing infor-

mation to mitigate the slowdown. For instance, time-to-first-spike [44] is a well-

known temporal coding. In this technique, only the first spike within a certain

time range has a meaning, and the arrival time of the first spike is used as the in-

formation. Time-to-first-spike coding is often used in many approaches [25, 45],135

because it is simple to understand, yet it can save useful information that is

lost in rate coding. There are many other coding schemes, such as rank-order

coding [46] and resonant burst model [47]. Among them, it would be worth

mentioning phase coding [13, 14]. In phase coding, a background periodic oscil-

lation function is defined as a reference. The value of a spike is determined by140

the phase of the reference function at the arrival time of the spike. Our work

is conceptually close to phase coding because the spike weights are determined

by the current phase.
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Figure 1: Example of a spiking neural network. Each pixel of an image is encoded into a spike

train, and the resulting spike trains are fed into the spiking neural network. The network

consists of spiking neurons, each of which integrates postsynaptic potentials and fires a new

spike if its membrane potential exceeds a certain threshold.

3. Background

3.1. Spiking neural network145

Spiking neural network is a class of artificial neural networks that emulates

the behavior of a brain with spiking neurons. In a brain, neurons communicate

with spike signals. An incoming spike is mediated by a synapse, and the synapse

produces a postsynaptic potential (PSP) which is affected by the weight of the

synapse. The post-synaptic potential then changes the membrane potential, the150

internal state of a neuron. The membrane potential can be represented as the

sum of the PSPs generated from all synapses that receive input spikes. If the

membrane potential goes above a certain threshold, the neuron fires a new spike

and it is propagated into other neurons.
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Figure 1 demonstrates a process of image classification by a spiking neural155

network. First, spike trains are generated according to an input image. Each

pixel in an image is encoded as a spike train based on its intensity, and the

resulting spike trains are applied as an input of the SNN. When spikes are

propagated through synapses, PSPs are induced with different intensity based

on synaptic weights. A spiking neuron integrates all incoming PSPs into its160

membrane potential, and fires a new spike if the membrane potential exceeds

a certain threshold. With this mechanism, input spike trains lead to new spike

trains at intermediate layers of the SNN, and a classification decision can be

made by comparing the firing rate or timing of the output spikes.

The main advantage of SNNs compared to conventional ANNs is high energy165

efficiency. While a neuron of an ANN requires high precision multiplications of

input values and synaptic weights, that of an SNN requires only additions or

integrations of synaptic weights into its membrane potential only at the presence

of spikes. Due to the operational simplicity, it can be implemented with low

energy consumption. The energy consumption required to handle a spike is170

just a few pJ in current SNN implementations [5, 6, 7, 8, 9], and TrueNorth

chip [7], a popular SNN implementation, consumes only 72mW for 1 million

neurons. Moreover, the in-situ placement of synapses near neurons in SNNs

avoids huge energy consumption required for external memory access in ANN

implementations.175

3.2. Spiking neuron model

To model the behavior of a spiking neuron, we use a simple integrate-and-fire

model that is similar to the previous works [42, 12]. In the model, we define An

occurrence of an output spike by the i-th neuron in layer l at time t as

sli(t) =





1, if there is a spike at time t

0, otherwise.

(1)

An input current, the sum of postsynaptic potentials, which flows into the180
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i-th neuron in layer l is represented as

zli(t) =
M l−1∑

j=1

W l
ijs

l−1
j (t) + bli, (2)

where sl−1
j (t) is the output spike of j-th neuron in layer l− 1 and bli is the bias

for the i-th neuron in layer l. Although it is not clear that there exists a bias

in a biological neuron, the bias term is added to accurately convert a trained

ANN to an SNN.185

The membrane potential of a neuron, which gradually increases as it takes

input currents induced by PSPs and decreases after generating outgoing spikes

when it goes over a certain threshold τ , can be represented as

V l
i (t) = V l

i (t− 1) + zli(t)− τsli(t). (3)

This is called a reset by subtraction model in which a membrane potential de-

creases by the amount of the threshold level τ when it fires an output spike. We190

do not model membrane potential leakage that makes the membrane potential

decrease over time, and the refractory period that makes the membrane poten-

tial settle into a base level after firing a spike. It is because an adoption of these

factors could rather deteriorate classification accuracy and incur computational

overhead.195

3.3. Rate coding

A rate coding is one of the most popular encoding schemes used in conven-

tional SNNs to represent a signal with a spike train. In the rate coding scheme,

a spike firing frequency of a neuron represents a signal intensity. The spike firing

rate ri of i-th neuron can be formulated as200

ri =
Ns

T
=

∑T
t=1 si(t)

T
, (4)

when Ns spikes are fired during T time steps. There can be a spike or no spike

in each time step. The firing rate is 1.0 if a neuron fires every time step, and the
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firing rate is 0.0 if it fires nothing for all time steps. In an image classification

task, for example, if a pixel intensity of an image is in the range of [0.0, 1.0], it

can be represented by a spike train with the firing rate of [0.0, 1.0] as an input205

to the SNN.

The Poisson-distributed spike train [11] transmitted to i-th input neuron

which corresponds to a pixel intensity P can be generated by comparing a

random number and P independently for each time step as

s0i (t) =





1, if Random(0.0, 1.0) < P

0, otherwise.

(5)

The rate coding suffers from low information capacity. It requires many time210

steps to recognize a signal intensity correctly since the number of fired spikes has

to be counted over the whole period. To recognize a signal of K-bit precision, it

requires at least 2K time steps. This intrinsic property of rate coding increases

a classification latency and the number of spikes generated in a network. The

increased number of spikes incurs higher dynamic energy consumption due to215

more frequent changes of membrane potentials, and the increased running time

increases leakage energy consumption, which offsets the energy efficient nature

of SNN.

4. SNN with weighted spikes

4.1. Weighted spikes220

The main idea of the weighted spikes is assigning different weights to different

phases (or to spikes in those phases) in order to pack more information into the

spikes. This is the major difference from a conventional rate coding scheme

that assigns the same weight to every spike. Figure 2 shows an example of

weighted spike trains corresponding to the input values. A spike train consists225

of a sequence of periods, each of which has K phases of different weights. In

our approach, we assign weights of 2−1, 2−2, . . . , 2−K respectively to the 1st,

2nd, . . . , K-th phases, so that a period consists of phases divided by time, each

10
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Figure 2: Example of input spike trains when the number of phases in a period (K) is 8. A

rectangle indicates a spike, and each spike has the spike weight ω(t) depending on the phase of

global reference clock. The same input spike trains are repeated until the end of classification.

of which corresponds to a different spike weight. Thus, spike weight ω(t) at

current time t ∈ N+ (t is the total number of time steps elapsed from the 1st230

phase of the 1st period) is given by

ω(t) = 2−(1+mod(t−1,K)). (6)

We normalize the values of all input signals and activations (ReLU outputs)

to fit into the range [0, 1−2−K ] by using the data-based normalization technique

introduced in [42]. Then the weighted spike train within a period corresponds

to a binary representation of the value with K fractional bits. We assume the235

use of a conventional frame-based sensor which produces multi-bit outputs. The

multi-bit outputs of the sensor are fed to our SNN in a bit-by-bit manner from

MSB to LSB. For example, consider an SNN for image classification task, where

an input image sensor produces values corresponding to the intensities of 10

x 10 pixels. The most significant bits of all the 100 pixel outputs are fed to240

the SNN in time step 1 and then the second most significant bits are fed to

the SNN in time step 2. This is continued to the end of the period at time

step K. Then the same sequence is repeated for the following periods until the

11
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image is recognized. In the same way, a set of K-bit data is transferred between

layers. This leads to significantly faster communication compared to SNN-RC245

since SNN-WS needs only K-slots to represent a K-bit data whereas SNN-RC

would require 2K-slots to represent the same data.

Due to the weighted spikes, SNN-WS can transmit more information with

spikes than SNN-RC for the same time duration. It results in shortened classi-

fication latency and reduced number of spikes generated, which leads to higher250

throughput and energy-efficiency.

4.2. Spiking neuron model for weighted spikes

The adoption of weighted spikes requires modifications of equations for the

conventional spiking neuron model described in Section 3. The modified spiking

neuron model for weighted spikes is described in this section.255

In ANN, the ReLU activation of the i-th neuron in layer l is given by

ali = max


0,

M l−1∑

j=1

W l
ija

l−1
j + bli


 , (7)

where M l−1 is the number of neurons in layer l− 1, W l
ij is the synaptic weight

between layers l − 1 and l, and bli is the bias for the i-th neuron in layer l.

Similarly, in SNN-WS, the input current zli(t), which will be integrated into

the membrane potential of the i-th neuron in layer l at time t—zli(t) corresponds260

to a bit of ali in ANN—is represented as

zli(t) = ω(t)




M l−1∑

j=1

W l
ijτs

l−1
j (t) + βl

i


 , (8)

where τ is the threshold of spiking neurons, sl−1
j (t) is the output spike of j-th

neuron in layer l−1, and βl
i is the normalized value of bias bli in ANN and given

by βl
i = bli/

(
1− 2−K

)
, which leads to

∑nK
t=1+(n−1)K ω(t)βl

i = bli for n ∈ N+.

Equation (1) representing an occurrence of a spike still holds for SNN-WS.265

It can also be calculated by using the relation between an output spike and a

12
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membrane potential as

sli(t) = U
(
V l
i (t− 1) + zli(t)− ω(t)τ

)
, (9)

where U(x) is a unit step function. V l
i (t) is the membrane potential of the i-th

neuron in layer l, given by

V l
i (t) = V l

i (t− 1) + zli(t)− ω(t)τsli(t). (10)

In summary, as shown in (8), zli(t) is obtained by first taking the sum of input270

spikes multiplied by the corresponding synaptic weights, adding the adjusted

bias, and then scaling by ω(t). As shown in (9) and (10), the membrane potential

is updated by integrating zli(t) (adding spikes to the membrane potential every

time step). As shown in (9), the neuron fires an output spike with spike weight

ω(t) if the updated membrane potential is greater than or equal to the threshold275

scaled by ω(t). Finally, in (10), the membrane potential is subtracted by the

threshold scaled by ω(t) if an output spike is generated (i.e., sli = 1). In this

work, we fix τ to 1 for all neurons and thus it is omitted in the rest of this paper

for simplicity.

4.3. Noise spike280

The bit-by-bit computation of weighted spikes in a spiking neuron can cause

noise spikes2 since a spiking neuron does not consider a priori information of the

future input bits. Figure 3 shows a simple case of generating a noise spike when

K is 8. In the figure, neuron N1
1 generates a spike train 10000000 (128/256)

and N1
2 generates 01111111 (127/256) in the same period of 8 time steps. In the285

first time step, neuron N2
1 receives a spike from N1

1 and increases its membrane

potential by 128/256 because the spike weight of the first phase is 2−1 and

the synaptic weight is 1. Then, N2
1 fires an output spike because its membrane

potential 128/256 is sufficient to fire a 2−1 weighted spike. In the remaining time

2The problem also exists in SNN-RC, but it’s more significant in SNN-WS due to the

higher information density.
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Figure 3: Example of a noise spike output. The neuron N2
1 generates the noise spike train

(10000000) instead of the correct one (00000001). The negatively charged membrane potential

V 2
1 (t) prevents further generations of noise spike trains in next periods.

steps in the period, however, only N1
2 outputs spikes, charging the membrane290

potential of N2
1 in the negative direction and no longer producing any output

spike. As a result, N2
1 produces a spike train 10000000 and have membrane

potential of -127/256, which is far from the correct output spike train 00000001

and the membrane potential 1/256.

Under this mechanism, unpredictable fluctuation of the output spike trains295

(noise spikes) generated during the first period makes it difficult to perform

classification based on them. However, the negatively charged membrane po-

tential V 2
1 (t) in the example above prevents additional noise spike generations

in the following periods, which gradually compensates the error caused by the

noise spike produced in the first time step. Therefore, the average of output300

spike trains over multiple periods can accurately approximate the desired value

(we consider the ReLU activation of the corresponding neuron in ANN as the

desired value). To compute the average of output spike trains, repetition of pe-

riods is required with the same input spikes until a certain level of classification

accuracy can be reached. Nevertheless, the weighted spikes achieve the accu-305
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racy level much faster than the conventional rate coding since they deliver more

information during the same time interval. Note that the weighted spike scheme

requires only O(logN) time steps to send one of N different values while the rate

coding requires O(N) time steps. This makes the SNN-WS achieve lossless ac-

curacy with short classification latency and reduced number of spikes compared310

to the SNN-RC. In addition, we suggest to skip updating the output membrane

potential for a few periods, so that the effect of noise spikes can be minimized

and thus improve the classification accuracy and latency (see Section 5.1).

4.4. Approximation of the ReLU activation

In SNN-RC, average firing rate of a neuron approximates ReLU activation of315

the corresponding neuron in ANN [12]. In SNN-WS, the value of an output spike

train averaged over periods approximates the corresponding ReLU activation

more precisely. In this section, we describe how the averaged output spike train

in SNN-WS correctly approximates the corresponding ReLU activation.

The signal value from the i-th input neuron (i.e., the i-th sensor output320

value) for the n-th period is given by

a0i =
nK∑

t=1+(n−1)K

ω(t)s0i (t), (11)

for n ∈ N+. For the same input image, the signal value remains the same

regardless of the value of n. In the i-th neuron of the first hidden layer, the

following equations for the sum of weighted output spikes accumulated over n

15
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periods with V 1
i (0) = 0 can be derived from (10) and (8):325

nK∑

t=1

ω(t)s1i (t) =

nK∑

t=1

z1i (t)− V 1
i (nK)

=
nK∑

t=1

ω(t)




M0∑

j=1

W 1
ijs

0
j (t) + β1

i


− V 1

i (nK)

= n




M0∑

j=1

W 1
ija

0
j + b1i


− V 1

i (nK)

= na1i − V 1
i (nK),

(12)

If a1i ≤ 0, no output spike is generated, showing the behavior equivalent to

ReLU. If a1i > 0 and n is sufficiently large, V 1
i (nK) becomes much smaller than

na1i (note that V 1
i (nK) < ω(t)τ) and can be ignored, which leads to

1

n

nK∑

t=1

ω(t)s1i (t) ≈ a1i . (13)

In this manner, it can be generalized to other layers as follows:

1

n

nK∑

t=1

ω(t)sli(t) ≈ ali, (14)

which means the average of the sum of weighted spikes over many periods cor-330

rectly approximates the corresponding ReLU activation in ANN.

Therefore, the classification can be made by calculating

arg max
i

(
nK∑

t=1

ω(t)sLi (t)

)
, (15)

in the output layer L, which can be implemented with weighted spike counters

at the end of the neurons in the output layer. However, instead of generating

output spikes and counting them, we found it better to keep accumulating the335

membrane potential of each output neuron as follows:

V L
i (nK) =

nK∑

t=1

zLi (t) ≈ naLi . (16)
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Figure 4: Moving averages of the membrane potentials for 10 neurons in the output layer. It

is calculated from a randomly selected CIFAR-10 test image.

Then the classification is made by computing

arg max
i

(
V L
i (nK)

)
. (17)

It reduces the classification latency by saving the time to charge the membrane

potentials of the output neurons to generate spikes.

We experimented with a spiking neural network (Net4 in Table 1) on CIFAR-340

10 dataset to verify the approximation capability of SNN-WS empirically. Fig-

ure 4 shows moving averages of the sum of weighted input spikes for 10 neurons

in the output layer with a randomly selected CIFAR-10 test image. Each line

converges to the value of its corresponding activation in ANN. Although the

convergence requires around 200 time steps, the classification decision can be345

made much earlier (after 21 time steps) when the top membrane potential tends

to maintain its top rank position. We also compared the approximation errors

of the rate coding and the weighted spikes with Net4. The mean absolute errors

(MAE ) and the standard deviations (STD) of the approximation errors with

SNN-RC and SNN-WS are depicted in Figure 5. It clearly shows that the ap-350
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Figure 5: Mean absolute error (MAE) and standard deviation (STD) of the approximation

errors for all activations in a spiking neural network using rate coding (RC) and weighted

spikes (WS). It is calculated from the test results with 10,000 CIFAR-10 test images.

proximation errors diminish over time, and SNN-WS converges faster to more

accurate values.

4.5. ANN-to-SNN conversion

Since it is difficult to achieve high accuracy by training SNNs directly with

spikes, it is a common practice to convert a trained ANN into an SNN. For the355

ANN-to-SNN conversion, we use the techniques introduced in [12] to reorganize

biases and batch normalization layers [48]. To extend SNN-WS to convolutional

neural networks (CNN s), we convert a max pooling layer of ANN by calculating

the accumulated sum of weighted spikes for each neuron and then passing only

the spike train that has the maximum accumulated sum. The softmax layer of360

ANN is not converted to a SNN since the softmax layer is dispensable in an

inference stage. Instead, the membrane potentials of the neurons in the output

layer are directly compared to make a classification decision.

The previous approach [12] uses analog inputs rather than spike inputs to

achieve higher accuracy and lower classification latency. However, the use of365
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Figure 6: ANN-to-SNN conversion for a deep residual network. The convolutional and batch

normalization layers on the residual and shortcut paths are merged with the following ReLU

layer, and they form a population of spiking neurons in a layer.

analog input requires different kinds of neurons in the first hidden layer, each

of which must perform a lot of precise analog multiplications of input signals

and synaptic weights. Thus, we do not use analog inputs even though the use

of analog input leads to further classification speed up.

Deep residual networks [49] show superior classification accuracy than plain370

networks for various image recognition tasks. If a residual network is converted

to an SNN without accuracy loss, the resulting SNN will achieve higher classi-

fication accuracy than an SNN converted from a plain network. In a residual
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network, there is a join point that merges the residual path and the shortcut

path. The merge is done by adding the convolution output from the resid-375

ual path with the output from the shortcut path. The method to convert this

structure into an SNN is depicted in Figure 6. First the adders at the join point

and its subsequent ReLU layer are replaced with new spiking neurons. Then

the convolution weights of both residual and shortcut paths are moved to the

synaptic weights of the new spiking neurons. The spiking neurons fed by the380

shortcut connection have twice as many synapses as the other spiking neurons.

5. Optimization techniques

5.1. Skipping initial input currents in the output layer

To reduce the adverse effect of noise spikes, we introduce an input current

skipping technique. The current skipping technique ignores the noisy input385

currents to the neurons in the output layer for a few initial periods, thereby

improving the classification latency by a great amount. As explained in sec-

tion 4.3, the highly-weighted bits of the input signals during these initial pe-

riods are propagated through the SNN without considering the following bits

with lower weights and long term average. Moreover, during these periods, the390

membrane potentials of the neurons across the network are not initialized well.

Thus, they may incur a lot of noise spikes and charge the membrane potentials

of the spiking neurons in the output layer to an incorrect direction. Instead of

accumulating the noisy input currents and then averaging out the effect in the

following periods, we found it better to remove the effect just by ignoring the395

initial input currents and skipping the update of membrane potentials in the

output neurons during the initial periods. This simple technique improves the

classification latency significantly.
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(a) Do not skip the initial input currents in the output layer. The correct decision is

made after 52 time steps.
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(b) Skip the initial input currents in the output layer for 16 time steps. The correct

decision is made after 21 time steps.

Figure 7: Effect of skipping initial input currents in the output layer. Each line shows the

moving average of membrane potential for a neuron in the output layer. It is calculated from

a randomly selected CIFAR-10 test image. Note that Y-axis scales are different.

Figure 7 shows the effect of initial period skipping in the output layer. The
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results are obtained from an inference experiment with Net4 in Table 1 on400

CIFAR-10 dataset. When the skipping method is not applied (7a), the mem-

brane potentials of the output neurons highly fluctuate due to the initial noise

spikes and they rush into incorrect levels which are far from the correct con-

verge points during the initial time steps. It takes long time steps to move the

incorrectly initialized membrane potentials to the correct converge points. The405

classification decision is made by selecting the label of the output neuron which

has the highest membrane potential. Thus, the correct decision can be made

after 52 time steps. On the other hand, when the skipping method is applied

(7b), the membrane potentials of output neurons can avoid interferences caused

by noise spikes during the initial 2 periods (16 time steps 3), and move faster410

to the converge points. The correct decision can be made in only 5 time steps

after the end of skipping the initial input currents, making the total delay to be

21.

The optimal number of initial periods to skip charging in the output layer

depends on the depth of the network. In general, it is better to skip more415

periods when the network is deeper since it takes longer time for input spikes

to traverse a deeper network. In terms of noise reduction, it is actually better

to skip as many periods as possible. However, excessive skipping leads to a

too long classification latency, which is also undesirable. In order to achieve a

reasonable accuracy and latency, the length of the skipping periods should be420

tuned empirically for each network depending on its depth and topology.

5.2. The number of phases in a period

The number of phases in a period (K) is a tunable parameter affecting

both latency and accuracy. By increasing the value of K, one can increase the

classification accuracy at the cost of increased latency. In case of an image425

classification, a pixel intensity of an image is normally quantized to 8 bits for

3In this experiment, the number of phases in a period is set to 8. Thus, 1 period consists

of 8 time steps.

22



ACCEPTED MANUSCRIPT

0 10 20
Time step

0

20

40

60

80

100

E
rr

or
 (

%
)

K=2
K=4
K=7
K=8
K=9
ANN

(a)

10 15 20
Time step

0.5

1

1.5

2

2.5

E
rr

or
 (

%
)

K=2
K=4
K=7
K=8
K=9
ANN

(b)

0 20 40 60
Time step

0

5

10

15

20

F
ir

in
g 

ra
te

 (
%

)

K=2
K=4
K=7
K=8
K=9

(c)

Figure 8: Comparison among different number of phases (K) in Net2 on MNIST dataset.

V L
i (t) update is skipped for the first period. The smaller K leads to earlier start of the error

convergence, but it results in worse converged accuracy. The average firing rate fluctuates

within a period and the smaller K leads to lower firing rate. (a) Classification error over time.

(b) Classification error over the time range [8, 24]. (c) Average firing rate over time.

each of RGB channels. Therefore, setting K = 8 is usually enough to accurately

deliver the pixel information to the neurons in the input layer. K < 8 causes

a loss of the input signal precision, but it can reduce the classification latency.

On the other hand, K > 8 incurs a waste of time because there will be no input430

spike for the neurons in the input layer during the phases over 8. However, the

hidden layer can have a precision higher than 8 bits.

Figure 8a and 8b shows the classification error for various K parameters with

Net2 in Table 1 on MNIST dataset. The membrane potentials of the output

neurons are not updated for the first period in order to avoid initial noise spike.435

The time at which the classification error begins to fall is different depending on

K because a period consists of K time steps. If we skip the update of membrane

potentials of the output neurons for fixed time steps regardless of K, the input

values fed into the SNN are distorted and it incurs accuracy loss. K = 4 results

in the shortest classification latency on MNIST dataset under the assumption440

that 1%p accuracy loss is allowed. Even though the small K worsens the input

signal precision, it does not result in a severe accuracy loss. It is since most

pixels are biased toward either 0 (black) or 255 (white) in images of MNIST

dataset, which makes the classification accuracy insensitive to the bits with
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Figure 9: Comparison among different number of phases (K) in Net4 on CIFAR-10 dataset.

V L
i (t) update is skipped for the first 2 periods. It shows slower inference convergence when

K < 7. (a) Classification error over time. (b) Classification error over the time range [70,

120]. (c) Average firing rate over time.

lower weights.445

Figure 9a and 9b shows the classification error with Net4 in Table 1 on

CIFAR-10 dataset. In this case, smaller K leads to higher classification error

at the end of convergence. Images on CIFAR-10 dataset use RGB color format

and pixel value in each of the RGB channels is quantized to 8 bits. Unlike the

MNIST dataset, pixel values of CIFAR-10 image are not biased toward either450

of the edges 0 and 255, but rather distributed broadly in the whole range [0,

255]. Thus, small K leading to omission of less significant bits incurs severe

degradation of converged classification accuracy. According to our experiments,

K = 8 yields the best performance on SVHN and CIFAR datasets.

Figure 8c and 9c compare the average firing rate over time among different455

K in Net2 and Net4. The average firing rate converges over time, but it shows

a periodic oscillation within a period since near-0 activations are dominant in

neural networks, which means the probability of generating a spike in a high-

weight phase of a period is much lower than that in a low-weight phase in a

period. Therefore, smaller K results in lower average firing rate.460

5.3. Accuracy-energy trade-off by early decision

Among weighted spikes in a period, by transmitting the spike with the high-

est weight first, we allow the network to make a decision as early as possible
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Algorithm 1 Early decision procedure:

Input: a time range [T1, T2], membrane potentials of output neurons VL(t) =

{V L
1 (t), V L

2 (t), . . . } for t ∈ [T1, T2], and stable decision threshold θ.

Output: class decision D(t) and decision time t.

1: D(T1 − 1)← ∅, δEMA(T1 − 1)← 0, count← 0 // initialization

2: for t← T1 to T2 do

3: D(t)← arg maxi V
L
i (t) // decision D(t) in the current time step

4: δ(t)← top-2 difference of V L
i (t) // δ represents classification

difficulty

5: δEMA(t)← (δ(t) + δEMA(t− 1)) /2 // exponential moving average of δ

6: if D(t) = D(t− 1) then

7: count← count+ 1 // increase stable decision count

8: if count ≥ θ/δEMA(t) then

9: return // return if current decision has been stable for θ/δEMA(t)

time steps

10: else

11: count← 0

(before the arrival of lower weight spikes) and thus terminate the classification

earlier. For this purpose, we additionally define the “difficulty of classification”465

of an input image as the difference of top-2 activations among the output neu-

rons. If the difference of the top-2 activations for an input image is small, it

requires quite accurate computation to successfully distinguish the difference

and make a correct decision. On the other hand, if the difference of top-2

activations is large enough, it can be distinguished even with relatively rough470

approximation. As mentioned in Section 4.4, the accuracy of SNN-WS increases

over time, implying an accuracy-latency/energy trade-off.

Algorithm 1 demonstrates the procedure of early decision in this work. The

early decision loop begins after T1 in order to avoid the initial noise spikes.

The current decision D(t) is the class label of the output neuron that has the475

highest membrane potential (line 3). It computes the top-2 difference among
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the membrane potentials of the output neurons (line 4), which represents the

classification difficulty of the input image. It takes the exponential moving

average as a stabilizer since the top-2 difference fluctuates over time (line 5).

If the decision is unchanged for θ/δEMA time steps (line 8), the early decision480

is made and the classification finishes (line 9). The stable decision threshold

θ contributes to an accurate early decision in spite of the fluctuations of the

membrane potentials in the output layer. By tuning θ, we can take the trade-

off between classification accuracy and energy saving which can be estimated by

the reduced number of spikes. For a given value of θ, smaller δEMA (implying485

that the input image is more difficult to classify) requires larger value of count

and thus the decision takes longer to terminate.

5.4. Consideration on hardware implementation

The spike weight ω(t) is used for the calculations of the input current zli(t)

and the output spike sli(t) as shown in equations (8) and (9). If SNN-WS is

implemented with hardware strictly following those equations, every input spike

and the threshold should be scaled by ω(t), which requires quite frequent scaling

since the number of all input spikes in a network is enormous. It can be avoided

by changing (9) to

sli(t) = U
(
V l
i (t− 1)/ω(t) + zli(t)/ω(t)− τ

)
. (18)

Then, ω(t) in zli(t) is cancelled out, so that the input spikes and the threshold

no longer require the scaling. Only the membrane potential needs to be scaled490

by 1/ω(t), which can be easily implemented by a bit-shift operation.

6. Experimental setup

Experiments were performed with seven different networks on four different

datasets: MNIST [37], SVHN [15], CIFAR-10, and CIFAR-100 [16].

MNIST. It is a handwritten digit (0-9) image dataset containing 60,000 images495

for the training set and 10,000 images for the test set. Each image consists of

28 x 28 pixels, and each pixel is represented with 8-bit grayscale format.
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Table 1: Network configurations

Dataset Net Configuration ANN Acc. SNN Acc. SNN Acc.

(ours) (ours) (prev)

MNIST Net1 MLP: 784-1200-1200-10 [42] 98.6% 98.6% 98.6%

Net2 CNN: 12c5-2s-64c5-2s-10 [42] 99.2% 99.2% 99.1%

SVHN Net3 NiN: 3 Mlpconv layers [50] 95.2% 95.2% -

CIFAR-10 Net4 CNN: 32c3-32c3-2s-64c3-64c3-2s-512-10 [12] 89.1% 89.2% 87.8%

Net5 ResNet-20 [49] 91.4% 91.4% -

CIFAR-100 Net6 ResNet-32 [49] 66.1% 66.2% -

Net7 Plain-32 [49] 64.3% 63.7% -

SVHN. It is a real-world image dataset obtained from house numbers (0-9)

in Google Street View images. It contains 73,257 images for the training set,

26,032 images for the test set, and additional 531,131 extra images. Each image500

consists of 32 x 32 pixels, and each pixel is represented with 24-bit RGB format.

We do not use the extra images in the experiments.

CIFAR-10. It is a real-world image dataset with 10 classes containing 50,000

images for the training set and 10,000 images for the test set. Each image

consists of 32 x 32 pixels, and each pixel is represented with 24-bit RGB format.505

CIFAR-100. It has the same image format as CIFAR-10, but it consists of 100

classes instead of 10. Each class has 500 training images and 100 test images.

Table 1 shows all the network configurations (Net1 through Net7) with ANN

and SNN accuracies of our approach and SNN accuracies of previous approaches.

Net1 is a multi-layer perceptron (MLP) including an input layer of 784 neurons,510

two hidden layers of 1200 neurons each, and an output layer of 10 neurons in

order to verify that the proposed idea works in a typical neural network. Net2

is a typical CNN including two convolutional layers with 12 and 64 5x5 kernels
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(12c5, 64c5), two 2x2 max subsampling layers (2s, 2s), and a fully connected

layer between the vectorized final features of the second subsampling layer and515

10 output neurons. Those two networks are made with reference to [42], and

their SNN accuracies are reported as 98.6% and 99.1% respectively.

Net3 is Network-in-Network [50] with three Mlpconv layers followed by a

global average pooling layer. The first Mlpconv layer consists of 192 5x5 convo-

lutional layer followed by two 192 1x1 convolutional layers. The second Mlpconv520

layer consists of 192 3x3 convolutional layer followed by two 192 1x1 convolu-

tional layers. The third Mlpconv layer is the same as the second Mlpconv layer

except that its last 1x1 convolutional layer has 10 feature maps instead of 192.

The global average pooling layer takes the average of each feature map and

produces 10 outputs. The Net3 is designed to have a large number of feature525

maps in order to verify that SNN-WS works in a wide neural network.

Net4 is a CNN with four 3x3 convolutional layers (2 x 32c3, 2 x 64c3), two

2x2 max subsampling layers (2 x 2s), and two fully connected layers originated

from [12]. Its SNN accuracy is reported as 87.8% in [12]. Net5 and Net6 are

residual networks [49]. To the best of our knowledge, this is the first work to530

implement SNN with ResNet topology. Net5 consists of 19 convolutional layers

(7 x 16c3, 6 x 32c3, 6 x 32c3) followed by a global average pooling layer and a

fully connected layer producing 10 outputs. Net6 consists of 31 convolutional

layers (11 x 16c3, 10 x 32c3, 10 x 32c3) followed by a global average pooling

layer and a fully connected layer producing 100 outputs. There is a shortcut535

connection for each of two convolutional layers as shown in Figure 6. Net7

is a plain network obtained by removing the shortcut connections from Net6,

which is added to check to see if the residual network shows faster inference

convergence compared to the plain network.

The spiking neural networks cannot accept negative input signals, thus the540

image preprocessing techniques producing negative values such as subtracting

the per-pixel mean [51] and whitening [52] cannot be used. Instead, we normal-

ized the input values into the range [0, 1− 2−K ], which causes zero or marginal

accuracy loss compared to the training results with the image preprocessing
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techniques. The batch normalization [48] is used to train all the networks. For545

classifiers learning CIFAR dataset, the simple data augmentation with 4-pixel

zero padding followed by random crop and random horizontal flip [53] is applied

to the training images. The networks are trained with Keras [54] and MatCon-

vNet [55]. The inferences of the networks were performed on MatConvNet.

7. Results550

7.1. Comparison between SNN-RC and SNN-WS
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Figure 10: Experimental results for the networks. Some bars are omitted if they do not reach

the target accuracy within 10,000 time steps. Note that the Y-axis is plotted on a log scale.

The experimental results with the seven networks on the four different

datasets are summarized in Figure 10. It compares the classification latency

and number of spikes between SNN-RC and SNN-WS. The experiments were

performed with three different stop conditions depending on the allowed accu-555

racy loss from the original ANN accuracy. In all the networks, SNN-WS shows

much shorter classification latency compared to SNN-RC regardless of the net-

work type, and the number of spikes is proportional to the latency. Note that

the Y-axis of each chart is log scale.

For SNN-WS on MNIST dataset, the number of phases (K) in a period is560

set to 4, which means only the upper 4 bits of input pixel values are used in the

inference. SNN-WS does not incur any accuracy loss in spite of the dropping of

lower 4 bits, whereas SNN-RC cannot reach the no-accuracy-loss point within
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10,000 time steps in Net2. We set K = 8 for other datasets because reducing

K causes rather longer classification latency and accuracy loss.565

Net3 shows a relatively large number of spikes because it is a wide network

with 192 feature maps for each convolution layer. When the network depth

grows, SNN-RC suffers from the significant increase of the classification latency,

which limits the use of SNN-RC in practice. In Net5 and Net6, SNN-RC does

not reach no-accuracy-loss point in 10,000 time steps while SNN-WS reaches570

there in 502 and 1064 time steps, respectively even though SNN-WS also suffers

from the superlinear increase of latency on the increase of network depth. In

SNN-RC, Net5 takes more time steps than Net6, even though Net6 is deeper

than Net5. It is because Net5 has higher ANN accuracy which requires more

time to increase the accuracy. In SNN-WS, on the other hand, Net6 takes more575

steps than Net5 because it is deeper. The accuracy of SNN-WS makes the

classification latency less sensitive to the level of ANN accuracy.

Interestingly, the residual network Net6 shows shorter classification latency

compared to its plain counterpart Net7 that does not have any shortcut connec-

tion. The shortcut path in the residual network is intended to train deep layers580

better, but it also helps to boost the inference speed of SNN by propagating

spikes faster to the deep layers through the shortcut path.

Table 2 represents the improvements of classification latency and number

of spikes achieved by SNN-WS compared to SNN-RC. SNN-WS shows better

performance in terms of latency and number of spikes except for the cases where585

1%p accuracy loss is allowed on MNIST dataset. In a typical CNN such as Net2

and Net4, SNN-WS achieves significantly better performance than SNN-RC.

The maximum latency reduction is 91.1x and the maximum spike reduction is

25.1x in the experiments of Net4 with 1%p accuracy loss allowed. The results of

some conditions cannot be compared because SNN-RC cannot reach the target590

accuracy within 10,000 time steps. For the example of Net7, SNN-RC reaches

2.8%p accuracy loss point in 10,000 time steps while SNN-WS reaches 1%p

accuracy loss point in 3,469 time steps.

Figure 11 shows the detailed experimental results of Net1 through Net7.
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Table 2: Reduction of latency and # of spikes by SNN-WS compared to SNN-RC

ACC Latency reduction # Spike reduction

loss <1%p <0.1%p 0%p <1%p <0.1%p 0%p

Net1 1.2x 3.0x 3.2x 0.7x 2.0x 2.0x

Net2 1.5x 21.3x - 0.5x 15.0x -

Net3 6.8x 14.0x 15.1x 2.2x 4.4x 4.6x

Net4 91.1x - - 25.1x - -

Net5 17.2x - - 4.4x - -

Net6 11.4x 11.9x - 3.1x 3.2x -

Net7 - - - - - -

The changes of classification error over time are shown in Figure 11a, 11d, 11g,595

and 11j. SNN-WS shows significantly faster inference convergence than SNN-

RC after skipping the membrane potential updates of output neurons for initial

periods. The skipping makes the SNN-WS reach no-accuracy-loss point much

faster than SNN-RC although SNN-WS starts the inference convergence later

than SNN-RC. SNN-RC shows comparable classification latency compared to600

SNN-WS in a shallow network (Net1 and Net2), but the classification latency

of SNN-RC can not be compared to that of SNN-WS in deeper networks (Net3

through Net7). In very deep networks such as Net5, Net6, and Net7, the update

of membrane potentials in the output layer should be skipped for many periods

since it takes long time for the initial noise spikes to reach the output layer.605
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Figure 11: Experimental results (classification error over time, average firing rate over time,

and number of generated spikes over accuracy) of Net1 through Net7. The number of phases

(K) in a period is set to 4 for Net1 and Net2, and 8 for Net3 through Net7. V L
i (t) updates

are skipped for 4, 1, 2, 2, 20, 30, and 100 periods, respectively.
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Figure 12: Trade-off between accuracy and number of spikes by the early decision algorithm.

Figure 11b, 11e, 11h, and 11k plot the average firing rates over time. The

average firing rates of both SNN-RC and SNN-WS converge over time. But the

firing rate of the SNN-WS oscillates within a period as explained in Section 5.2.

The converged firing rate of SNN-WS is 2∼4 times larger than that of SNN-RC.

It is because, for the dominant near-0 activations, the spikes in SNN-WS are610

more densely packed within a period than those in SNN-RC. For example, if a

neuron generates an output activation value of 3/256 in ANN, the corresponding

neuron in SNN-RC fires spikes at the rate of 3/256 because the firing rate of

SNN-RC is proportional to the activation value of ANN. On the other hand,

the corresponding neuron in SNN-WS fires spikes for 2 phases out of 8 phases615

which means a firing rate of 2/8.

Figure 11c, 11f, 11i, and 11l show the required number of spikes to achieve a

specific accuracy. Even though the average firing rate of SNN-WS is larger than

that of SNN-RC, the total number of generated spikes of SNN-WS is smaller

due to the significantly shorter classification latency. In SNNs, the number of620

spikes is proportional to the dynamic energy consumption, which means that

SNN-WS consumes much lower energy than SNN-RC.
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Figure 13: Number of classified images (left) and classification accuracy (right) over time

when the early decision scheme is applied in Net4 with 1%p allowed accuracy loss. The stable

decision threshold (θ) is set to 0.9.

7.2. Trade-off by early decision

Another advantage of SNN-WS is the early decision method that gives a

chance for further energy reduction at the expense of small accuracy loss. Fig-625

ure 12 shows the trade-off between accuracy and energy when the early decision

method is exploited. Net2 through Net5 achieve 50%∼58% spike savings with-

out accuracy loss, and 59%∼77% spike savings within 1%p accuracy loss. Such

huge savings are possible since most test images show relatively large differ-

ences of top-2 activations compared to the approximation errors, which lead to630

shorter classification latency by early decision. Net1 represents relatively low

spike savings (22%∼23%). In Net1, the earliest decision takes 17 time steps 4

and the latest decision takes 24 time steps. The small difference of the required

time steps to classify between the least and the most difficult images diminishes

4In Net1, a classification decision cannot be made for the initial 16 time steps because K

is set to 4 and the membrane potential updates of output neurons are skipped for the initial

4 periods.
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Figure 14: Histogram of top-2 ReLU activation difference in the output layer of Net4 (ANN

version) with 10,000 CIFAR-10 test images.

the room of further improvement.635

Figure 13 shows the number of classified images and accuracy achieved until

the corresponding time step when the early decision scheme is exploited in Net4

with 1%p allowed accuracy loss. The number of classified images increases

steeply after 21 time steps (classification decision cannot be made during the

initial 2 periods because the membrane potentials of output neurons are not640

updated for the initial 2 periods) and about 94% of test images are classified

with 90.55% accuracy within only 40 time steps. The remaining 6% images,

most of which belong to the leftmost bar in Figure 14, consume more time steps

since they are difficult to classify correctly due to the small top-2 activation

differences of output neurons. The last image (most difficult to classify) is645

classified in 117 time steps and the final accuracy of SNN-WS with early decision

is 88.16% which is 0.94%p lower than the ANN accuracy (89.1%) of Net4. By

the early decision scheme, the average classification latency is reduced from 117

time steps down to 27.6 time steps, which leads to 77% spike saving.
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7.3. Comparison with other algorithms650

Table 3: Comparison with other SNN algorithms

Dataset SNN algorithm Spike coding Network Acc. # Neurons # Params Latency # Spikes

Iris SpikeProp [25] Temporal 50-10-3 96.1% 63 24000 10 -

NPBLR [35] Temporal 48-4-3 95% 55 60 400 -

Dyn. threshold [20] Temporal 9-42-3 96.0% 54 168 340 -

ROL [36] Relative order 48-3 94.2% 51 144 50 -

MNIST ROL [36] Relative order 784-10 90.3% 884 50000 100 -

Spike-DBN [38] Rate 784-500-500-10 94.1% 1794 0.6M - -

STDP [22] Rate Two layers 95.0% 7184 5.0M 350 -

Weight norm. [42] Rate MLP (Net1) 98.6% 3194 2.4M 20 1× 106

SNN-WS w/o ED5 Weighted spike MLP (Net1) 98.6% 3194 2.4M 24 8× 106

SNN-WS w/ ED Weighted spike MLP (Net1) 98.5% 3194 2.4M 19 6× 106

Weight norm. [42] Rate CNN (Net2) 99.1% 24784 29816 80 1× 106

SNN-WS w/o ED Weighted spike CNN (Net2) 99.2% 24784 29816 16 3× 106

SNN-WS w/ ED Weighted spike CNN (Net2) 99.1% 24784 29816 8 1× 106

CIFAR-10 Spiking CNN [40] Rate CNN 77.4% 38090 0.1M 400 2× 107

99.9% norm. [12] Rate CNN (Net4) 87.8% 118282 2.2M 280 -

SNN-WS w/o ED Weighted spike CNN (Net4) 89.2% 118282 2.2M 117 4× 108

SNN-WS w/ ED Weighted spike CNN (Net4) 89.1% 118282 2.2M 42 1× 108

Table 3 shows the comparison results of spike coding, classification accuracy,

network size, classification latency in time steps, and number of generated spikes

among different SNN algorithms. In the SNN algorithms based on temporal

coding [25, 35, 20], information is packed in a spike timing, and it has higher

information capacity than a rate coding and the proposed weighted spike. Thus655

5ED means the early decision algorithm described in Section 5.3. 0.1%p accuracy loss is

allowed here.
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they can perform classification tasks with less number of spikes theoretically.

However, due to the difficulty of training based on spike timing, they are applied

on a small dataset such as Iris (4 input features and 3 classes) [56], and there

is no experimental result on larger dataset such as MNIST or CIFAR. To be

applied on larger datasets, SNNs using temporal coding still require further660

researches.

The work on relative order learning [36], which encodes information on a

relative order between spikes, shows that it is feasible on Iris and MNIST

datasets. However, its classification accuracy on MNIST is just 90.3% which

is far from the state-of-the-art accuracy 99%, and the method does not work665

on networks with more than two layers. Rate coding is used in most SNN algo-

rithms [38, 22, 42, 40, 12] that show high classification accuracy on MNIST and

CIFAR-10. The proposed SNN-WS achieves shorter classification latency than

those with rate coding.

The number of spikes generated in a network is important since it is propor-670

tional to dynamic energy consumption. In SNNs, an incoming spike changes the

membrane potential of a neuron and the process consumes dynamic energy and

no dynamic energy is consumed if there is no spike. The SNN algorithms with

temporal coding and relative order coding do not give the number of generated

spikes since they are mainly focused on achieving high accuracy and training675

with deep and large networks.

In the work using rate coding [42], the number of generated spikes is less than

or equal to that of SNN-WS. Since SNN-WS has higher average firing rate than

SNN-RC, SNN-WS is not much competitive compared to SNN-RC when a small

network is used because SNN-WS has higher average firing rate than SNN-RC680

and a small network does not have much room to reduce classification latency

further by using SNN-WS. However, SNN-WS shows significant reduction in

number of spikes for large networks as shown in Table 2. Although the work

using rate coding [12] does not give the number of generated spikes for the case of
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Net4 on CIFAR-106, our experimental result of SNN-RC with Net4 on CIFAR-685

10 shows that more than 4×109 spikes are generated during an inference, which

is much larger than that of SNN-WS. Moreover, exploiting the early decision

algorithm enhances the classification latency and number of spikes further and

makes SNN-WS faster and more energy-efficient.

8. Conclusion690

We proposed a novel spiking neural network with weighted spikes to over-

come the slow classification problem of the conventional SNNs with rate coding.

The key idea is assigning different weights to spikes depending on the time phase

within a period to encode more information within less number of spikes. The

proposed SNN-WS reduces the classification latency as well as number of spikes695

significantly. The approach can be applied to various types of networks includ-

ing deep residual networks and various datasets without accuracy loss. We also

proposed an early decision algorithm to further reduce latency and number of

spikes at the expense of small accuracy loss.
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