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Abstract: 5G-based Vehicular Social Networks (VSNs) 
demand an advanced location and trajectory privacy 
preserving scheme for vehicles. Because VSNs present the 
characteristics of high mobility and multiple hop relays, we 
design a 5G-based VSN framework that incorporates Mobile 
Femtocell (MFemtocell) technology. Then, we propose the 
Dynamic Group Division algorithm (DGD), which is 
suitable for the dynamic properties of 5G and meets the 
real-time demands of VSN. To preserve privacy, the DGD 
algorithm increases the likelihood of exchanging 
pseudonyms via the proposed Group Generating Protocol 
and Pseudonym Exchanging Protocol. Then, we adopt the 
composite metric KDT (where K is the average anonymity 
set size, D is the average distance deviation, and T is the 
anonymity duration) and pseudonym entropy to quantify the 
degree of privacy. We evaluate and validate the effectiveness 
of our proposed algorithm based on the following three 
aspects: anonymity set size, distance deviation and 
pseudonym entropy. The simulation results show that our 
DGD algorithm better protects the location and trajectory 
privacy of VSNs while sustaining higher real-time demand 
than current approaches. 

Key words: Location privacy; Trajectory privacy; 5G; 
Mobile Femtocell; VSN 

1.  INTRODUCTION 
Vehicles now represent “the biggest mobile terminal” in 

the context of the Internet. The 5GAA committee (5G 
Automotive Alliance) has published research on the Internet 
of Cars in 2017 [1], and with the development of cloud 
computing [2-7] and big data [8-13], vehicles represent 
intelligent devices that can connect to the Internet and 
present sensing and computing abilities. Thus, vehicles are 
now the main carriers for mobile social networks. The 
Vehicular Social Network (VSN) has emerged, and vehicles 
can now be connected to wireless networks to improve 
traffic safety and promote the development of smart cars. 
However, the convenience of VSNs may lead to privacy 
concerns. The problem of privacy disclosure primarily stems 
from two aspects. First, for the users, certain data transmitted 

over the VSN are highly sensitive, such as location, 
trajectory, and identity information. If these sensitive data 
are revealed, the location privacy, trajectory privacy and 
identity privacy can be leaked [14]. Second, the topology of 
the VSN changes quickly because of the vehicle's high-speed 
mobility. Thus, data transmission exploits the multiple hop 
relay method. However, multiple hop relays are prone to data 
leakage risks, which may lead to the leakage of private 
information. Furthermore, people are paying increasing 
attention to their own privacy and data security [15-21]. 
Therefore, this paper addresses the problem of privacy 
leakage in VSNs. Combined with modern communication 
technology (5G), the method in this paper effectively 
protects the vehicles’ location and trajectory privacy in the 
VSN.  

With the increasing number of connected devices and 
demand for data rate, the 5G wireless communication system 
has been a popular research area in recent years [22-23]. The 
next 5G can serve all types of applications/systems with 
extremely high user rates anytime and anywhere [24]. As a 
Wireless Sensor Network (WSN), VSNs will inevitably lead 
to extraordinary developments with the application of 5G. 
Compared with other WSNs, VSNs realize the modern 
Intelligent Transport System (ITS). However, VSNs have 
inherent characteristics, such as high mobility and multiple 
hop relays. Thus, Mobile Femtocell (MFemtocell) has been 
introduced for 5G technology [25]. The use of MFemtocell 
can significantly maximize performance, such as by 
realizing dynamic linking, enhancing user throughput, and 
reducing response times and signal overhead [26-27]. 

To reduce traffic accidents, vehicles send safety message 
periodically. The safety message includes information about 
the location, speed and direction of the vehicles. Although 
the VSN can be plugged into the 5G network seamlessly, the 
5G-based VSN does not consider privacy preservation. If a 
malicious attacker continuously eavesdrops on the safety 
message, the location and trajectory privacy may be leaked. 
To address this problem, researchers have proposed efficient 
schemes that include K-anonymity [28], Mix-zone [29], 
MixGroup [30], and Encryption [31-32]. The basic ideas behind 
these schemes are consistent. Each vehicle is assigned a 
pseudonym in the VSN, and then vehicles exchange the 
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pseudonyms with each other to obscure the vehicles’ real 
identities. Therefore, the attacker cannot link the real identity 
to the corresponding vehicle, and the location privacy is 
protected.  

Thus far, the MixGroup method is the most advanced and 
effective for preserving privacy among the existing schemes. 
By combining the Mix-zone and group signature technology, 
the MixGroup algorithm extends the group region and 
increases the opportunities for exchanging pseudonyms to 
protect location privacy as shown in Fig. 1 [30]. Nevertheless, 
the division of the group region in the MixGroup method has 
three main shortcomings. First, the response time of 
MixGroup cannot meet the real-time demand of the VSN. 
Second, the static division of the group region (as shown in 
Fig. 1) cannot be applied perfectly in future 5G architecture, 
because 5G MFemtocell technology is dynamic and allows 
the vehicle to adaptively access the core network. Third, 
because the division of the group region is based on the 
vehicles’ routes while moving, the MixGroup method cannot 
effectively protect the vehicles’ trajectory privacy. User 
behavior is known to have certain regular characteristics 
over a long period of time. Because of work or family 
circumstances, vehicles regularly drive past a number of 
fixed locations or traverse along fixed trajectories. Because 
of this certain regularity, the division of the group region is 
vulnerable to leak trajectory privacy in the MixGroup 
method. 

Group Region

Global social spot

Individual social spot

Individual social spot

 

Fig. 1: MixGroup method 

To address the main shortcomings of the MixGroup 
method, we design a novel 5G-based VSN architecture and 
propose the Dynamic Group Division algorithm (DGD) for 
the protection of vehicle location and trajectory privacy. The 
main contributions of this paper are as follows.  
� To improve the real-time demand of the VSN, we 

combine 5G wireless communication systems and VSNs. 
This paper includes MFemtocell technology and designs 
a novel system model, the 5G-based VSNs. 

� To quantify the location and trajectory privacy that can 
be suitably applied in the 5G-based VSNs, this paper 
improves the composite metric KDT, where K is the 
average anonymity set size, D is the average distance 
deviation, and T is the anonymity duration. 

� To more effectively protect privacy, we propose the 
DGD algorithm for the 5G-based VSNs. Based on 
social/individual hot spots, the DGD algorithm designs 
the Group Generating Protocol and the Pseudonym 
Exchanging Protocol to dynamically divide the group 

region and increase the probability of exchanging 
pseudonyms. 

The remainder of this paper is organized as follows. In 
Section 2, we review related works on the development of 
integration between 5G networks and VSNs and schemes for 
preserving privacy in VSNs. In Section 3, we describe the 
basic concepts and relative definitions. In Section 4, the 
motivation, objective and system model are revealed. In 
Section 5, a detailed description of the DGD algorithm is 
provided. In Section 6, the simulation environment and 
results are presented. In Section 7, the conclusions of this 
paper are provided. 

2. RELATED WORK 
Significant attention has been focused on the problems of 

privacy preservation and real-time demand in VSNs [33-35]. 
With the constant development of communication 
technology, higher speeds and greater bandwidth have 
promoted the development of integration between the 5G 
network and VSNs. Through IEEE 802.11p, the work in [36] 
proposes a 5G-VANET (Vehicular Ad Hoc Network) 
architecture to realize adaptive clustering, which can reduce 
the system response time and improve the real-time demand 
of VANET. The authors in [37] address the security and 
privacy issues in 5G-enabled vehicular networks and 
propose the scheme of a real-time video reporting service in 
a 5G network framework. For protecting the privacy of a 
video reporting service in vehicular networks, the authors 
exploit the method of pseudonym management combined 
with the high speed and low delay characteristics of the 5G 
network. The study presented in [38] presents a 5G-enabled 
vehicular network and introduces 5G technologies, such as 
Device-to-Device (D2D), Enhanced Cloud Radio Access 
Network (EC-RAN) and Heterogeneous Network (HetNet), 
into the vehicular network. Moreover, C. Wang, et al. [25] 
propose a MFemtocell network. MFemtocell is a 5G 
technology that combines mobile relays with Femtocells. 
MFemtocell can be deployed in vehicular networks to 
provide enhanced throughput and spectrum efficiency. With 
the integrated application of the 5G and vehicular network, 
MFemtocell allows for the demands of VSNs to be met in 
real-time and with heavy data traffic. 

In VSNs, vehicles can easily access location-based 
services for the convenience of drivers [39-40], such as finding 
the nearest gas station or supermarket. Therefore, protecting 
the location and trajectory privacy of vehicles has received 
increasing attention recently. With the technology of 
homomorphic encryption, the work in [41] realizes privacy 
preservation through the sharing of encryption and 
trajectories between vehicles. However, because of this 
sharing, the approach [41] works on the condition that the 
density of vehicles is high. Other approaches [42-48] have 
adopted the authentication mechanism to meet the 
requirement of privacy protection. Facing the challenges of 
real-time demand in VSNs, researchers have also proposed 
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lightweight authentication mechanisms. For example, Wang 
[44] proposes a Two-Factor Lightweight Privacy-preserving 
authentication scheme (2FLIP) that employs the 
decentralized CA and biological-password based two-factor 
authentication. Although the 2FLIP scheme can reduce the 
costs of authentication and realize conditional privacy 
protection, the safety of the whole scheme heavily relies on 
the unique system key of the CA. Abbas [46] proposed a 
hierarchical pseudonymous authentication protocol that 
divides pseudonyms into two sub-ranges, primary and 
secondary, based on the time. The lifecycle of the primary 
pseudonym is longer than that of the secondary pseudonym. 
The primary pseudonym is used to communicate with 
partially trusted institutions, whereas the secondary 
pseudonym is used between vehicles. This scheme is 
beneficial to reduce the system burden of the VSN, and it is 
no longer dependent solely on the CA. 

Although the schemes mentioned above have addressed 
preserving the privacy of the VSN under certain conditions, 
they are inefficient when the VSN is applied in 5G networks. 
Moreover, most studies have barely focused on location 
privacy preservation and have ignored the trajectory privacy 
of moving vehicles. Under the synthetic consideration of 
real-time demands and privacy preservation, this paper 
addresses the issue of location and trajectory privacy in 
5G-based VSNs. 

3. PRELIMINARIES 
In this section, we provide a detailed introduction to 

certain basic concepts relevant to MFemtocell technology 
and social/individual hot spots. The definition of KDT used 
in this paper is subsequently provided. 

�. Mobile Femtocell 

 
Fig. 2: Vehicles with MFemtocell 

To meet the high-mobility demand of users, the 
architecture of the 5G network incorporates the technology 
of MFemtocell, which combines the mobile relay and 
femtocell network. The wireless interface of MFemtocell is 
backwards compatible with all the existing terminal 
equipment. Thus, MFemtocell can be seamlessly connected 
to VSNs. As shown in Fig. 2, MFemtocell is always 
deployed on fast-moving vehicles, such as cars, trains, buses, 
etc. With the help of MFemtocell, vehicles can adaptively 

communicate with other vehicles or the Base Station. 
Therefore, this technology can improve the throughput and 
reduce the system response rate. Furthermore, MFemtocell 
can dynamically access the wireless network and effectively 
resolve the problems caused by the topology of VSNs, which 
do not have a center node and change quickly. 

�.    Social hot spots and individual hot spots    

A hot spot is a location that users are interested in. In this 
paper, all locations can be classified into two categories: 
social hot spot and individual hot spot. Social hot spots are 
characterized by a location with a high density of vehicles, 
such as crossroads, parking lots, etc., where vehicles easily 
encounter each other. Because many meeting opportunities 
occur for vehicles in social hot spots, existing privacy 
protection methods (e.g., Mix-Zone) usually take advantage 
of social hot spots for exchanging the pseudonyms of 
vehicles. Then, malicious attackers cannot guess the 
vehicle’s real identity, and the vehicles’ location and 
trajectory privacy are protected. 

Although individual hot spots are characterized by 
frequent vehicle visits, most people generally drive to and 
from their places of work and their homes over a long period 
of time. Therefore, most drivers regularly visit certain fixed 
locations, such as the supermarket near the driver’s home or 
the gas station on the way to work as shown in Fig. 3. Of 
course, one location may be an individual hot spot as well as 
a social hot spot for certain drivers, and when this occurs, we 
define the location as a social hot spot by default. 

In this paper, the location of a hot spot (including social 
hot spot and individual hot spot) is denoted by PL (x, y), 
where �  and �  represent the latitude and longitude of the 
area of the hot spot, respectively. To effectively protect 
vehicle location and trajectory privacy in the 5G-based 
VSNs, our paper dynamically divides the group area by the 
definition of PL. 

Gas Station Department Store

Home Work place

Intersection

Individual hot spot

Social hot spot

 

Fig. 3: Social/individual hot spot 

�. . . . Quantification for trajectory privacy    

Trajectory privacy is the degree to which an entity cannot 
be linked to the vehicles’ trajectory over a consecutive time. 
In this paper, we adopt a composite metric KDT [49] to 
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quantify the trajectory privacy, where K refers to the average 
anonymity set size, D is the average distance deviation, and 
T is the anonymity duration. Considering realistic demands, 
we redefine KDT as follows. 

(1) Anonymity Duration T: In our paper, for a better 
description of the trajectory privacy, we define T as a 
constant. T is a set of time {t0, t1,…, ti,…, tn}. Therefore, a 
vehicle is driven for a continuous time T (starting from t0 to 
tn), and generates a trajectory. 

(2) Average Anonymity Set Size K: Assume that Kti 
represents the number of vehicles in a group area at time ti. 
Then, we can find the expression of average anonymity set 
size K. 

0 1 0 0 1 2
1

i nt t t t
i

K K ... K ... K
K= ,t ,i , , ,...,n

n

+ + + + +
> =

+
      (1) 

According to the knowledge of random processes, we 
know that the number of vehicles that arrive at the group 
region follows a Poisson distribution {N(t)}. The 
one-dimensional probability distribution of N(t) is as 
follows: 

0 1 n

k
t

t t t

( t )
P{ N( t ) k } e ,k K ,K ,...,K

k !
λλ −= = =        (2) 

Therefore, we can calculate the expectation E{N(t)}= tλ , 
where 

0 nt [ t ,t ]∈ , and λ is the average number of vehicles 

arriving in the group area per unit time. 
(3) Average Distance Deviation D: At time ti, suppose that 

there are two vehicles (um, uk) in a group area and the number 
of vehicles in the group is Kti. Here, we define the distance 
dmk between two vehicles (um, uk): 

2 2
mk m k m kd ( x x ) ( y y )= − + −                 (3) 

where (xm, ym) is the location of vehicle um and (xk, yk) is 
the location of vehicle uk. Assume that Pmk is the probability 
of identity confusion between vehicles. That is, an attacker 
guesses that vehicle um is vehicle uk with probability Pmk. 

Thus, we can obtain the distance deviation 
it

d  at time ti: 

2
1 1

1 t ti i

i

i

K K

t mk mk
m kt

d d P
( K ) = =

= ∑∑                        (4) 

Then, the average distance deviation D is calculated at the 
anonymity duration T: 

0 1 0 0 1 2
1

i nt t t t
i

d d ... d ... d
D ,t ,i , , ,...,n

n

+ + + + +
= > =

+
          (5) 

For the best trajectory preservation, we must maximize the 
average anonymity set size K and the average distance 
deviation D for a continuous time T (Anonymity Duration). 
Greater average anonymity set sizes and average distance 
deviations correspond to better operability of anonymous 
schemes for vehicles. Therefore, this scheme can more 
effectively protect the trajectory privacy. However, K and D 

are not infinite values. Therefore, assume that the upper limit 
of Kti and dti are Kmax and dmax, respectively. The values of 
Kmax and dmax are substituted into formula (1) and (5). In 
addition, the maximum of K and D are also Kmax and dmax, 
respectively. 

4. MOTIVATION AND SYSTEM MODEL 
This section provides the motivation and objective of this 

paper. Then, we design a 5G-based VSN system model for 
solving the problem of real-time demand and privacy 
preservation. 

4.1 Motivation 
The construction of the MixGroup framework [30] extends 

the pseudonym-changing regions with the Mix-zone and 
group signature mechanism, and it addresses the location 
privacy issue in VSNs. However, the MixGroup framework 
does not consider a method of protecting trajectory privacy. 
According to the vehicles’ paths while moving, MixGroup 
statically generates a group region. Assume that a malicious 
attacker has joined in the group region. Then, he/she will 
constantly exchange pseudonyms with other vehicles located 
in the same group region and will keep trying to exchange 
pseudonyms until leaving the group region. The malicious 
attacker can draw the outline of the group region. By 
matching group regions with the map (e.g., Google Maps), 
the attacker learns the trajectories of vehicles. If the attacker 
obtains other information, such as the work location, 
personal interests, etc., he/she can easily know the real 
trajectory of the vehicles. There is no guarantee that the users’ 
trajectories will not be exposed; thus, the users’ trajectory 
privacy is leaked. Therefore, preserving privacy is 
insufficient in the MixGroup framework. In this paper, we 
aim at protecting the location and trajectory privacy in 
VSNs.  

Furthermore, the real-time demand of the VSN is 
significant. Therefore, using a VSN does not make sense 
unless the vehicles obtain a quality-of-service guarantee for 
real-time services. To improve the pseudonym exchange 
opportunities, the MixGroup framework generates group 
regions with the static methods. The MixGroup framework 
does not consider the time cost. However, because of the 
development of mobile communication technology, an 
increasing number of vehicles have accessed VSNs. 
Therefore, the static division of the group region is not 
appropriate for the rapid development of the Internet. To 
support the large amount of data traffic and meet real-time 
demands, this paper introduces 5G MFemtocell technology. 
MFemtocell can dynamically connect to an operator’s core 
network. This dynamic characteristic will greatly improve 
the system response time and meet the real-time demand in 
VSNs. 

4.2 Objective  
In this paper, we aim to propose the DGD algorithm for 
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protecting location and trajectory privacy in 5G-based VSNs. 
First, we build a novel system model with the introduction of 
the MFemtocell. Then, with the help of MFemtocell, the 
vehicles can be dynamically brought together for generating 
a group in time T (Anonymity Duration). The average 
anonymity set size K and the average distance deviation D of 
the group must meet certain conditions for reaching the 
degree of privacy required by the users. Finally, the DGD 
algorithm exchanges the identities in the same group with 
pseudonym entropy principle. By increasing the 
opportunities to exchange vehicle identities, the ability of an 
attacker to determine the real identity of a vehicle is 
hindered. 

Thus, based on the MFemtocell technology, hot spot 
concept and composite metric KDT, the problem of 
protecting a vehicles’ location and trajectory privacy is 
resolved by maximizing the average anonymity set size K 
and the average distance deviation D for a continuous time T 
(Anonymity Duration) in the 5G-based VSNs. 

4.3 System model 
To meet the real-time demand of vehicles and preserve 

vehicular privacy, we introduce the MFemtocell technology 
and design a VSN model, and its framework is shown in Fig. 
4. The framework consists of three key components: 
Vehicles, Registration Authority (RA) and Base Station. 

Registration Authority
 (RA)

MFemto1

MFemto2

MFemtoi

Core network

 
Fig. 4: Framework of the 5G-based VSNs 

Vehicles: the moving entities in the VSN. Each vehicle is 
equipped with a MFemtocell for communication between 
vehicles or with the users inside the vehicle. 

RA: In this paper, the RA is a strictly trusted third party 
entity, and it can potentially benefit the system security by 
generating secure parameters {PID, PK, SK, Cert} for the 
entities in the proposed system model, where PID is the 
pseudonym identity for the entities, such as vehicles, groups, 
etc.; PK/SK is the public-private key pair used to encrypt or 
decrypt messages to ensure information security; and Cert is 
the certification parameter applied in the group signature 
mechanism for preventing the information from being 
tampered with, forged or imitated. 

Base Station: located between the vehicular network and 
the core network. The Base Station can directly 

communicate with the MFemtocell for collecting 
information from vehicles. Then, the Base Station sends the 
gathered messages to the core network where they are 
processed, and then they are fed back to the Base Station. 

Fig. 4 shows that the framework of the 5G-based VSN has 
been divided into four main stages: system initialization, 
group generating, pseudonym exchange, and group 
cancellation. 

1) System initialization: In our proposed system model, 
the RA is a fully trusted entity and it boots and initializes the 
whole system. The RA can verify the legitimacy of each 
entity in the VSN and assign the corresponding secure 
parameters PID, PK/SK, Cert for the legal entities. Of course, 
the RA server stores the vehicles’ true identities and 
pseudonym identities, which contributes to tracking 
offenders for law enforcement. Because the RA is a trusted 
entity, the problem of privacy leakage from the RA server is 
not an issue. 

2) Group generating: If a moving vehicle vi sends the 
safety message periodically, MFemtocell technology allows 
the vehicle vi to dynamically generate group regions along 
the vehicle’s trajectory. If the vehicle vi sends a safety 
message in one location, then the group region is generated 
based on the values of Kmax and dmax.  

3) Pseudonym exchange: In the group region, vehicles 
communicate with a group identity between the Base Station 
and vehicles. To protect the location and trajectory privacy, 
vehicles located in the same group region need to exchange 
pseudonyms with each other constantly. Thus, vehicles will 
obtain a different pseudonym after moving out of a group 
region every time, which increases the difficulty for a 
malicious attacker to guess the real identity of the vehicles.  

4) Group cancellation: With the moving of the vehicle, the 
group region will be changed constantly along the trajectory 
of the vehicle. Therefore, the group region is generated and 
revoked alternately. When a group cannot meet the 
requirements of the system (e.g., anonymity entropy), the 
group will be revoked automatically with the help of 
MFemtocell and the source of the group will be recycled by 
the RA. 

5. ALGORITHM DESIGN  
In this section, we first present the framework of the DGD 

algorithm. Then, we introduce three protocols in the DGD 
algorithm accordingly: Group Generating Protocol, 
Pseudonym Exchanging Protocol and Group Revocation 
Protocol. 

5.1 DGD algorithm 
Fig. 5 describes the framework of the DGD algorithm. The 

DGD algorithm addresses the location and trajectory privacy 
in the 5G-based VSNs. When a vehicle sends the safety 
message periodically from one location, the location privacy 
is protected. First, the vehicle generates a group region using 
the method that is introduced in the Group Generating 
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Protocol. Then, to protect the location privacy, all vehicles 
exchange pseudonyms with each other in the same group. 
When a vehicle is moving, location privacy as well as 
trajectory privacy should be considered. To dynamically 
generate group regions along the trajectory, the DGD 
algorithm calls the Group Generating Protocol and 
Pseudonym Exchanging Protocol alternately. 

Algorithm 1 describes the pseudo code of the DGD 
algorithm. 

 

Algorithm 1: Dynamic Group Division (DGD)  

1: if (vehicle is moving) 
2:     Call for the Group Generating Protocol alternately; 
3:      Dynamically obtain group regions; 
4:     if (One group region is unsuccessful) 
5:         Go to the scheme of location privacy; 
6:     else 
7:          Call for Pseudonym Exchanging Protocol alternately; 
8:     end if 
9:  else  
10:     Generate a group region for the vehicle; 
11:     Exchange pseudonyms with each other; 
12: end if 
13: Call for Group Revocation Protocol. 

 

begin

input

Sending the safety 
message periodically

Group fail?

Meet the requirement 
of group revocation?

output

end

Exchange pseudonym 
between vehicles

Call for Group 
Revocation Protocol

Trajectory   privacy

RA initializtion

Y

N

Location privacy

Y

Alternately call  for the 
Group Generating Protocol

Alternately call  for 
Pseudonym Exchanging 

Protocol

Generate a group 
region

N

N

Y

 
Fig. 5: Framework of the DGD algorithm 

5.2 Group Generating Protocol 
If a vehicle has been accessing the VSNs, then the RA will 

validate the identity of the vehicle. After finishing system 
initialization, the MFemtocell can help the vehicle 

automatically interact at the same social/individual hot spot. 
According to the area size of the hot spot, different cells are 
generated as shown in Fig. 6. To preserve privacy, we 
propose the Group Generating Protocol to expand the area of 
the group constantly, and then a group region is dynamically 
generated. 

Here, we explain the main procedure of group generating. 
First, when a vehicle v1 enters a social/individual hot spot, it 
will monitor whether there are other vehicles in the same hot 
spot that are sending the Cell-Generate-Request message. If 
a vehicle v2 has initiated the request message for cell 
generating, vehicle v1 will join the cell. Otherwise, vehicle v1 
initiates the request message. Within a timestamp tstamp, the 
cell is finished and the vehicle that first sends the request 
message becomes the Cell Leader. Second, the Cell Leader 
broadcasts the Group_Generte_Request  message to find the 
other vehicles. When the number of vehicles in the group is 
larger than the maximum value Kmax (that is, Kti>Kmax) or the 
distance deviation between vehicles is larger than the 
maximum value dmax (that is, dti>dmax), then the group is 
finished. Otherwise, the area of group will be extended to 
find appropriate vehicles for the time tstamp. Fig. 6 describes 
the generative process of the group region. Because the 
social hot spot is generally an intersection, the trajectory map 
in the group region is complicated because of different 
directions of the trace intersection. Therefore, the group 
division mechanism in the DGD algorithm can more 
effectively protect the vehicles’ trajectory privacy compared 
with the privacy-preserving scheme MixGroup. 

Social hot spot/cell5

Group region

Social hot spot/cell4

Social hot spot/cell1

Individual hot spot/cell2

Individual hot spot/cell3

 
Fig. 6: Group division mechanism 

Algorithm 2 describes the pseudo code of the Group 
Generating Protocol in details. 
 

Algorithm 2: Group Generating Protocol 
Input: PIDv, PKv, SKv, Certv, PL, tstamp, Kmax, dmax 
Output: GID, PKG, SKG, CertG 
1: A vehicle vi enters a hot pot and listens for the request 

message for cell generating; 
2: for (tstamp >=0) 
3:    if (vehicle vi receives the message Cell_Generte_Request) 

Join in the cell; 
4:    end if 
5:    else 
6:       Initiate the request message Cell_Generte_Request=PIDv, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
  

&PKv, &SKv, &Certv; 
7:     The vehicle vi becomes the Cell Leader and waits for other 

vehicles to join; 
8:   Cells are finished; 
9:   Select a cell leader as the group leader by the principle of 

first come first service; 
10:  Broadcast the request message Group_Generte_Request; 

11:  for (Kti<=Kmax &&  di<=dmax） 
12:       for (PL (the cell leader nearby group leader)∈social hot 

spot) 
13:              The cell leader agrees to join group; 
14:              Calculate Kti and di; 
15:              if (Kti>=Kmax||di>=dmax) 
16:                break; 
17:             end if 
18:        end for 

19:     The cell leader (PL∈ individual hot spot) agrees to join 
group; 

20:       Calculate Kti and di; 
21:  end for 
22:  if (tstamp <0) 
23:     Group generation fails; 
24:  end if 
25:  else  
26:  Group is finished; 
27:  Group leader sends the message to the RA; 
28:  RA judges its legitimacy and distributes GID, PKG, SKG, 

CertG for valid groups; 
29: end for 

As shown in Algorithm 2, group generation consumes a 
certain amount of time (within the timestamp tstamp). Thus, 
time is the key point for the Group Generating Protocol. If 
the time setting is shorter, then Kti and di are accordingly 
smaller and cannot reach the requirements of privacy 
preservation. If the time setting is longer, then procedure of 
group generation will waste too much time waiting and 
cannot meet the user’s requirements. 

5.3 Pseudonym exchange protocol 
To protect the vehicles’ location and trajectory privacy 

outside of the group area, vehicles periodically send safety 
messages with pseudonym identities. Vehicles directly 
communicate with the Base Station. Inside of the group area, 
vehicles employ group identity (GID). To ensure that the 
attacker cannot deduce the vehicles’ real identity, this paper 
increases the pseudonym exchanging opportunities. When a 
vehicle enters a group region, the vehicle will continuously 
exchange pseudonyms with other vehicles until the vehicle 
leaves the group region. A condition for exchanging 
pseudonyms between vehicles is observed. Assume that each 
vehicle has the probability of being tracked by a malicious 
attacker denoted by pi. Thus, the pseudonym entropy H for 
the vehicles {v1, v2, …, vk} in a group region can be 
expressed as follows:  

2
1

k

i i
i

H p log p
=

= −∑  

When the vehicle’s pseudonym is changed, the probability 
pi and the pseudonym entropy H are changed. Therefore, this 
paper exploits the entropy of the group to exchange the 
vehicles’ PIDs to preserve privacy. 

The pseudo code of the Pseudonym Exchanging Protocol 
is shown in Algorithm 3. Here, we consider the privacy 
preservation of vehicle vi in group region Gr. Before 
exchanging the pseudonym of vehicle vi, we first calculate 
the pseudonym entropy of the Gr, which is denoted by the 
symbol Hbefor. Thus, Hbefore is the entropy before exchanging. 
In the valid anonymity duration T, if vehicle vi receives the 
message pseudonym_exchange_ Request from a vehicle vj, 
we will estimate the pseudonym entropy of the group region 
Gr denoted by the symbol Hafter. Of course, the vehicle vj also 
belongs to the group region Gr. If the pseudonym entropy 
Hafter is greater than Hbefore, the two vehicles vi and vj will 
interexchange pseudonyms. In contrast, vehicle vi will 
abandon the opportunity of exchange because smaller 
pseudonym entropy corresponds to lower the level of privacy 
protection. 

In summary, for privacy preservation in the Pseudonym 
Exchanging Protocol, we calculate the pseudonym entropy H 
before two vehicles exchange pseudonyms. If H is increased 
by exchanging pseudonyms, then the two vehicles will 
successfully complete the process of pseudonym exchange. 
Otherwise, the exchange will be abandoned.  
 

Algorithm 3: Pseudonym Exchanging Protocol  

Input: Gr, GID, T 

Output: Hafter, PIDv, PKv, SKv, Certv, 

1: for (a vehicle vi∈Gr) 

2:  Calculate the pseudonym entropy Hbefore; // Hbefore is the 
entropy before exchanging. 

3:     if (T !=0&&vehicle vi receives the message pseudonym 

4:    _exchange_Request from a vehicle vj) // (vj∈Gr) 

5:       Calculate the pseudonym entropy Hafter; // Hafter is the 

entropy after exchanging. 

6:          if (Hafter-Hbefore>0) 

7:              Exchange pseudonyms <vj, vi>; 
8:           end if 
9:         else 
10:            Abandon the exchange; 
11:    end if 
12:  else 
13:     Send the request message pseudonym_exchange 
14:     _Request and wait the exchanging; 
15: Group Leader sends the exchanged pseudonyms to RA; 

16: end for 
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5.4 Group Revocation 
When a vehicle leaves the group region, it will send a 

message about leaving the group to the Group Leader. If the 
lifetime of the vehicle is zero (Tlife=0), then the vehicle will 
automatically apply to leave the group. When the number of 
vehicles in a group is less than the minimum value Kmin (that 
is, Kti<Kmin) or the distance deviation between vehicles is 
less than the minimum value dmin (that is, dti<dmin), we 
determine that the existence of the group is meaningless. 
Thus, the group will be revoked by the RA. Algorithm 4 
presents the pseudo code of the Group Revocation Protocol. 
 
Algorithm 4: Group Revocation Protocol  
Input: Group region, GID, Tlife, Kmin, dmin 
Output: Resources of group 
1: if (a vehicle vi∉ Group region || Tlife,<=0) 
2:      Initiate the message leaving_group_ request; 
3:      Calculate Kti and di; 
4:      if (Kti<Kmin||di<dmin) 
5:    Group leader sends message of group revocation 6: to RA; 
6:         RA recovers the corresponding resources of the group; 
7:      end if 
8: end if 

6. SIMULATION AND RESULTS 
In this section, we conduct extensive simulations and 

evaluate the performance and effectiveness of our proposed 
DGD algorithm under city and suburban scenarios. We first 
describe the simulation environment for the city and 
suburban scenarios. The simulation results from three 
aspects (anonymity set size K, distance deviation D and 
pseudonym entropy H) are then presented in charts. Finally, 
through the analysis of the simulation, we show that our 
proposed DGD algorithm can effectively protect the location 
and trajectory privacy in 5G-based VSNs. 

6.1 Simulation Environment 

Table 1: Simulation parameters 

Parameter                     Setting 

Vehicle Speed              30 km/h 
Vehicle density            0.3 v/m for city scenario 
Vehicle density            0.2 v/m for suburban scenario 
Anonymity Duration    600 s 
Kmin                               35 
dmin                               600 m 
Kmax                              50 
dmax                               750 m  

We first simulate a graph to represent a large real 
geographic area (3000 m×3000 m) using the Generic 
Mobility Simulation Framework, GMSF[50]. For emulating 
the performance of MFemtocell, we add certain functions to 
the GMSF simulator that are compliant with 3GPP LTE 

specifications[51]. Then, we divide the graph into 10×10 
small cells. Each cell is labeled a social hot spot or individual 
hot spot according to the real geographic area. To determine 
whether to exchange pseudonyms, each vehicle is labeled 
with an ordered pair <PIDvi, pi>, where PIDvi represents the 
vehicle identity and pi is the tracked probability. 

As we know, GMSF supports the import of vehicle traces 
for three different areas (city, suburban and rural). For 
simulating the different road information in Chengdu City, 
Sichuan Province, China, we design a city scenario and a 
suburban scenario. The only difference between the two 
scenarios is the vehicle density. We set the vehicle density of 
the city scenario as 0.3 v/m (that is, 900 vehicles in 3000 m × 
3000 m area), whereas we set the vehicle density of the 
suburban scenario as 0.2 v/m (that is, 600 vehicles in 3000 m 
× 3000 m area). Table 1 shows the simulation parameters in 
details. 

6.2 Simulation Results 
�. Location Privacy 

To simplify our experiment, we assume that a vehicle is in 
the social hot spot and sends a request message for group 
generating. We analyze the location privacy in the city 
scenario and suburban scenario from two aspects: anonymity 
set size and distance deviation. 
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Fig. 7: Anonymity set size of a group region for the city scenario 
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Fig. 8: Anonymity set size of a group region for the suburban 

scenario 
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In Fig. 7, we measure the anonymity set size (Kti) of a 
single group region within 100 s in the city scenario, which 
shows that the anonymity set size with the DGD algorithm is 
larger than the MixGroup algorithm when the time t≤80 s. 
Our proposed DGD algorithm approaches the maximum 
(Kmax=50) at t=70 s, whereas the MixGroup algorithm 
achieves the Kmax value at t=90 s. Evidently, with the 
assistance of MFemtocell, the DGD algorithm possesses a 
faster convergence rate. Hence, from perspective of 
protecting the location privacy in a city scenario, the DGD 
algorithm can perform better compared with the MixGroup 
algorithm. 

However, the MixGroup algorithm approaches the 
maximum (Kmax=50) in a lower density area in the suburban 
scenario. As shown in Fig. 8, although the DGD and 
MixGroup algorithm obtain their peak almost 
simultaneously (at approximately t=80 s), the anonymity set 
size in the DGD algorithm is much larger than that of the 
MixGroup algorithm. A larger anonymity set size 
corresponds to a greater intensity of privacy preserving. 
Thus, our proposed DGD algorithm shows its superior 
performance of protecting location privacy in the suburban 
scenario. 
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Fig. 9: Anonymity set size of the city vs. suburban scenario 
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Fig. 10: Distance deviation of a group region for the city scenario 

Fig. 9 compares the anonymity set size between the city 
scenario and suburban scenario in the DGD algorithm. 
Because the vehicle density is higher in the city scenario than 
the suburban scenario, the DGD algorithm obtains the 
maximum anonymity (Kmax=50) at t=70 in the city scenario 
and at t=90 in suburban scenario. Therefore, the DGD 

algorithm can protect location privacy well in both the city 
scenario and the suburban scenario. 

Fig. 10 compares the distance deviation of a single group 
region between the DGD and MixGroup algorithm in the city 
scenario. Fig. 10 shows that the convergence rate of the 
DGD algorithm is faster than that of the MixGroup algorithm. 
The DGD algorithm achieves the convergence value at 
approximately t=60 s, whereas the MixGroup algorithm 
achieves it at 80 s. This finding further demonstrates that our 
proposed DGD algorithm has faster response speeds and 
effectively protects location privacy under the city scenario. 

The distance deviation of a group region for the suburban 
scenario is shown in Fig. 11. Two rapid increases are 
observed at t=30s and t=60s separately in MixGroup 
algorithm, while the growth of distance deviation shows a 
smooth increase in our proposed DGD algorithm. These data 
reveal that there are two social hot spots in the MixGroup 
algorithm, which may be caused by the leaking of location 
privacy, whereas the DGD algorithm performs better in 
preserving location privacy. 
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Fig. 11: Distance deviation of a group region for the suburban 

scenario 

Fig. 12 compares the distance deviation of a group region 
between the city and suburban scenarios. We find that the 
distance deviation is smaller in the city scenario than in the 
suburban scenario when t<60 s. However, the distance 
deviation of the city scenario overlaps the suburban scenario 
on the end. Both scenarios realize location privacy 
preservation when the distance deviation falls between 750 
m (dmax) and 600 m (dmin). 
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Fig. 12: Distance deviation for the city vs. suburban scenario 
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�. Trajectory Privacy    

To better measure the trajectory privacy, we also assume 
that a vehicle starts in a social hot spot and sends a safety 
message periodically with a speed of 30 km/h. Then, a 
trajectory is generated that includes 6 group regions in the 
anonymity duration (T=600 s). Here, the trajectory privacy is 
described with the average anonymity set size, average 
distance deviation and pseudonym entropy. 

Fig. 13 shows the anonymity set size of the trajectory 
under the city scenario. Comparing the DGD and MixGroup 
algorithm, the K in the DGD algorithm is larger than that of 
the MixGroup overall. Through formula 1, we can calculate 
the average anonymity set size as K=42.33 in the MixGroup 
algorithm, whereas the K=47.20 in the DGD algorithm. 
Hence, our proposed algorithm can effectively protect the 
trajectory privacy in the city scenario.  

In the MixGroup algorithm for the suburban scenario, 
three types of time settings {200 s, 500 s, and 600 s} are 
observed in which the anonymity set size is below the 
minimum (Kmin=35). Fig. 14 shows that the average 
anonymity set size K is 34.63. However, the anonymity set 
size of the DGD algorithm is close to the Kmax, and the 
average anonymity set size K (K=43.62) in the DGD 
algorithm is much larger than that in the MixGroup 
algorithm. Thus, we find that the DGD algorithm effectively 
provides the service of trajectory privacy preservation in the 
suburban scenario. 
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Fig. 13: Anonymity set size of a trajectory in the city scenario 
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Fig. 14: Anonymity set size of a trajectory in the suburban scenario 

Fig. 15 compares the anonymity set size on the trajectory 
between the city scenario and suburban scenario. In general, 

the anonymity set size in the city scenario is larger than that 
in the suburban scenario. Based on the above, the 
performance of our proposed DGD algorithm for trajectory 
privacy preservation in the city scenario is superior to that of 
the suburban scenario. 
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Fig. 15: Anonymity set size for the city vs. suburban scenario 

Figs. 16-18 show the distance deviation of the trajectory in 
the anonymity duration of 600 s. Based on formula 5, the 
average distance deviation of the DGD algorithm is 
D=727.67 while that of the MixGroup algorithm is 621.33 in 
the city scenario (as shown in Fig. 16). In suburban scenario 
(see Fig. 17), we find that the average distance deviation D is 
609.17 using the MixGroup algorithm and D=723.00 with 
the DGD algorithm. Thus, the DGD algorithm, which 
presents a higher average distance deviation, can effectively 
protect the trajectory privacy both in the city and suburban 
scenarios.  
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Fig. 16: Distance deviation on the trajectory in the city scenario 
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Fig. 17: Distance deviation on the trajectory in the suburban 

scenario 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
  

100 200 300 400 500 600
650

660

670

680

690

700

710

720

730

740

750
D

is
ta

nc
e 

D
ev

ia
ti

on
 (

M
et

er
s)

Anonymity duration (Seconds)

 City scenario
 Suburban scenario

 
Fig. 18: Distance deviation in the city vs. suburban scenario 

We compare the distance deviation between the city 
scenario and the suburban scenario in Fig. 18. Generally, the 
distance deviation in the city scenario is larger than that in 
the suburban scenario. Accordingly, the DGD algorithm is 
more effective in the city scenario in terms of preserving the 
trajectory privacy. 
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Fig. 19: Pseudonym entropy in the city scenario 
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Fig. 20: Pseudonym entropy in the suburban scenario 

Fig. 19 compares the pseudonym entropy on the trajectory 
between the DGD and MixGroup algorithms in the city 
scenario, and it shows that the pseudonym entropy with the 
DGD algorithm is larger than that with the MixGroup 
algorithm. The degree of privacy protection is directly 
proportional to the pseudonym entropy. From Fig. 20, the 
same result is found in the suburban scenario. Thus, in both 
the city scenario and suburban scenario, the DGD algorithm 
has a strong ability to protect trajectory privacy in the 

5G-based VSNs compared with the MixGroup algorithm. 

7. CONCLUSIONS 
In this paper, we studied the problem of protecting 

location and trajectory privacy in 5G-based VSNs. To 
dynamically divide the group region and meet the high 
real-time demands of users, we propose a system model of 
5G-based VSNs that applies MFemtocell technology. In our 
proposed system model, we design an efficient DGD 
algorithm to protect a vehicle’s location and trajectory 
privacy. The DGD algorithm comprises four stages: system 
initialization, group generating, pseudonym exchange, and 
group cancellation. Through the simulations, we show that, 
compared with existing solutions for generating the group 
region, our algorithm reduces the time delay and effectively 
protects the users’ location and trajectory privacy in 
5G-based VSNs. 
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