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Highlights

• Efficiency scores in Data Envelopment Analysis increase with increasing

uncertainty

• Uncertain Data Envelopment Analysis leverages uncertainty for inefficient

DMUs

• For ellipsoidal uncertainty sets we propose a first order algorithm

• A case study in radiotherapy is provided
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Abstract

Data Envelopment Analysis (DEA) is a nonparametric, data driven method

to conduct relative performance measurements among a set of decision making

units (DMUs). Efficiency scores are computed based on assessing input and

output data for each DMU by means of linear programming. Traditionally,

these data are assumed to be known precisely. We instead consider the situation

in which data is uncertain, and in this case, we demonstrate that efficiency

scores increase monotonically with uncertainty. This enables inefficient DMUs

to leverage uncertainty to counter their assessment of being inefficient.

Using the framework of robust optimization, we propose an uncertain DEA

(uDEA) model for which an optimal solution determines 1) the maximum pos-

sible efficiency score of a DMU over all permissible uncertainties, and 2) the

minimal amount of uncertainty that is required to achieve this efficiency score.

We show that the uDEA model is a proper generalization of traditional DEA

and provide a first-order algorithm to solve the uDEA model with ellipsoidal un-

certainty sets. Finally, we present a case study applying uDEA to the problem

of deciding efficiency of radiotherapy treatments.

Keywords: Data Envelopment Analysis; Uncertain Data; Robust

Optimization; Uncertain DEA Problem; Radiotherapy Design

1. Introduction and Motivation

Data envelopment analysis (DEA) is a well established optimization frame-

work to conduct relative performance measurements among a group of decision
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making units (DMUs). There are numerous reviews of DEA, see, e.g., Cooper

et al. (2007); Emrouznejad et al. (2008); Liu et al. (2013); Zhu (2014), and Hwang

et al. (2016); and the concept has found a wide audience in both research and

application. The principal idea is to solve an optimization problem for each

DMU to identify its efficiency score relative to the other DMUs. Efficiency

equates with a score of 1, and if a DMU’s efficiency score is less than 1, then

that DMU is outperformed no matter how it is assessed against its competitive

cohort.

A DEA model is only as good as its data because DMUs are compared

against each other through their assessed inputs and outputs. The importance

of accurate data is thus acute in establishing a DMU’s performance. However,

data is often imperfect, and knowledge about the extent of uncertainty can be

vague, if not obscure, as errors commonly have several compounding sources.

This fact begs the question of whether or not an inefficient DMU might have

been so classified because of some realization of inscrutable data, and if so, then

there is a reasonable argument against its perceived under-performance. The

question we consider is, what is the minimum amount of uncertainty required

of the data that could render a DMU efficient?

We address uncertainty through the lens of robust optimization, which is

a field of study designed to account for uncertainty in optimization problems.

The preeminent theme of robust modeling is to permit a deleterious effect to

the objective to better hedge against the uncertain cases that are typically ig-

nored. Indeed, the concern of “over-optimizing” is regularly used to galvanize

the use of a robust model that gives a best solution against all reasonable pos-

sibilities instead of a non-robust solution that inappropriately exaggerates the

weaknesses of estimated or sampled uncertainty. Examples of this sentiment

are found in antenna design (Ben-Tal and Nemirovski, 2002), inventory con-

trol (Bertsimas and Thiele, 2006), and radiotherapy design (Bertsimas et al.,

2010; Chue et al., 2005). References for robust optimization are Ben-Tal et al.

(2009) and Bertsimas et al. (2011).

Our perspective is counter to the orthodoxy that motivates robust models.

The diminishing effect of the objective induced by uncertainty is inverted into

a beneficial consideration in DEA due to the way efficiency scores are regularly
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calculated, as in (1) and (3), see Proposition 1. In particular, a DMU’s efficiency

score is non-decreasing as uncertainty increases. This observation suggests a

keen interest in uncertainty by an inefficient DMU, as it may have a legitimate

claim to efficiency modulo the imperfections of the data. As such, uncertainty

might be leveraged to assert improved, if not efficient, performance within the

confines of reasonable data imperfections.

Robust optimization is a relative newcomer to the task of modeling and

solving optimization problems with uncertain data. Stochastic programming is

the traditional stalwart, and stochastic extensions of DEA have an established

literature, see Olesen and Petersen (2016) and references therein. The general

relationships among robust programming, stochastic programming, and para-

metric and sensitivity analysis are well known (Ben-Tal et al., 2009). Here, we

take a fist step toward an uncertain DEA model (uDEA model), by adopting

principles from robust optimization.

The real-world problem motivating our study of uDEA is that of deciding

efficient radiotherapy treatments for prostate cancer (Lin et al., 2013). This

DEA application leads to the identification of treatments that could be improved

after redesign. However, the inputs and outputs of this problem are suspect due

to numerous approximations and errors. Moreover, the extent of uncertainty

can only be estimated, and making definitive conclusions about a treatment’s

inefficiency is questionable. Instead of analyzing treatment quality with certain

but imperfect data, we embrace the inherent uncertainty of this application and

compare the treatments in light of their uncertain characteristics.

1.1. Contributions of this Paper

We introduce the novel concept of uDEA, a paradigm in which a DMU can

select both its best data from an uncertainty set as well as its best efficiency

score based on this data. The uDEA problem determines the minimum amount

of uncertainty required to increase an efficiency score as much as possible. Un-

like traditional DEA, the model is generally nonlinear, and indeed generally

nonconvex, and we develop a first-order algorithm to solve the uncertain prob-

lem. We further provide modeling constructs and several examples to illustrate

the flexibility of uDEA. We conclude with a clinical application that aids treat-

ment evaluation and design. In particular, the application allows a planner to
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judge the acceptability of a treatment relative to the uncertainty of designing

and delivering it.

2. General Data Envelopment Analysis

We assume the (standard) input oriented model with variable returns-to-

scale from among the many DEA formulations, where the efficiency score E ı̂ of

DMU ı̂ is defined by solving the linear program,

E ı̂ = min{θı̂ : Y λ− yı̂ ≥ 0, Xλ− θı̂xı̂ ≤ 0, eTλ = 1, λ ≥ 0}, (1)

where e is the vector of ones. In this model, there are M outputs, indexed by

m; N inputs, indexed by n; and D DMUs, indexed by i. The matrices Y and

X are the nonnegative output and input matrices so that

Ymi is the m-th output value for DMU i, and

Xni is the n-th input value for DMU i.

The column vectors yı̂ and xı̂ are the ı̂-th columns of X and Y . If E ı̂ = 1, then

the ı̂-th DMU is efficient, otherwise 0 ≤ E ı̂ < 1, and the ı̂-th DMU is inefficient.

The development that follows generally applies to numerous other formula-

tions of DEA (Cooper et al., 2007), with only straightforward adjustments being

needed if the returns-to-scale assumption is altered, the orientation is changed,

or if environmental constraints are added. For example, model (1) assumes vari-

able returns-to-scale as imposed by the constraint eTλ = 1, but this constraint

could be removed to accommodate constant returns-to-scale without hindering

our analysis.

We re-formulate model (1) to ease notation and development. Let

Āı̂ =


 −Y yı̂ 0

X 0 −xı̂


 and B =


 eT 0 0

0 1 0


 . (2)

The input oriented DEA model with variable returns-to-scale is thus,

E ı̂ = min{cT η : Āı̂η ≤ 0, Bη = e, η ≥ 0}, (3)

where c = (0, 0, . . . , 0, 1)T and η = (λ, 1, θı̂). Let Āı̂k be the k-th row of Āı̂, for

which k indexes the collection of outputs and inputs,

{1, 2, . . . ,M,M + 1, . . . ,M +N}.
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We require a distinction between the data of the DEA model and the data of

the linear program in our forthcoming development, and to remove confusion

about the term “data,” we refer to X and Y as the DEA data and to Āı̂ and B

as the linear programming instance. Importantly, the solution

η = (0, 0, . . . , 0, 1, 0, . . . , 0, 1, 1) = (eTı̂ , 1, 1)

is always feasible, where the first 1 is in the i = ı̂ position as noted by eı̂. The

feasibility of this solution ensures that the efficiency score of the ı̂-th DMU is

no greater than 1.

3. Uncertain Data Envelopment Analysis

The reliability of a DMU’s efficiency score is jeopardized if the data is er-

roneous, which points to a desire to accommodate suspect data within a DEA

application. Uncertain data fits seamlessly into the paradigm of robust linear

optimization, and our overarching model adapts this robust perspective. Each

constraint Āı̂kη ≤ 0 is replaced with a set of constraints

Aı̂k η ≤ 0, ∀Aı̂k ∈ Uk, (4)

which reduces to the original constraint if the uncertainty set is restricted to

the singleton, Uk = {Āı̂k}.
Our goal to quantify the totality of uncertainty is aided by organizing the

per constraint description of (4) into a collection that captures all inputs and

outputs. Our notational convention in this regard is in Definition 1.

Definition 1. The uncertain inputs and outputs are:

(i) Uk is an uncertainty set that models the possible values of the data Aı̂k.

Hence each Aı̂k ∈ Uk is a possible row vector of input/output data for the

k-th input/output.

(ii) U = {Uk : k = 1, . . . , N +M} is a collection of uncertainty sets, or more

succinctly, a collection of uncertainty. Hence U contains the totality of

uncertainty across all inputs and outputs.

The DEA paradigm requires that the sets in U satisfy two restrictions to

ensure integrity between the uncertain DEA data and the resulting linear pro-

gramming instances. First, the X and Y components of each Aı̂k ∈ Uk are

6



ACCEPTED MANUSCRIPT

assumed to be nonnegative for all k. Second, we assume for each output m that

the m-th element of yı̂ agrees with Ymı̂ for all Aı̂m ∈ Um. Likewise, the n-th

element of xı̂ is assumed to agree with Xnı̂ for all Aı̂n ∈ Un. This second restric-

tion ensures that the uncertain input and output DEA data remains consistent

with the linear programming instances. Without this restriction an input or an

output of the ı̂-th DMU could differ in the two places it occurs in (3), making

the ı̂-th DMU split into two DMUs for some element(s) of the uncertainty set.

These restrictions essentially assume uncertainty of the DEA data, X and Y ,

instead of the linear programming instances, Aı̂ and B.

Collections of uncertainty are partially ordered by set inclusion of the in-

dividual uncertainty sets. So one collection can harbor more uncertainty than

another as long as the sets of the former contain those of the latter, a definition

we formalize below.

Definition 2. Consider the two collections of uncertainty,

U ′ = {U ′k : k = 1, . . . , N +M} and U ′′ = {U ′′k : k = 1, . . . , N +M}.

We say that U ′′ harbors at least the uncertainty of U ′, denoted by U ′ E U ′′, if

U ′k ⊆ U ′′k for k = 1, . . . ,M +N .

We define the robust efficiency score as the optimal value of the robust DEA

model,

E ı̂(U) := min{cT η : Aı̂kη ≤ 0, ∀Aı̂k ∈ Uk, ∀ k, Bη = e, η ≥ 0}, (5)

where := indicates the definitional extension of E ı̂ in (3) to denote the de-

pendence on uncertain data. We inherit the feasibility of η = (eTı̂ , 1, 1)T in the

robust DEA model from our restrictions on U , and hence, the maximal efficiency

score remains 1. Similar robust evaluations of efficiency are in Arabmaldar et al.

(2017).

Notice that for two different collections of uncertainty U ′ and U ′′, with U ′E
U ′′, we have

E ı̂(U ′) = min{cT η : Aı̂kη ≤ 0, ∀Aı̂k ∈ U ′k, ∀ k, Bη = e, η ≥ 0}

≤ min{cT η : Aı̂kη ≤ 0, ∀Aı̂k ∈ U ′′k , ∀ k, Bη = e, η ≥ 0} = E ı̂(U ′′).
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The inequality is immediate because the constraints defining E ı̂(U ′′) are more

restrictive than those defining E ı̂(U ′). This observation asserts that the ro-

bust efficiency score can only improve or remain the same by harboring more

uncertainty, which is formally stated in following proposition.

Proposition 1. For the collections of uncertainty U ′ and U ′′, if U ′ E U ′′, then

E ı̂(U ′) ≤ E ı̂(U ′′).

The nondecreasing relationship of Proposition 1 motivates our study, as it sug-

gests that a DMU’s perceived inefficiency might be rectified to efficiency if the

DEA data harbors sufficient uncertainty.

Our initial question of deciding a minimal amount of uncertainty to render a

DMU efficient pre-supposes initial efficiency evaluations based on dubious data.

The initial data provides an inflexible, fixed, or certain data collection Uo, where

each Uok ∈ Uo is the singleton of the nominal vector of the initial data so that

Uok = {Āı̂k}. Prospective uncertainty must harbor at least the uncertainty of the

nominal data, and we only consider U such that Uo E U . Moreover, germane

models of uncertainty might induce structural requirements on U , and hence,

the permissible collections of U will likely mandate adherence to restrictions

appropriate to the study.

Definition 3. Ω is the universe of possible collections of uncertainty.

Although Uo E U for each U ∈ Ω by assumption, the subset properties that

define E do not suggest how to quantify an amount of uncertainty. However,

comparative evaluations somewhat mandate that U be associated with a numer-

ical value. We assume an amount of uncertainty to be a numerical association

with U as defined below.

Definition 4. An amount of uncertainty is a mapping

m : Ω→ R+ : U 7→m(U)

such that

(i) m(U) = 0 if and only if |Uk| = 1 for k = 1, . . . ,M +N , and

(ii) m(U ′) ≤m(U ′′) if U ′ E U ′′.
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While m(U) intuitively hearkens to the idea of a measure or a norm on the

universe of uncertain collections, such connections are only, and purposefully,

allusionary. The first assumption mandates that zero uncertainty equates with

the only case in which there is no uncertainty, and the second assumption imbues

monotonicity of m(U). Note that these assumptions do not generally combine

with Proposition 1 to establish a non-decreasing property of the robust efficiency

score, and in general

m(U ′) ≤m(U ′′) 6⇒ E ı̂(U ′) ≤ E ı̂(U ′′)

even though

U ′ E U ′′ ⇒ E ı̂(U ′) ≤ E ı̂(U ′′).

Examples of m(U) are presented in Sections 4 and 5.

We suggest that if the ı̂-th DMU is inefficient and if the data is uncertain in

Ω, then we can solve the following uDEA problem for the ı̂-th DMU,

γ∗ = sup
0≤γ≤1
{γ : min

U∈Ω {m(U) : E ı̂(U) ≥ γ}} (6)

= sup
0≤γ≤1
{γ : min

U∈Ω {m(U) : min
η≥0 {cT η :

Aı̂kη ≤ 0, ∀Aı̂k ∈ Uk, k = 1, 2, . . . ,M +N, B η = e} ≥ γ}}.
We note that each of m(U), Ω, and γ∗ can depend on ı̂. For instance, m(U)

and Ω could be modeled differently for each ı̂. However, even if m(U) and Ω are

consistent for all ı̂, the value of γ∗ could still vary depending on which ı̂ is under

study. That said, we eschew a notational dependence on ı̂ for m(U), Ω, and

γ∗ to ease notation. The use of a supremum instead of a maximum keeps the

problem well defined, as there are cases in which no maximum exists although

the supremum does. An example of such a case is presented in Section 5. Should

γ∗ be achievable, then the components of an optimal solution (γ∗, U∗, η∗) are

• the maximum possible efficiency score γ∗ over the universe of permissible

uncertainty,

• a collection of uncertainty U∗ with minimal m(U∗) that is required to

achieve the maximum possible efficiency score, and

• an optimal vector η∗ that contains λ∗, which identifies an efficient target

for the ı̂-th DMU relative to the robust DEA model (5).
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An optimal solution to (6) is immediate should the ı̂-th DMU be efficient

with the nominal data Ā. In this case γ∗ = 1, U∗ = Uo, m(U∗) = 0, and

η∗ = (eı̂, 1, 1). In other words, an originally efficient DMU has already identi-

fied a data instance in which it is efficient, and no further uncertainty is required.

DMUs that were originally inefficient with Āı̂ might have instead been able to

improve their efficiency score had a more beneficial data set in Ω been selected.

If the efficiency score could improve to 1, then the originally perceived ineffi-

ciency could be the unfavorable byproduct of the original data rather than some

assumed structural weakness.

Three observations about model (6) deserve comment. First, the model’s

intent is concomitant with DEA’s bedrock supposition to present each DMU

with the possibility of maximizing its efficiency score. Model (6) does the same,

but it also allows a DMU to select a best possible collection of input and output

data. Second, the objectives of increasing γ and minimizing m(U) are stated

sequentially, as this seems appropriate from a DMU’s perspective. The same

modeling goal can be achieved with the following lexicographic optimization

problem provided that the supremum can be replaced with a maximum,

lexmin

γ ∈ [0, 1], U ∈ Ω



−γ

m(U)


 s.t. E ı̂(U) ≥ γ.

The lexicographic minimum assumes γ is as large as possible before it considers

reductions in the amount of uncertainty. Alternate models would not necessarily

assume a lexicographic ordering of the objectives and could instead seek Pareto-

optimal solutions to help assess the trade-off between the maximum possible

efficiency score γ and the amount of uncertainty m(U). For example, a bi-

objective model seeks to maximize γ while minimizing m(U) as

max
γ∈[0,1]

γ

min
U∈Ω

m(U)

s.t. E ı̂(U) ≥ γ,

which is discussed in Example 1 and illustrated in Figure 4. Indeed, tracking

the relationship between these values aids our explanatory ability and coincides

with our algorithmic development in Section 7. Third, problem (6) is similar
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to an inverse problem because it seeks the least amount of data uncertainty to

achieve a best possible efficiency score. Other inverse DEA models are found

in Wei et al. (2000) and Zhang and Cui (2016).

DEA’s dichotomy of classifying a DMU as either efficient or inefficient is

altered in the uDEA problem to a DMU being either capable or incapable, as is

now defined.

Definition 5. We distinguish between three cases of a DMU under Ω:

(i) DMU ı̂ is capable if γ∗ = E ı̂(U) = 1 for some U ∈ Ω.

(ii) DMU ı̂ is weakly incapable if γ∗ = 1 but E ı̂(U) < 1 for all U ∈ Ω.

(iii) DMU ı̂ is strongly incapable if γ∗ < 1.

(iv) DMU ı̂ is incapable if it is either strongly or weakly incapable.

Notice that an optimal vector η∗ for a capable DMU is η∗ = (eı̂, 1, 1), which

follows because the ı̂-th DMU is its own target for the uDEA problem with

an optimal U∗. A DMU is incapable if it is inefficient for all uncertain data

instances. An incapable DMU has no claim to efficiency unless it can argue for

a change in Ω.

4. Configurations of Uncertainty

Both the analytical outcomes and the computational tractability of a uDEA

problem rely on the type of uncertainty that is being considered and on how

the amount of uncertainty is evaluated. Hence an analysis depends on the pair

(Ω,m), which defines a configuration.

Definition 6. A configuration of uncertainty, or more simply a configuration,

is the pair (Ω,m), where Ω is a universe of possible collections of uncertainty

satisfying Uo E U for all U ∈ Ω, and m is an amount of uncertainty.

A configuration defines a uDEA problem by establishing the ‘rules’ upon which

DMUs will be assessed. We mention that a configuration does not give rise

to either a probability or an uncertainty space without additional assumptions,

see Liu (2007), chapters 2 and 5 on probability theory and uncertainty theory,

respectively.
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A configuration’s universe of uncertainty, along with its assessment of the

amount of uncertainty, should coincide with the purpose of the specific uDEA

problem, and for this reason, our development to this point has not imposed

unnecessary restrictions that would have otherwise limited application within

the DEA setting. However, robust problems are commonly motivated and solved

with uncertainty sets of the form

Uk = {Āı̂k + uTRk : ‖u‖p ≤ 1}, (7)

where ‖ · ‖p is the p-norm and Āı̂k is the nominal vector of the k-th row’s data.

If p = 2, then Uk in (7) is ellipsoidal. Ellipsoidal sets prevail in the litera-

ture, and they include polyhedral uncertainty (Ben-Tal and Nemirovski, 1999)

and are regularly motivated stochastically (Ben-Tal et al., 2009). Ellipsoids

provide computational tractability since E ı̂(U) is the optimal value of a second-

order cone problem that can be efficiently solved. The modeling favorability and

computational tractability of ellipsoids within the robust literature suggests that

these desirable qualities will extend to the uDEA setting if we assume ellipsoidal

uncertainty. Indeed, we review a process to model ellipsoidal uncertainty in Sec-

tion 4.1, and we develop an algorithm to solve uDEA problems with ellipsoidal

uncertainty in Section 7.

Uncertainty sets like those in (7) suggest an assessment of the amount of

uncertainty such as

m(U) = ‖U‖p,q :=
∥∥∥〈‖R1‖p, . . . , ‖RM+N‖p〉

∥∥∥
q
,

which aligns with the standard Lp,q notation associated with matrix norms. We

illustrate some of these amounts of uncertainty in the forthcoming sections.

4.1. Modeling Configurations with Scenarios

While uncertainty sets like those in (7) are common, modeling the associated

Rk matrices can be a hindrance. One such aid is to build the uncertainty sets by

assuming stochastic data, see e.g. Ben-Tal et al. (2009). Here we briefly review

a process that models an uncertainty set by considering random scenarios of

the data. Similar developments are found in Nemirovski and Shapiro (2006)

and Margellos et al. (2014). The result of this modeling process is a stochastic

interpretation of an uncertain problem.

12
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If we assume random data, then Aı̂kη is a linear combination of the random

inputs or outputs, where Aı̂ is a random matrix of the form in (2). The previous

notation of Āı̂ in (2) and (3), instead of say Aı̂, purposefully suggests nominal

data such as a mean, which is described momentarily. The stochastic theme is

to replace the deterministic constraint Aı̂kη ≤ 0 with the probabilistic constraint

P (Aı̂kη > 0) ≤ ε, where 0 ≤ ε ≤ 1.

As with all stochastic modeling, what remains from a design perspective is to

promote or assume distributional qualities of the random variables to express the

probabilistic constraint. The most common assumption is Aı̂kη ∼ N (µk, STD
2
k),

where the mean µk and the standard deviation STDk are unknown and depen-

dent on η. This condition is automatically satisfied if the input and output data

are assumed to be independent normals, and while this stronger assumption is

typical, it is questionable as a DEA premise - for instance, normality would

dispute the assumption of nonnegative data. We maintain a more permissive

stance by assuming that the input and output variables aggregate into an ap-

proximate normal, e.g. a truncated normal, an assumption that can, depending

on the setting, gain support from the Central Limit Theorem.

Using the normality of Aı̂kη, we have that (Aı̂kη − µk)/STDk is a standard

normal, which means that

P (Aı̂kη > 0) ≤ ε ⇔ µk + STDk δ1−ε ≤ 0, (8)

where δ1−ε is the 1− ε percentile. The decision variables comprising η need to

be selected so that the resulting mean µk and standard deviation STDk satisfy

the inequality on the right-hand side of (8).

We assume that each Ak is modeled as a collection of scenarios (Âk, pk), in

which each scenario is a row of the matrix Âk, and the probability vector pk

defines the probabilities of the scenarios. The standard matrix expressions for

the expected value and variance are then

µk = Exp(Akη) = Exp(Ak)η = pTk Âkη and

STD2
k = Var(Akη) = (Âkη)T (I − e pTk )TPk(I − e pTk )Âkη,

where Pk is the diagonal matrix of pk. We set

Rk = δ1−ε
√
Pk(I − e pTk )Âk (9)

13
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so that

STDk =
√

Var(Akη) =

√
ηTRTkRkη

δ2
1−ε

=
1

δ1−ε
‖Rkη‖2.

The probabilistic constraints in (8) are thus

pTk Âkη + ‖Rkη‖2 = Ākη + ‖Rkη‖2 ≤ 0, (10)

where Āk denotes the mean data of the scenarios. Hence, in this case the

nominal data is the mean data.

The relationship between a set of uncertain constraints (4) and a second-

order cone constraint with an ellipsoidal uncertainty set (10) is

Āk η + ‖Rk η‖2 ≤ 0 ⇔ Āı̂k η + max
u
{uTRk η : ‖u‖2 ≤ 1} ≤ 0

⇔ Ak η ≤ 0, ∀ Ak ∈ {Āı̂k + uTRk : ‖u‖2 ≤ 1}

⇔ Ak η ≤ 0, ∀ Ak ∈ Uk, (11)

where the first statement follows from the definition of a matrix norm. As

shown in (11), the inequalities in (10) are uncertain constraints with ellipsoidal

uncertainty sets.

5. Examples

Consider the three DMUs pictured in Figure 1 and whose nominal data

are listed in Table 1. DMU C is inefficient, and model (1) would scale C’s

input of 2 by the efficiency score of 1/2 to identify A as C’s efficient target.

The inefficiency of DMU C means that it has an interest in knowing if it is

capable under a configuration of uncertainty. We divide the discussion into

three examples with different configurations to help explore possible outcomes.

This collection

• demonstrates a capable, weakly incapable, and strongly incapable DMU,

• shows that uncertainties among the DEA data can be linked, and

• motivates a numerical algorithm.
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DMU A B C

Output 1 3 1

Input 1 2 2

Table 1: Nominal data of a uDEA problem.

Example 1. The uncertainty sets are of form (7), where

R1 = σ1




0.2 0 0 0 0

0 0.2 0 0 0

0 0 0.1 −0.1 0


 and R2 = σ2




0.1 0 0 0 0

0 0.2 0 0 0

0 0 0.1 0 −0.1


 .

The multiples σ1 and σ2 scale the permissible uncertainty from the nominal data.

We let the infinity-norm define the uncertainty sets so that

U1(σ1) = {−(1, 3, 1,−1, 0)− uTR1 : ‖u‖∞ ≤ 1}

= {−(1 + 0.2σ1u1, 3 + 0.2σ1u2, 1 + 0.1σ1u3, −1− 0.1σ1u3, 0) : ‖u‖∞ ≤ 1},
and

U2(σ2) = {(1, 2, 2, 0,−2) + uTR2 : ‖u‖∞ ≤ 1}

= {(1 + 0.1σ2u1, 2 + 0.2σ2u2, 2 + 0.1σ2u3, 0, −2− 0.1σ2u3) : ‖u‖∞ ≤ 1}.
The collection of uncertainty for any nonnegative vector σ = (σ1, σ2) is

U(σ) = {U1(σ1),U2(σ2)}.

We further assume that the amount of uncertainty is

m(U(σ)) = ‖U(σ)‖∞,2 =
√
‖R1‖2∞ + ‖R2‖2∞,

and that the configuration is

(Ω,m(U(σ))) = ({U(σ) : 0 ≤ σ1 ≤ 5, 0 ≤ σ2 ≤ 10)},m(U(σ))).

Note that σ is bounded above to maintain nonnegative data instances.

Figure 2 illustrates how uncertainty with σ1 = σ2 = 1 alters the geometry

that defines C’s efficiency score. The use of the infinity-norm permits the com-

ponents of u in the definitions of U1 and U2 to vary independently between 1 and

−1, and hence, the uDEA model includes every data collection in the shaded re-

gions. This is a strong statement, as it means that C can independently select

the input and output of all DMUs as long as the data remains in the shaded

regions defined by σ.
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Figure 1: A simple DEA example

with three DMUs.

Figure 2: A simple DEA example

with three DMUs and uncertainty.

Notice that the values of σ measure uncertainty per the elements of their

respective Rk matrices. As an example, if σ1 were to change from 1 to 2, then

each of the shaded regions would double their vertical length, which would alter

the efficient frontier and its proximity to the uncertain box around C.

From the geometry in Figure 2 it is clear that DMU C is capable under Ω;

simply enlarge the shaded regions about the DMUs until the dashed line intersects

the region about C. The efficiency score of C is defined by the upper-left corner

of the region about C and the line through the lower-right corners of the regions

about A and B, and after a few algebraic calculations, we have

EC(U(σ)) = min

{
1,

1 + 0.1σ2 + 0.15σ1 (1 + 0.1σ2)

2− 0.1σ2

}
.

The minimum amount of uncertainty required for DMU C to have an efficiency

score γ, with 0.5 ≤ γ ≤ 1, is the solution to

min
σ

{√
‖R1‖2∞ + ‖R2‖2∞ : 1 + 0.1σ2 + 0.15σ1 (1 + 0.1σ2) = γ (2− 0.1σ2)

}
.

For any efficiency score γ we can solve the constraint for σ2 to reduce the prob-

lem to that of minimizing the objective over σ1. The geometry of this optimiza-

tion problem with γ = 0.9 is shown in Figure 3.

The trade-off between C’s maximum efficiency score and the data’s minimum

amount of uncertainty that permits this score is the curve labeled “σ free” in

Figure 4. Information about the best possible outcome for C is listed in the first

row of Table 2. The minimum amount of uncertainty that renders the DMU
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capable is 0.72. The optimal σ of (2.29, 2.80) means that C needs to make the

following claims under this configuration to refute its perceived inefficiency.

1. The outputs of DMUs A and B require a range of uncertainty of ±2.29×
0.2. So A’s output would have to be considered as an uncertain element in

[0.54, 1.46] and B’s as an uncertain element in [2.54, 3.46]. The output of

C must have an uncertain range of ±2.29 × 0.1, meaning that its output

must be an uncertain element in [0.77, 1.23].

2. The inputs of DMUs A and C must have a range of uncertainty of ±2.80×
0.1, and the range of uncertainty of B’s input must be ±2.80 × 0.2. The

resulting, and necessary, intervals of uncertainty for the inputs of A, B,

and C are [0.44, 1.56], [1.44, 2.56], and [1.44, 2.56].

These ranges are permitted by Ω, and hence, C can claim efficiency by con-

structing a data instance in which it is efficient.
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Figure 3: A graph of m(U) as a function of

σ1 with γ = 0.9.
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Figure 4: The minimum amount of uncer-

tainty m(U(σ)) for any given maximum ef-

ficiency score γ.

Relationships among the constraints can be imposed to link the uncertainties

between the inputs and outputs. Table 2 includes the results for three such cases.

The first assumes σ1 = 0 to disallow uncertainty in the outputs. This situation

might be reasonable if the DMUs are dependable even with uncertain inputs, say

due to an established historical trust of achieving contractual requirements. The

configuration replaces all instances of σ1 with 0, and the regions of uncertainty in

Figure 2 collapse vertically and become horizontal lines. The minimum amount
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Maximum Robust Minimum Amount

σ restriction Efficiency Score of Uncertainty Optimal σ

none 1 0.72 (2.29, 2.80)

σ1 = 0 1 1.00 (0.00, 5.00)

σ2 = 0 0.875 1.00 (5.00, 0.00)

σ1 = 4σ2 1 0.95 (4.60, 1.15)

Table 2: Example outcomes depending on an imposed relationship between the uncertainty

of the inputs and outputs.

of uncertainty needed by C to refute inefficiency increases to 1 with an optimal

σ of (0.00, 5.00). The curve labeled “σ1 = 0” in Figure 4 shows this case.

The last two cases are,

σ2 = 0 : input uncertainty is removed, which might occur if the DMUs introduce

uncertainty with known inputs, and

σ1 = 4σ2 : input and output uncertainties are related so that output uncertainty

is four times greater than input uncertainty, which means that the DMUs

magnify uncertainty in the inputs.

The curve in Figure 4 labeled “σ2 = 0” is for the case without input uncertainty,

and the final curve is for the case with σ1 = 4σ2. DMU C is strongly incapable

if σ2 = 0 due to the necessity that σ1 ≤ 5 to maintain nonnegative data. If

σ1 = 4σ2, then C is capable.

Example 2. As a second example, let R1 and R2 now be

R1 = σ1 [0.2, 0.2, 0.2, −0.2, 0] and R2 = σ2 [0.1, 0.1, 0.1, 0, −0.1] ,

with the uncertainty sets being

U1(σ1) = {−(1, 3, 1,−1, 0)− uR1 : −1 ≤ u ≤ 1}
= {−(1 + 0.2σ1u, 3 + 0.2σ1u, 1 + 0.2σ1u, −1− 0.2σ1u, 0) : −1 ≤ u ≤ 1}

and

U2(σ2) = {(1, 2, 2, 0,−2) + uR2 : 0 ≤ u ≤ 1}
= {(1 + 0.1σ2u, 2 + 0.1σ2u, 2 + 0.1σ2u, 0, −2− 0.1σ2u) : 0 ≤ u ≤ 1}.

Let Ω = {{U1(σ1), U2(σ2)} : 0 ≤ σ1 ≤ 5, 0 ≤ σ2} and m(U(σ)) = ‖U‖1,1 =

‖R1‖1 + ‖R2‖1.
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The interpretation of the uncertain regions surrounding the DMUs is altered

from that of Example 1. First, U2(σ2) is directional since u is bounded below by

0, and hence, DMU C can increase, but not decrease, the inputs of all the DMUs

as it seeks to improve its own efficiency score. Second, in the first example the

values of u1, u2, and u3 could be selected independently in [−1, 1] for either of

the uncertainty sets due to the infinity-norm. Moreover, each data element was

adjusted by a unique component of u, and hence, the first example’s configuration

allowed the input and output data to be selected independently among the DMUs.

Such liberal selection is not permitted here. For instance, the uncertainty set

U1(σ1) in this example forces the outputs of all DMUs to increase or decrease

by the same amount.

The efficiency score of DMU C for any σ in the second example is

EC(U(σ)) =
1 + 0.1σ2

2 + 0.1σ2
.

The efficiency score in this case is independent of output uncertainty, as vertical

shifts of the data leave C’s efficiency score unchanged. Model (6) reduces to

sup
γ

{
γ : min

σ≥0

{
‖R1‖1 + ‖R2‖1 :

1 + 0.1σ2

2 + 0.1σ2
≥ γ,

}}
.

We conclude that C can reach any robust efficiency score less than 1 because

γ → 1 as σ2 → ∞. Indeed, an optimal solution to the inner minimization for

any fixed γ ∈ [0.5, 1) is

σ =

(
0,

2γ − 1

0.1 (1− γ)

)
and m(U(σ)) =

2 (2γ − 1)

(1− γ)
.

In this case DMU C is weakly incapable under Ω, as the supremum of γ is 1 but

no collection of uncertainty renders DMU C efficient.

We note that if we had instead used

R2 = σ2

[
0.1, 0.1, 0.133, 0, −0.133

]
,

then the supremum of γ would have been 0.1/0.133 ≈ 0.75. In this case DMU C

would have been strongly incapable, and even an infinite amount of uncertainty

would have left C inefficient.

Example 3 shows that even elementary uDEA problems can be difficult to

compute, supporting the need for a numerical algorithm.
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Example 3. Let the Rk matrices for the uncertainty sets be

R1 = σ1


 0.1 0.15 0 −0.15 0

0.15 0.05 0 −0.05 0


 and R2 = σ2


 0.1 0 −0.15 0 0.15

−0.05 0 0.2 0 −0.2


 .

Assume the uncertainty sets are the ellipsoids

U1(σ1) = {−(1, 3, 1,−1, 0)− uTR1 : ‖u‖2 ≤ 1}

and

U2(σ2) = {(1, 2, 2, 0,−2) + uTR2 : ‖u‖2 ≤ 1}.

Let U(σ) = {U1(σ1),U2(σ2)}, Ω = {U(σ) : 0 ≤ σ1 ≤ 6.667, 0 ≤ σ2 ≤ 10}, and

assume

m(U(σ)) = ‖U(σ)‖2,2 =
√
‖R1‖22 + ‖R2‖22.

The third column of R1 and the second column of R2 being zero means that

DMU C’s output and DMU B’s input are assumed certain. Otherwise, the

relationship among the uncertain inputs and outputs is more nuanced than was

the case in either of the first two examples. For instance, if u1 = 1 in U1(σ1),

then u2 is forced to be 0, demonstrating the difference between our earlier use of

the infinity-norm and the current use of the 2-norm. As such, the vectors in U1

and U2 are coupled through the selection of u, whose components are intertwined

by the requirement that ‖u‖2 ≤ 1.

Unlike the first two examples, an algebraic analysis of the third example

is tedious, and we instead turn to a computational study. While we postpone

algorithmic details until Section 7, the results are listed in Table 3, and the trade-

off between the minimum amount of uncertainty and the maximum efficiency

score is depicted in Figure 5.

The examples of this section only consider scalar versions of uncertainty in

which the Rk matrices are scalar multiples of a set matrix. Nothing in the

modeling framework requires such configurations. Another option would be to

let the individual elements of an Rk matrix be variables themselves, possibly

subject to constraints.
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EC(U) m(U) σ

Nominal 0.5 0.0 (0, 0)

(certain)

Efficient 1.0 1.45 (0.74, 2.70)

(uncertain)

Table 3: What DMU C would need to assume of the data to claim efficiency.
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Figure 5: The trade-off between maximum γ and minimum m(U) = ‖U‖2,2.

6. Traditional DEA as a Special Case of Uncertain DEA

A uDEA problem obviously reduces to its certain DEA progenitor if Ω =

{Uo}, in which case the optimal solution satisfies

U∗ = Uo, γ∗ = E ı̂(U∗) = E ı̂, and m(U∗) = 0.

With Ω = {Uo} the outer supremum over γ and the inner minimization over U
are meaningless in the uncertain model (6), and the overhead of the uncertain

paradigm is unwarranted with regard to solving the DEA problem. However,

the traditional DEA model in (1) is essentially a parametric query that asks,

how much do the inputs of the ı̂-th DMU need to scale (down) to reach the

efficient frontier? Since the uncertainty sets of our previous examples mimic

parametric scaling, a reasonable question is if model (6) can be used to solve

a DEA problem outside the trivial restriction of Ω = {Uo}. In other words,

can the outer supremum and inner minimization of model (6) be used to solve

a traditional DEA problem? We answer this question in the affirmative in

Theorem 1. The result follows by designing a configuration that holds outputs

certain but that permits uncertainty in the inputs of the ı̂-th DMU.
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Theorem 1. Assume the configuration (Ω,m), where the uncertain collections

in Ω are defined by the scalar σ so that 0 ≤ σ ≤ 1 and U(σ) is comprised of

Uk(σ)=





{Āı̂k}, k = 1, 2, . . . ,M

{Āı̂k+σ u [xk e
T
ı̂ , 0,−xk] : −1 ≤ u ≤ 1}, k = M+1,M+2, . . . ,M+N.

Assume the amount of uncertainty is m(U(σ)) = σ. Then the ı̂-th DMU is

capable, and the corresponding minimum amount of uncertainty is σ∗ = 1−E ı̂,
where E ı̂ is the efficiency score in (3).

Proof. Assume the stated configuration (Ω,m). Then the robust and certain

DEA models are

Robust DEA Certain DEA

E ı̂(U(σ)) = min γ

s.t. Y λ ≥ yı̂

(
X + σ uxı̂ eTı̂

)
λ ≤ γ (1 + σ u)xı̂,

∀ u ∈ [−1, 1]

eTλ = 1

λ ≥ 0

and

E ı̂ = min θı̂

s.t. Y λ ≥ yı̂

Xλ ≤ θı̂ xı̂

eTλ = 1

λ ≥ 0.

If the efficiency score of the certain DEA model is E ı̂ = 1, then E ı̂(U(0)) = 1,

and the result is verified with γ∗ = 1 and σ∗ = 0.

Otherwise assume E ı̂ < 1. We first establish that E ı̂(U(σ)) < 1 for suffi-

ciently small σ. First observe that E ı̂ < 1 guarantees a feasible λ̂ to the certain

DEA model such that Xλ̂ < xı̂. Hence, for each of the input constraints we

may select a positive σk so that

max
u∈[−1,1]

σk ux
ı̂
k

(
eTı̂ λ̂− 1

)
<
[
xı̂ −Xλ̂

]
k
.

So for any σ ∈ [0, mink σk] we have,

(
X + σ uxı̂ eTı̂

)
λ̂ < (1 + σ u)xı̂, ∀ u ∈ [−1, 1]. (12)

Since λ̂ inherits the other feasibility conditions of the robust DEA model from

the certain DEA model, we know that (λ, γ) = (λ̂, 1) is a feasible solution to the

robust DEA model for the selected σ. The strict inequality in (12) ensures that

γ can be further reduced, and hence, E ı̂(U(σ)) < 1 so long as σ ∈ [0, mink σk].
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The configuration is designed to satisfy the following monotonicity property

relative to the scalar σ,

m(U(σ′)) = σ′ ≤ σ′′ = m(U(σ′′)) ⇔ U(σ′) E U(σ′′)

⇒ E ı̂(U(σ′)) ≤ E ı̂(U(σ′′)),



 (13)

where the last implication follows from Proposition 1. This nondecreasing prop-

erty, together with the fact that E ı̂(U(σ)) < 1 for σ ∈ [0, mink σk], means that

we need to establish that E ı̂(U(σ)) ↑ 1 as σ increases past mink σk, which we

now do.

Assume σ is such that E ı̂(U(σ)) < 1, and let Ψı̂(σ, u) be the optimal value

of the linear program resulting from the robust DEA model with the selected σ

and a fixed u ∈ [−1, 1]. Then,

E ı̂(U(σ)) = max
u∈[−1,1]

Ψı̂(σ, u) < 1. (14)

The linear program of each Ψı̂(σ, u) is a DEA problem with xı̂ replaced by

(1 + σ u)xı̂, and the inefficiency of (14) ensures that if (λ, γ) is an optimal

solution to one of the linear programs that defines a Ψı̂(σ, u), then λı̂ = 0. We

conclude that eTı̂ λ = 0 as long λ is an optimal solution to one of the linear

programs that defines a Ψı̂(σ, u) as u varies in [−1, 1]. From (14) we know that

the robust DEA model only needs to consider the optimal solutions of the linear

programs that define Ψı̂(σ, u) for u ∈ [−1, 1], and hence, the robust DEA model

can be reduced to

E ı̂(U(σ)) = min γ

s.t. Y λ ≥ yı̂

Xλ ≤ γ (1 + σ u)xı̂, ∀ u ∈ [−1, 1]

eTλ = 1

λ ≥ 0

The most restrictive of

Xλ ≤ γ(1 + σ̂ u)xı̂, ∀ u ∈ [−1, 1]

occurs with u = −1, from which we know that the maximum of (14) is achieved

at u = −1, i.e. Ψ(σ,−1) = E(U(σ)). Hence, if σ is such that E ı̂(U(σ)) < 1, then
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the robust DEA model can be further reduced to

E ı̂(U(σ)) = min γ

s.t. Y λ ≥ yı̂

Xλ ≤ γ (1− σ)xı̂,

eTλ = 1

λ ≥ 0.

We now have that E ı̂(U(σ)) is the optimal value of the certain DEA model

defining E ı̂ with θ replaced with γ(1−σ). The smallest possible value of γ(1−σ)

is E ı̂, making

E ı̂(U(σ)) =
E ı̂

1− σ , (15)

provided that ratio on the right is less than 1. We conclude that

γ∗ = sup

{
E ı̂

1− σ : σ ∈
[
0, 1− E ı̂

)}
= 1. (16)

All that remains is to establish σ∗ = 1 − E ı̂, which is at least suggested

by (16). From (15) we know that E(U(σ)) < 1 for all σ ∈ [0, 1−E ı̂). Moreover,

the robust DEA model has an optimal solution for all σ ∈ [0, 1], so E(U(1−E ı̂))
exists and is between 0 and 1. The nondecreasing property in (13) further

ensures that for any σ ∈ [0, 1− E ı̂),

1 ≥ E(U(1− E ı̂)) ≥ E(U(σ)) =
E ı̂

1− σ .

Hence E(U(1−E ı̂)) = 1 because the right-hand side approaches 1 as σ → 1−E ı̂.
The proof is complete since σ = 1 − E ı̂ is the smallest value of σ achieving

γ∗ = 1,

We comment that the uncertainty sets of Theorem 1 were symmetric about the

nominal data because −1 ≤ u ≤ 1. Nothing in the proof would have changed if

we had instead used the asymmetric uncertainty sets with −1 ≤ u ≤ 0.

While Theorem 1 establishes that the uDEA paradigm subsumes traditional

DEA as a modeling exercise, the computational overhead of solving a certain

DEA model as a uDEA problem is difficult to support. The next section presents

an algorithm to solve uDEA problems.
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7. Solving Uncertain DEA Problems

Solving a uDEA problem is generally more difficult than is calculating the

efficiency score of a DMU. Indeed, even if the configuration is designed to rea-

sonably accommodate efficient calculations, computing γ∗ necessitates the lay-

ering of three optimization problems, which complicates algorithm design. We

restrict ourselves here to the case in which the robust DEA problem defining

E ı̂(U) can be efficiently solved as a second-order cone problem, i.e. we assume

in our algorithmic development that

Uk = {Āı̂k + uTRk : ‖u‖2 ≤ 1}.

This is the most common form of robust optimization.

The middle optimization problem seeks to minimize m(U), which we further

restrict to m(U) = ‖U‖2,2. Unfortunately, the constraint E ı̂(U) ≥ γ is not

generally convex as demonstrated by the subgraph of the function illustrated

in Figure 5, and hence, the middle optimization problem introduces a loss of

convexity. So even in a simplified case in which uncertainty is scaled and the

efficiency score results from a quick solve of a convex problem, the uDEA model

can lack convexity and challenge standard solution procedures.

We promote a first-order algorithm that relies on the sole requirement of an

efficient robust DEA solver. We assume the uncertain collection U depends on

a list of model parameters, which are arranged into the vector ψ. For example,

if uncertainty is scaled as in our previous examples, then ψ would be the σ

vector already used in much of our discussion. However, ψ could instead be the

elements of the Rk matrices themselves. Independent of any particular ψ, the

overriding goal of a uDEA problem is to calculate parameters ψ so that a DMU’s

efficiency score is as large as possible and so that the amount of uncertainty is

as small as possible to achieve the best efficiency score.

A forward difference approximation of ∂E ı̂(ψ)/∂ψj is

∂E ı̂
∂ψj

(ψ) ≈ E
ı̂(ψ + δ ej)− E ı̂(ψ)

δ
= hj ,

where δ is a reasonable perturbation for ψj . The existence of the partial deriva-

tive on the left is not generally guaranteed, as it depends on the configuration

and its parameter vector ψ. However, independent of the actual existence of the
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partial derivative, the approximating finite difference can be calculated, and the

vector h is an (assumed) approximate direction of steepest ascent of the robust

efficiency score over the parameter space, i.e. h ≈ ∇E ı̂(ψ) should the partial

derivatives exist. The calculation of h requires a robust efficiency score for each

j, making the computational burden increase with the number of parameters.

We follow h a step length of α, making the newly updated parameters ψ+αh.

We note that if U(ψ)EU(ψ+αh), then the updated parameters are guaranteed

to give at least the robust efficiency score of the previous parameters. For

scaled uncertainty like that of the third example in Section 5, we have for any

nonnegative step-size α that

h ≥ 0 ⇒ U(σ) E U(σ + αh) ⇒ E ı̂(σ) ≤ E ı̂(σ + αh).

Hence, verifying the nonnegativity of h certifies that there is no loss in the

robust efficiency score.

We favor small, incremental steps along h so that only minor gains in ef-

ficiency are accumulated per iteration. The rationale for small steps is that

we should be able to reasonably approximate the minimum amount of uncer-

tainty for the new gains in the robust efficiency score with a second, linear

approximation. In this case we can not straightforwardly follow (an approxi-

mation of) ∇m(U(ψ + αh)), as doing so would decrease uncertainty without

considering the gains in efficiency. Instead, we want to compute a direction d

along which the efficiency is maintained but for which the directional derivative

dT∇m(U(ψ + αh)) is as small as possible. Assuming ∇E ı̂ exists, we have that

these goals are satisfied by calculating

d ∈ argmin
{
ρT∇m(U(ψ + αh)) : ρT∇E ı̂(U(ψ + αh)) = 0, ‖ρ‖ ≤ 1

}
.

Either of the gradients can again be approximated with, e.g., forward differences,

but if the uncertainty sets arise from scaled versions of fixed matrices, then

m(U(ψ)) can be tacitly replaced with its square to get a simple sum-of-squares

for which ∇m(U(ψ + αh)) can be calculated directly. Once the gradients are

calculated or estimated, the minimization problem identifying d has a linear

objective with a single linear constraint and a single convex-quadratic constraint.

The problem can be solved routinely with standard solvers.
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We use a line search along d to establish a step size. The search calculates

the largest β less than 1 so that

E ı̂(U(ψ + αh+ β d)) ≥ E ı̂(U(ψ + αh))− ε,

where ε is some permittedly small loss in the robust efficiency score. Several line

searches have been tested, including second order methods. All line searches had

computational nuances that hindered their general use except for the method

of bisection, which was trustworthy throughout.

Pseudocode for the numerical procedure is listed in Algorithm 1. As with

all numerical methods, the algorithm relies on a set of convergence criteria and

tolerances that determine the performance. The algorithm’s practical ability is

demonstrated in the next section.

8. A Case Study in Radiotherapy

External radiation therapy is one of the major cancer treatments along with

surgery and chemotherapy, and about two thirds of all cancer patients undergo a

course of radiotherapy. Radiotherapy exploits a therapeutic advantage in which

cancerous cells are unable to recover as well as healthy cells from radiation

damage. Moreover, radiotherapy has the advantage of delivering near conformal

dose distributions to tumors with complex geometries. While radiotherapy is

generally regarded as a targeted, local therapy, it is not possible to irradiate

only the tumor. Therefore, the challenge in treatment planning is to achieve a

high dose of radiation to the tumor while sparing surrounding organs. We refer

to Bortfeld (2006) for further medical-physical details.

Cumulative dose-volume histograms (DVHs) serve in clinical practice to as-

sess treatment quality and to approximate the portion of a structure’s volume

that will receive a certain portion of the prescribed dose. Moreover, DVH con-

straints can serve as control points during the planning process (see e.g. Cambria

et al. (2014); Dogan et al. (2009)), with their recommended values being deter-

mined by protocols such as ICRU-83 (2010).

Treatments are planned by iteratively adjusting delivery parameters to best

adhere to contradictory goals. The planner’s skill and experience guide the

treatment design (Nelms et al., 2012). Quality assurance is often done by visual
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Algorithm 1 A First-Order Algorithm for Uncertain DEA

for ı̂ = 1, 2, . . . , D do

Calculate the noinal efficiency score, E ı̂, of the ı̂-th DMU.

if E ı̂ == 1 then

DMU ı̂ is capable under Ω

else

searchFlag = True

while searchFlag do

Set ψ so that m(U(ψ)) = 0

Calculate h with

hj =
E ı̂(ψ + δ ej)− E ı̂(ψ)

δ

Set ψ = ψ + αh.

Recalculate h for the updated ψ.

Calculate (or approximate) ∇m(U(ψ))

Compute direction d that solves

min{ρT∇m(U(ψ)) : ρTh = 0, ‖ρ‖ ≤ 1}
Use the method of bisection to search for the largest β less than 1

satisfying E ı̂(U(ψ + βd)) ≥ E ı̂(U(ψ))− ε
if |E ı̂(U(ψ+βd))−E ı̂(U(ψ))| < convTol or m(U(ψ+βd)) > maxUncrty

then

searchFlag = False

else

ψ = ψ + βd.

end if

end while

if E ı̂(U(ψ + βd)) == 1 and m(U(ψ + βd)) ≤ maxUncrty then

The ı̂-th DMU is capable under Ω.

else if E ı̂(U(ψ + βd)) == 1 and m(U(ψ + βd)) > maxUncrty then

The ı̂-th DMU is declared weakly incapable under Ω

else

The ı̂-th DMU is declared incapable under Ω

end if

end if

end for
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inspection of DVHs, leading to judgmental interpretation and uncertain out-

comes. For example, Das et al. (2008) observed high variability among planners

and institutions, reporting that the median dose to the tumor can vary by ±10%

of the prescribed dose across 96% of the patient population.

We consider 42 anonymized prostate IMRT treatments from Auckland Radi-

ation Oncology. All treatments were approved for observational study based on

the guidelines of the New Zealand Health and Disability Ethics Committee, see

Lin et al. (2013). These treatments were planned with the same system1, fol-

lowed the same clinical criteria, and were delivered to patients. However, uncer-

tainty about treatment quality remained at the end of the planning process even

with these commonalities due to patient and design variations. After all, each

anatomy and cancer is unique, and treatment planners tailor each treatment to

an individual patient based on their personal skills. While each treatment was

deemed acceptable for the specific patient at the end of the planning process,

further improvement might have been possible with continued exploration of

the planning parameters.

Further uncertainties caused by, for example, patient misalignment at the

time of delivery affect treatment quality, causing discrepancies between the

planned and delivered anatomical doses. As such, the delivered treatment is

one realization amongst the uncertain possibilities that could have been deliv-

ered with the identical, but already uncertain, planned treatment. The com-

bined uncertainties of treatment planning and delivery complicate assessment,

and we show that uDEA can aid the planning process by classifying planned

treatments. The classification is based on each treatment’s minimum amount

of uncertainty to become efficient against a competitive cohort of similar treat-

ments. If a planned treatment seems acceptable on standard evaluative metrics

and is efficient with only a small amount of uncertainty, then we gain confidence

in the treatment’s efficacy. If a planned treatment is either incapable or effi-

cient with only an excessive amount of uncertainty, then the treatment should

probably be re-planned.

The prescribed dose to the tumor volume was 74 Gy. The protocol required

1Pinnacle v9 and the SmartArc module by Philips, Netherlands
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that 95% of this prescribed dose be received by 99% of the tumor volume and

that 99% of this dose be received by 99% of the actual prostate. The criteria

for the organs at risk were that the fraction of the rectum volume that received

at least 40, 60, and 70 Gy should not exceed 60%, 40%, and 10%, respectively.

Lin et al. (2013) used the certain DEA model in (3) to compute efficiency

scores for these treatments. The data comprised of one point-wise and one aver-

aging evaluative metric for each treatment. The point-wise D95 value measures

the dose to 95% of the tumor volume and serves as the output of the DEA

model. The averaging quantity of generalized equivalent uniform dose (gEUD)

measures homogeneity of the dose delivered to the rectum and is employed as

the DEA input, see (Niemierko, 1997). In addition Lin et al. (2013) considered

the overlap between tumor and rectum as an environmental variable, which ad-

versely affects treatment quality and contributes to the variation in D95 and

gEUD data. Hence considering it in the DEA model helps to account for un-

certainty in the data. In our study, we therefore disregard the environmental

variable to better demonstrate the advanatge uDEA provides.

The data were extracted using CERR (Deasy et al., 2003). Lin et al. (2013)

identified efficient and inefficient treatments based on these nominal data and

suggested that the most inefficient treatments could have been re-planned with

improved efficiency, which was empirically verified for several treatments. Fur-

ther clinical information and the actual data are available in Lin et al. (2013).

Input and output data are illustrated in Figure 6. Two treatments achieved

an efficiency score of one, namely 27 and 35. The line connecting them is the

efficient frontier and the vertical and horizontal dotted lines to the bottom of 35

and the right of 27 indicate the weakly efficient frontier of this DEA instance.

The weakly efficient frontier consists of points that have either a maximal output

or a minimal input value.

In the medical physics community, the uncertainty in dose values is well re-

searched and documented in guidelines. The International Commission on Radi-

ation Units and Measurements (Andreo et al., 2004) concludes that the available

evidence suggests a required accuracy of 5% for certain cancers. Henŕıquez and

Castrillón (2008) use a probabilistic approach to model uncertainty in DVH

computation. Combining uncertainty for dose determination and the uncer-
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Figure 6: Illustration of the input and output data for the IMRT case study.

tainty associated with Pinnacle for multileaf collimators, they suggest the use

of an uncertainty of 3.6%. In accordance with this probabilistic approach and

our discussion in Section 4, we select ellipsoidal uncertainty sets for this clinical

study. These are

U1 = {Āı̂1 + σ1u
T I : ‖u‖2 ≤ 1} and U2 = {Āı̂2 + σ1u

T I : ‖u‖2 ≤ 1},

where I was the 42 × 42 identity. The resulting universe of possible uncertain

collections was

Ω = {{U1(σ1),U2(σ2)} : 0 ≤ σ1 ≤ 70.875, 0 ≤ σ2 ≤ 59.567}

= {U(σ) : 0 ≤ σ ≤ (70.875, 59.567)},

where the bounds on σ1 and σ2 were calculated to ensure the nonnegativity of

the data. The amount of uncertainty was

m(U(σ)) = ‖U(σ)‖2,2 =
√
‖σ1I‖22 + ‖σ2I‖22 = ‖σ‖.

This amount of uncertainty has the same physical unit of Gray (Gy) as σ1 and

σ2. The upper bounds on σ for this application are mathematically necessary

but clinically egregious, as adjusting a treatment by 50+ Gy would radically

violate the intent of treatment. These bounds could be reduced by a clinician to

better define capability. For example, adopting the 5% uncertainty of Andreo

et al. (2004), a limit of 0.05 × 74 Gy = 3.7 Gy could be set as a clinically
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Figure 7: Results of the uDEA problems for the IMRT data. Each symbol represents a

treatment.

meaningful value. However, all treatments were capable and became efficient

with less than 3.3 Gy of uncertainty.

Algorithm 1 solved each of the 42 uDEA problems associated with the treat-

ments. The parameter vector was ψ = 〈σ1, σ2〉, and the other settings were

δ = 0.1, α = 0.4, and ε = 10−8. The search direction d was calculated with the

objective coefficients

〈σ1‖R1‖2, σ2‖R2‖2〉 =
(√

42/2
)
∇m2(U(ψ)).

The algorithm terminated once the capability of a treatment was established to

within ε, i.e. γ∗ ≥ 1 − 10−8. The code was written in Matlab, and all cases

solved within a few seconds with Gurobi as the underlying solver. We note that

the numerical results depend on the actual implementation of the algorithm and

the non-convex solver.

Figure 7 displays the minimum amount of uncertainty required for each

treatment to become efficient. First note that both efficient treatments coincide

with point (1,0) in Figure 7 and that no uncertainty is required to prove that

they are capable. Next, observe that treatment 36 is weakly efficient. It has

the same (maximal) D95 value as 27 but a much higher gEUD value for the

rectum. Its original efficiency score of 0.9443 is, however, one of the lowest in

the data set due to the input orientation of the DEA model. With any D95
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value bigger than 72.125, treatment 36 would be efficient. Hence an arbitrarily

small amount of uncertainty would suffice to confirm capability of treatment

36. This amount is 0.01 in Figure 7, equal to the minimum amount of uncer-

tainty permitted by our algorithm. This explains why the minimum amount of

uncertainty does not monotonically decrease with increasing original efficiency

score. We also observe that treatments close to the (weakly) efficient frontier,

such as 19, 31, and 37 require only very small amounts of uncertainty to ascer-

tain capability. On the other hand, treatments that are furthest away from the

frontier require the highest amounts of uncertainty, such as 2, 3, 28, 29, and

39. Note that these treatments show a nearly linear configuration from the top

left of Figure 7 towards the bottom right. The combination of an originally low

efficiency score together with a high amount of required uncertainty strongly

suggests re-planning. As we move from treatments in the bottom right of Fig-

ure 6 to those closer to the frontier, we follow the “line” to the bottom right

in Figure 7. Note, however, that there is no complete correlation between the

distance to the frontier and the minimum amount of uncertainty, as shown for

treatment 17, for example. Both the (Euclidean) distance, which directly re-

lates to the computation of the amount of uncertainty under our configuration,

as well as the gEUD value, which determines the efficiency score in the DEA

problem (3), are relevant for the minimal m(U) value for each treatment. In

effect, the treatments marked by dots and squares in Figures 6 and 7 are all

relatively close to the frontier, and therefore require much smaller amounts of

uncertainty, irrespective of their nominal efficiency score, than those far away

from the frontier, marked as crosses in both figures.

This observation illustrates that an analysis of uDEA depends on the con-

figuration. Using the configuration of Theorem 1, the minimum amount of

uncertainty for treatment 36 would have been 0.0557, i.e. 1 minus the nominal

efficiency score, because that configuration disregards output uncertainty. On

the other hand, the configuration chosen here demonstrates that an arbitrarily

small amount of (output) uncertainty would have been sufficient to prove that

treatment 36 is capable within the rules of the configuration.

Also, Figure 7 would have likely changed if the configuration had been based

on a different norm or had the uncertainties been linked. The selection of a con-
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figuration is part of the uDEA modeling process, and all analysis is relative

to the configuration. As with many OR modeling paradigms, the configura-

tion should be selected to provide a meaningful analysis and computational

tractability.

9. Conclusion

We investigated how DEA is affected by uncertain data. We first presented

a robust DEA model that defines a robust efficiency score for known uncertainty

sets. We then formally showed that an increase in the uncertainty harbored by

a collection of uncertainty increases the efficiency score of a DMU. This led to

the question of how much uncertainty is needed to classify a DMU as efficient.

We introduced the definition of an amount of uncertainty, which allowed us

to formulate an optimization problem that answers this question. We then

discussed configurations of uncertainty from a stochastic perspective. After

illustrating our concepts with simple examples, we proved that traditional DEA

is a special case of uDEA for a particular configuration of uncertainty. We

also provided a first-order algorithm to solve the uDEA model with ellipsoidal

uncertainty sets. Finally, we presented a case study in radiotherapy to validate

the relevance of uDEA in some practical applications.

We have not addressed in any detail the possible situation that configura-

tions of uncertainty in the uDEA model depend on the DMU under assessment,

which will be investigated in future work. Other questions for future research

are whether and how a stochastic interpretation of uDEA opens a route to ap-

proaching the problem via simulation. The relationship between uDEA and

parametric analysis will also lead to further questions.
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