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A B S T R A C T

This paper presents a novel framework with which the inelastic behavior and the frequency-dependent dynamic
characteristics of soil-foundation system can be represented with a computationally efficient numerical model.
The inelastic behavior of soil in the vicinity of a shallow foundation is represented with a macro-element which
is based on the classical plasticity theory. The frequency-dependent property of soil-foundation system is
represented with a recursive parameter model. The framework allows integration of both models such that both
the inelastic behavior and the frequency-dependent characteristics can be captured. The proposed method is
verified against FE analysis of a shallow foundation in the two dimensional parametric space of frequency and
inelasticity. The verification shows that the model using the proposed framework can fully represent the
inelastic cyclic behavior at low frequency excitation and the dynamic response at high frequency excitation. The
method provides an approximate solution for the cases in-between, e.g. a foundation subjected large amplitude
high-frequency excitation. As an application example, the method is applied to an analysis of a bridge pier
subjected to earthquake loading.

1. Introduction

Performance-Based Seismic Design (PBSD) approach embraces
explicit assessment of the response of structural components with
target building performance objectives. As shallow foundation exhibits
inelastic behavior at the interface of the soil-foundation system upon
excessive load, realistic assessment of cyclic inelastic rocking response
of foundation is recommended [1,2]. Two mechanisms of nonlinearity
take place between the soil and foundation; geometric nonlinearity (i.e.
rocking response) and material nonlinearity (i.e. yielding of soil).

The rocking response of shallow foundations has been one of the
key research areas that has gained interest in recent years. Various
experimental studies, such as a large-scale shaking table test of a bridge
column [3], a small-scale shaking table test of a 3-storey building [4]
and a centrifuge modelling of rocking-isolated inelastic RC bridge piers
[5], have captured the rocking of the shallow foundation and found that
this behavior reduces the residual drift and seismic demand of the
structure. However, rocking shallow foundation may also experience
large differential settlement during excessive cyclic loads which mainly
result from yielding of near-field soil. On this basis, rocking of the
foundation and yielding of soil should be carefully analyzed in the
PBSD of shallow foundations [4,5].

There exists literature which provides guideline on modelling of

shallow foundations. For example, ASCE 41-13 [6] provides a compo-
nent action table with modelling parameters and acceptance criteria for
nonlinear and linear analysis of shallow foundations. The values in the
component action tables for nonlinear analysis procedures are based
on the analysis of rocking shallow foundation, which was observed
from experimental model tests. For the linear analysis procedure, the
empirical coefficient, m-factor, is revised to reflect the allowable
rotation of the rocking foundation from the nonlinear analysis proce-
dure [7]. Unlike ASCE 41-06 [8] where rocking foundation and yielding
at the soil-foundation interface are uncoupled and checked separately,
ASCE 41-13 [6] considers the coupled behavior of foundation rocking
and yielding of the soil. This approach is more realistic as the failure of
the foundation is governed by stiffness degradation and yielding of the
soil [9]. Kutter et al. [7] provided a rationale for the revisions made in
ASCE 41-13 for rocking shallow foundation and validated these
revisions with extensive experimental results [7,10].

The numerical modelling of dynamic soil-structure interaction
(SSI) between an inelastic soil domain and a structural model for
shallow foundation is a complicated task. The model entails an infinite
soil domain, interface property between the structural foundation and
soil, and verification and benchmark analysis. The Finite Element (FE)
analysis is a rigorous method which is able to model the infinite soil
domain with an arbitrary geometry and diverse soil layers. However,
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special measures should be taken to accurately model the boundaries of
the numerical model. The scattered waves from a structure should be
dissipated or absorbed at the boundaries in order to avoid the wave
reflection. This means that the numerical domain should be large
enough to avoid the negative effects of the reflected wave to the
structural responses. If the inelastic dynamic behavior of the founda-
tion is of interest, it is necessary to model soil as a nonlinear material
and include the soil-foundation interface. This type of analysis,
however, takes enormous computing time as presented in Kabanda
et al. [11] where a large inelastic soil domain and a structure were
modelled with FE method. Due to these challenges, shallow founda-
tions have been modelled using simplified methods. There are mainly
four categories of simplified modelling techniques commonly used in
the research and engineering practice; the uncoupled lumped spring
approach as presented in ASCE 41-13 [7,10,12]; beam-on-a-nonlinear
Winkler foundation (BNWF) [1,13]; simplified nonlinear model with
springs and dashpots [2,14]; and a macro-element method with
plasticity formulation [15–17].

These simplified models have their own strengths and drawbacks in
simulating inelastic behavior of shallow foundations. One major draw-
back of these methods is the replacement of a dynamic soil-foundation
system with an equivalent static or lumped element which ignores the
frequency-dependent properties of soil domain. As the simplified
model replaces the soil model with equivalent linear or nonlinear
springs, the frequency-dependent stiffness and damping components
of the soil-foundation system are ignored. This leads to inaccurate
representation of wave propagation from structure to soil domain as
the inertia and energy dissipation from radiation damping of soil is
neglected. It has been well documented that the nature of soil-structure
interaction is frequency-dependent [12,18,19]. Mylonakis et al. [12]
have compiled studies on frequency-dependent stiffness and damping
of soil-foundation system and provided a guideline for engineers to
include frequency-independent properties of soil. In their study, it has
concluded that soil foundation system exhibits frequency-dependent

behavior even for low magnitude cyclic load. Also, Lesgidis et al. [19]
have investigated the influence of frequency-dependent characteristics
of soil-foundation system on the fragility curves established for RC
bridges. It was found that there is a meaningful correlation between the
frequency content of the earthquake and the numerical error intro-
duced with the use of frequency-independent approach in establishing
the fragility curves.

The objective of this paper is to propose a framework, which can
couple a frequency-dependent model of soil-foundation system with a
frequency-independent inelastic model. The framework aims to pro-
vide a practically accurate modelling approach which can capture the
behavior of nonlinear soil-structure interaction problem subjected to
dynamic load. The proposed framework is a generalized approach such
that it can be used to couple any frequency-dependent model with any
inelastic model. As an implementation example, the recursive para-
meter model by Nakamura [20,21] and the macro-element by
Chatzigogos et al. [17] are adopted to model frequency-dependent
and inelastic behavior, respectively.

The overall framework is presented in Section 2.1. This framework
is used to integrate macro-element and a recursive parameter model,
which are introduced in Section 2.2 and Section 2.3, respectively.

Fig. 1. Domain of dynamic loads.

Nomenclature

c cohesive strength of soil
c damping matrix of foundation-soil system

Cj recursive damping matrix at t=t−tj
C0 instantaneous damping matrix of soil
D characteristic dimension of strip or circular footing (i.e.

width of strip or diameter of circular footing)
Ed dissipated energy
ESo elastic restoring energy
F force vector of foundation-soil system
Fi force vector of foundation DOF (i= f ) or soil DOF (i = s)

h0 Initial plasticity parameter in macro-element

k static stiffness matrix of foundation- soil system

kij static stiffness matrix corresponding to foundation DOF(f

) or soil DOF(s)

Kel uplift, stiffness parameter with uplift coefficient of the founda-

tion

Kij dynamic stiffness matrix corresponding to foundation

DOF (f ) or soil DOF (s)

Kij ij= N, V, M , normalized elements of the stiffness

parameters for macro-element

Kj recursive stiffness matrix at t=t−tj
K0 instantaneous stiffness of soil
Kpl the plastic stiffness calculated using mapping rule
N vertical force on the footing
Nmax maximum bearing capacity of footing
m mass matrix of foundation-soil system
M moment applied on the footing

M0 instantaneous mass matrix of the soil
p1 plasticity parameter in macro-element
qel elastic response of macro-element
qpl plastic response of macro-element
q i N V M, = , ,i normalized displacement parameter
Q i N V M, = , ,i normalized force parameter
QM O, Uplift moment initiation for macro-element
rD restoring force vector from dynamic response of soil-

foundation system
rf restoring force vector from the overall response of soil-

foundation system
rS restoring force vector from quasi-static response of soil-

foundation system
tj occurrence time (time delay) of the reflection reaction
u displacement vector of foundation-soil system
ui displacement vector of foundation DOF (i= f ) or soil DOF

(i = s)
ux horizontal displacement of the footing
uz vertical displacement of the footing
V horizontal force on the footing
x y z, , cartesian coordinates

Greek

ν Poisson’s ratio
θy rotation angle
ω frequency
ζ equivalent damping ratio
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Section 2.4 presents details on how the two models are integrated. In
Section 3, the integrated model is verified against extensive FE analysis
of a shallow foundation in two dimensional parametric space of
frequency and inelasticity. This verification illustrates the ability of
the proposed model to capture the frequency dependency as well as the
inelastic behavior of the soil-foundation system. A practical application
example of the proposed method is presented in Section 4, which is
followed by the conclusion in Section 5.

2. Integration method for inelastic and frequency-dependent
models

2.1. Proposed framework

Dynamic loads applied to a soil-foundation system can be char-
acterized in terms of frequency and amplitude as illustrated in Fig. 1.
When the frequency of excitation is relatively small (i.e. domain A and
B in Fig. 1), the dynamic characteristics of the soil-foundation system
does not largely influence the structural response. In this case, the
numerical model of the soil-foundation system should capture the
quasi-static inelastic hysteretic behavior which results from yielding of
soil and/or uplifting or sliding of foundation. The inelastic hysteretic
behavior may also be affected by coupling between axial force, shear
force, and moment. A finite element (FE) model, nonlinear springs, or
macro-elements can be used to capture the response of soil foundation
systems subjected to loads in domain A and B.

On the other hand, when the amplitude of excitation is relatively
small (i.e. domain B and C), then inelasticity of a soil-foundation
system can be ignored. Then, the numerical model should focus on
capturing correct dynamic characteristics of a soil-foundation system.
The dynamic characteristics of a soil-foundation system is frequency-
dependent, thus special approach is necessary in numerical modelling
such as a set of calibrated lumped springs, masses, and dampers; FE
model with fine mesh and energy absorbing (or wave transmitting)
boundary; recursive parameter models, etc. To simplify the modelling
process, the frequency dependent characteristics are often simplified as
frequency independent lumped springs or dashpots, whose properties
are determined at the predominant frequency of excitation or at the
natural frequency of the system.

In the event of an earthquake, however, the excitation may
encompass all regions in Fig. 1(i.e. domains A–D). Thus, ideally, a
numerical model should be able to capture both the inelasticity and
frequency dependency. Several approximate approaches have been
proposed to meet this requirement. For example, Pecker et al. [15] and
Chatzigogos et al. [16] used a dashpot damper where the property of
the damper was selected at the predominant frequency of excitation or
natural frequency of the soil-structure system [22]. Because the
damping value is selected at a specific frequency of excitation, the
model needs to be recalibrated for a structure with different natural
frequency or for input excitation with different frequency contents.

The dynamic response of soil-foundation system, which is illu-
strated in Fig. 2, subjected to external force can be found by solving the
following equation:

u u u Fm c k̈+ ̇+ = (1)

where m, c, and k are the mass, damping, and stiffness matrices of the
soil-foundation system, and F is the excitation force. The system of
equation may include dashpot components for energy absorbing
boundary. In the frequency domain, the equation can be expressed as

m c u Fω i ω ωk( − + ω ) ( )= ( )2

u Fω ω ωKor, ( ) ( )= ( ) (2)

where ω ω iωK k m c( )= − +2 . Eq. (2) can be decomposed into two
domains; one for foundation degrees of freedoms (DOFs), f, and the
other one for soil DOFs, s.

⎡
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The notation (ω) is dropped for simplicity. Because the dynamic
force from a structure is applied to the foundation DOFs only (i.e. F=0)s

and because the foundation's response, uf is of interest, Eq. (3) can be
condensed as below.

FK K K K u( − ) =ff fs ss sf f f
−1

FK uor =f f f (4)

where K K K K K= −f ff fs ss sf
−1 . The term Kf is the dynamic stiffness of the

soil-foundation system which is a function of the excitation frequency,
ω, and considers energy dissipation from wave propagation to infinite
viscous medium. When the excitation frequency approaches zero (i.e.
ω→0) or when the mass and stiffness matrices are negligible, the
dynamic stiffness matrix, Kf is equivalent to the condensed static
stiffness matrix kf where k k k k k= − .f ff fs ss sf

−1 The numerical evaluation of
Kf requires significant amount of computing time as it requires a large
soil domain and fine mesh. Thus, formulas and charts are available for
typical foundation geometry [23].

To run analysis of soil-foundation-structure system in time domain,
Eq. (4) needs to be transformed to an equivalent model suitable for
direct time stepping method. Several methods are available for the
transformation such as lumped parameter models [10–17] and recur-
sive parameter models [20,21,24,25]. Assuming that Eq. (5) is the time
domain representation of Eq. (4) using any one of the available
methods gives the following expression,

r u F( )=D f f (5)

where rD is a restoring force vector from soil-foundation system which
is a function of displacements of the foundation DOFs, uf . The
subscript D denotes that the restoring force vector is from dynamic
response of the soil-foundation system. When mass and damping terms
can be ignored, or when the excitation frequency approaches zero, the
restoring force vector is equivalent to the condensed static stiffness
matrix multiplied to the displacement vector.

r u u Fk( )= =D f f f f (6)

For inelastic quasi-static response, the restoring force from the soil-
foundation system, rs is a nonlinear function of the deformation due to
given quasi-static deformation, uf .

r u F( )=S f f (7)

Fig. 2. Illustration of soil-foundation system subjected to dynamic load at the foundation.
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where the subscript S denotes that the restoring force vector only
considers static response. The restoring force is path dependent, and
may show broad range of hysteretic behaviors depending on the

constitutive model of soil or uplifting and sliding of foundation. Most
simplified nonlinear spring models or macro-elements attempt to
replicate the restoring force vector,rS. If the amplitude of displacement
is sufficiently small, then the soil can be assumed to be elastic. Then,

r u u Fk( )= =S f f f f (8)

It is worth noting that Eqs. (6) and (8) are identical, and represent
the restoring force of soil-foundation system when both amplitude and
frequency of excitation is small, which is domain B in Fig. 1.

In order to capture both dynamic elastic and quasi-static inelastic
responses (domains A, B, and C in Fig. 1), the following expression is
proposed.

r u r u r u uk( )= ( )+ ( )−f f D f S f f f (9)

Eq. (9) clearly shows that when the dynamic response can be
ignored (i.e. low excitation frequency or negligible damping and mass
matrices, domain A and B in Fig. 1), then r u( )D f and ukf f cancel each
other, which results in Eq. (7). In the same way, when the amplitude is
small or the system is linear elastic (i.e. domain B and C in Fig. 1.), then
Eq. (9) is identical to Eq. (5). Thus, Eq. (9) can approximate the
inelastic dynamic response of a soil-foundation system. Extensive
parametric study with a FE model proves the efficacy of this method.
This method, however, provides approximate result for the domain D
in Fig. 1.

To implement the framework for soil-structure-interaction pro-
blem, it is necessary to select suitable models which can evaluate the
restoring force vector, rS and rD, for quasi-static inelastic response and
dynamic elastic response, respectively. In this paper, for two-dimen-
sional shallow foundation, the macro-element proposed in Chatzigogos
et al. [17] is adopted to calculate the restoring force vector, rS, and the
recursive parameter model in Nakamura [20,21] is used to calculate
the vector rD. The proposed model for the restoring force vectors (rSand
rD.) are summarized in the following sections.

2.2. Inelastic cyclic behavior modelled with a macro-element

The macro-element is a simplified element where the behavior of
soil-structure interaction is captured in a single node. The initial
concept of macro-element was introduced by Nova and Montrasio
[26] for rigid shallow foundation on sand with generalized force-
displacement relationship. Paolucci [27] has applied the macro-ele-
ment to structures subjected to earthquake excitations. Then, Cremer
et al. [15] has introduced uplift condition of the foundation coupled
with the plasticity of the soil. Chatzigogos et al. [17] have extended the
macro-element to dynamic loading application with frictional soil,
taking into consideration of the coupled uplift and sliding of the
foundation. More details on the macro-element can be found in
Chatzigogos et al. [17]. The following is a high level summary of the
element.

In the macro-element, a single node is placed at the center of the
rigid foundation. This node has horizontal, vertical, and rotational
DOFs to represent the response of footing in two dimensional
problems. The normalized force and displacement parameters are used
in the formulation as shown in Fig. 3.

For analysis purposes, the force parameters are normalized with
respect to the maximum bearing capacity of the foundation, Nmax, and
the displacement parameters are normalized with the characteristic
dimension of the footing, D (i.e. width of the strip foundation). Using
these parameters, the generalized force-displacement relationship is
represented by a generalized stiffness matrix given by:

⎡
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V

M

NN NV NM

VN VV VM

MN MV MM (10)

In the macro-element formulation, the generalized force and

Fig. 3. Generalized force and displacement diagram for shallow foundation in macro-
element.

Fig. 4. Schematic diagram of the macro-element model with elasticity and plasticity.

Table 1
Soil material properties for FE model.

Components Properties

Foundation 10 m wide rigid strip foundation
Interface With/without uplift
Soil ρ= 1.6 t/m3, G = 65,000 kPa

v=0.25, c = 30 kPa
100 m in height, 100 in width soil domain; cohesive soil

Table 2
Numerical parameters for the proposed method.

Element Numerical parameters Comments

Macro-element B=10 m Width of foundation
(Chatzigogos et al.

[16,17])
Nmax=1.6×106 N Maximum bearing capacity of

footing
KNN=8.9×10

7 N/m Vertical stiffness
KVV=8.6×10

7 N/m Horizontal stiffness
KMM=3.2×10

7 Nm/rad Rotational stiffness
h0=0.1KNN Initial plasticity parameter

calibrated from FE model
p1=3 Plasticity parameter calibrated

from FE model.
Q = 0.3V max, Maximum horizontal load

capacity in bounding surface
Q = 1.72M max, Maximum moment capacity in

bounding surface

Q Q= ± exp(−5 )M O
QN

N, 4
Moment of uplift initiation of
footing on elastoplastic soil

Recursive
parameter
model
(Nakamura
[20,21])

Dynamic stiffness Dynamic stiffness defined at
0.5 Hz interval (0.5, 1.0, …,
20 Hz). Dynamic stiffness at
beyond 20 Hz was extrapolated
based on Duarte et al. [29]

Impulse response Following recursive parameters
are defined at 0.001 s interval
based on the dynamic stiffness.
M0, K0, K1, K2, …, K1000, C0,
C1, C2, …, C999
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Fig. 5. Parametric study of varying frequency and amplitude.
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displacements are expressed in the incremental format, denoted by
dots on each force and displacement variables as shown in Eq. (10).
The static stiffness matrix for various soil and foundation types are
provided by Mylonakis et al. [12]. Based on this formulation, the uplift
of the foundation is captured by the coupling terms of vertical and
rotational DOFs. More details on the formulation of this matrix and
each parameters used for uplift of the foundation are available in
Chatzigogos et al. [17].

The mechanism of soil material yielding in the vicinity of the
footing is described by the bounding surface through a hypoplastic
model. For a simplified macro-element model, ellipsoidal shape
bounding surface at the origin is used [17]. This bounding surface
defines the maximum capacity of the foundation in each DOFs. The
role of the bounding surface is to define the case of pure loading,
neutral loading and unloading; where pure loading and reloading are
accompanied by the development of plastic displacements and unload-
ing response is purely elastic. The mapping rule is used where each
point in the interior of the bounding surface is projected onto the
specific point on the bounding surface. The hyperplastic formulation is
discussed in details in Chatzigogos et al. [17]. Once the elastic and
plastic response of the element is analyzed, they are superimposed to
represent the overall behavior of the soil-foundation as shown in Eq.
(11).

q q q= +el pl (11)

Fig. 4 shows the schematic diagram of this element accounting for
two nonlinear mechanisms. Using the hypoplastic constitutive law, the
plasticity is defined by the ratio of the force experienced by the footing
to the bounding surface of the footing. Uplift, on the other hand, is
defined as a condition in the elastic response when the moment exceeds
certain moment (referred to as ‘uplift initiation moment’) which
initiates detachment of the foundation from soil. Then, coupling effect
of the uplift condition and inelasticity of the soil is triggered. This
formulation consists of mathematical expressions and numerical para-
meters that are explained in Chatzigogos et al. [17].

The elastic response of the macro-element is formulated based on
the static stiffness and uplift coefficients of the foundation. Then, the
elastic and plastic response of the soil-foundation system is combined
at each force increments. The restoring force of the foundation, Q,
occurring from macro-element can be calculated based on the dis-
placement vector, q:

Q q rK K=[ + ] = sel uplift pl,
−1 −1 −1 (12)

where Kel uplift, is the stiffness parameter from macro-element with
uplift coefficient of the foundation, and Kpl is the plastic stiffness
calculated using mapping rule. The response of force can be repre-
sented with rs which is the restoring force of the foundation with
nonlinearity of the soil and uplift of the foundation for the respective
DOFs as shown in Fig. 3.

2.3. Frequency-dependent stiffness represented with a recursive
parameter model

In order to capture the frequency dependent behavior of soil in a
time domain analysis, it is necessary to transform the dynamic
impedance function from frequency domain to time domain. The most
straightforward method for this conversion was proposed by Wolf [28],
where it was suggested to use the inverse Fourier transform to convert
the impedance function into an impulse response function. This
method, however, is susceptible to numerical instability [29]. Şafak
[25] formulated a recursive parameter model that relies on implement-
ing an infinite impulse response filter. This transformation method
generates reaction forces that are dependent on the values of the
reaction force at previous time steps in addition to being dependent on
the foundation displacement history. Nakamura [20] formulated a
recursive parameter model where the restoring force at any time step is
dependent on the past displacement and velocity histories. Nakamura
[21] later improved the method by introducing an instantaneous mass
component that would make the restoring force dependent on the
current acceleration as well. More details on Nakamura's recursive
parameter model can be found in Nakamura [20,21]. A method to
assess numerical stability of the recursive parameter models is
proposed by Duarte et al. [29]. The study showed that the recursive
parameter model in Nakamura [20,21] is stable when it is integrated
with a time integration scheme. Thus, in this study, the model in
Nakamura [20,21] is used to represent frequency-dependent charac-
teristics. However, the proposed framework in Section 2.1 can adopt
any other time-domain representation of frequency-dependent beha-
vior.

In the improved Nakamura's model [21], the restoring force
resulting from the dynamic response of soil-foundation system is
defined using stiffness, damping, and mass terms as shown in Eq.
(13). Nakamura [23] proposed a transformation method with which a
dynamic impedance function can be directly transformed into a set of
stiffness, damping, and mass coefficients in Eq. (13).

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

∑ ∑r u u u u u rt t t t t t t t tK C M K C( )= ( )+ ̇ ( )+ ̈ ( )+ ( − )+ ̇ ( − ) = ( )
j

N

j
j

N

jj j D0 0 0
=1

−1

=1

−2

(13)

where r t( ) is the restoring force occurring from the soil at time t . K0, C0
and M0represent the instantaneous stiffness, damping, and mass of soil
foundation system at time t , respectively. The instantaneous mass of
the soil takes into account the inertial force of the soil. Kj and Cj
represent the recursive parameters of the past displacement and
velocity terms. Eq. (13) can be integrated into a typical numerical
time integration scheme, such as Newmark's method.

2.4. Integration of macro-element and recursive parameter model

The restoring force from macro-element Eq. (12) in Section 2.2 and

Fig. 6. 1000 kN m moment applied at the foundation at 4 Hz excitation.
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Fig. 7. Dynamic impedance with uplift (uplift initiates at M=1000 kN m).
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the restoring force from the recursive parameter model Eq. (13) in
Section 2.3 can be integrated using Eq. (9) to capture both inelasticity
and frequency-dependency of soil-foundation system. The combined
expression is given in Eq. (14) which shows calculation of restoring
forces for the DOFs of the soil-foundation system (i.e. vertical,
horizontal, and rotational DOFs of foundation). This formulation
includes the three DOFs at the foundation shown in Fig. 3 with
dynamic impedance for each DOFs

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎡
⎣⎢

⎤
⎦⎥

∑ ∑

r r u u u

u u u u

u

t t

t t t t t t

t

r k K C M

K C K K

k

= + − = ( )+ ̇ ( )+

̈ ( )+ ( − )+ ̇ ( − ) + [ + ] ( )

− ( )

f D S f f f f

f f f f

f f

j

N

j
j

N

jj j el uplift pl

0 0 0

=1

−1

=1

−2

,
−1 −1

(14)

The impedance terms used for shallow foundation include the
vertical, horizontal, rotational DOFs and a coupling term of horizontal
to rotational DOFs. The cross coupling of horizontal-rotation impe-
dance is usually negligibly small in shallow foundations [12], but it is
included in this paper for completeness. rS is the restoring force of
macro-element Eq. (12), and rD is the dynamic impedance terms
represented as a restoring force from the recursive parameter terms Eq.
(13). Note that K0,C0,M0 are the instantaneous terms from the
dynamic impedance functions of soil, and are different from static
stiffness, damping, and mass terms of the soil foundation. kf is the

condensed static stiffness of the foundation as discussed in Eq. (9). The
restoring force at each time increment is analyzed from both of the
models. This allows the restoring force from macro-element with uplift
of the foundation and plasticity of soil to be combined with the
recursive parameter model.

3. Verification of the proposed model

The nonlinear dynamic response of soil foundation model is
analyzed with a broad range of frequency as well as a broad range of
amplitude to cover various cases of dynamic loads as presented in
Fig. 1. The purpose of this analysis is to create parametric space of
frequency and amplitude of load where the model exhibits inelastic and
frequency dependent behavior. The model description and material
properties are provided in Table 1.

FE model has been used to construct a soil model that is 100 m
wide and 100 m deep. FE mesh consists of 1 m by 1 m four-node
quadrilateral elements. The von Mises failure criterion is used in this
specific example. A 10 m wide rigid strip foundation is placed at the top
center of the soil domain. The Lysmer and Kuhlemeyer [30] boundary
is applied to the FE model to dissipate energy propagation toward the
boundaries. FE analysis software, RS2 [31] is used for analyzing the
foundation without uplift. OpenSees [32] is used for analyzing the
foundation with uplift.

The constant vertical force of 385.5 kN is applied to the foundation
which is the 25% of the maximum bearing capacity of the foundation
for this soil foundation system using FE analysis. The required
parameters for macro-element are obtained using the static analysis
results from the FE model. The maximum capacity of foundation in
each DOFs is determined with monotonic analysis using the FE model.
For the recursive parameter model, the dynamic impedance of the soil-
foundation model is obtained using FE model with sinusoidal sweep
analysis in each DOFs at the foundation (i.e. horizontal, vertical, and
rotational DOFs). Details on obtaining dynamic impedance function of

Fig. 8. Dynamic impedance without uplift for FE, macro-element and the proposed method with 2000 kN m load (macro-element and Nakamura's model).

Table 3
Measured computational time for different methods.

Nakamura Macro-
element

Nakamura and
Macro-element

2D FE
model

Computational time
(s)

20 10–15 30 5400–
7200

Fig. 9. Dynamic analysis example with realistic bridge pier and footing dimension [16].
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soil domain using FE analysis is provided in Zhang and Tang [33]. The
required calibration parameters are obtained directly from the FE soil-
foundation model. The calibrated values are provided in Table 2 for
both macro-element and Nakamura recursive parameter model. For
the analysis, sinusoidal moment is applied with varying frequencies
and amplitudes at the center of the foundation. Two cases are
considered: a) foundation without uplift, and b) foundation with uplift.
For each case, an extensive FE analysis is carried out with the following
parameters for verification of the proposed model.

1. Amplitude of excitation: M=100, 1000, 1500, 2000 kN m
(Note: maximum moment capacity of the foundation is

Mmax≈2700 kN m)
2. Frequency of excitation: 1–20 Hz

The hysteretic loops showing the cyclic moment excitation versus
rotation at the center of the foundation are shown in Fig. 5(a) for
foundation without uplift and Fig. 5(b) for foundation with uplift. Also,
in order to check the inelastic behavior of the foundation with uplift,

the FE contour plots with excitation at 2 Hz frequency and moment
amplitude of 1,000 kN m applied to the foundation is shown in
Fig. 6(a) for case without the uplift and Fig. 6(b) for the uplift of the
foundation.

For the case with moment of 1500 kN m applied to the foundation
with uplift, the foundation is detached from the soil in excessive
manner to a point where the center of the foundation detaches from the
soil. Thus, the analysis beyond 2 Hz of excitation with magnitude of
1500 kN moment fails to converge for the uplift foundation model.

The results are in good agreement for low frequency range with all
magnitudes of the moment as shown in Fig. 5(a) and (b) in the first two
rows (1 Hz and 2 Hz) of the results. Thus, the quasi-static loading
scenario is well captured with the proposed model. Also, at low
magnitude of cyclic moment as shown in Fig. 5(a) and (b) in the first
two columns (M=1 kN m and M=100 kN m) of the results, the
proposed model agrees well with FE model, which shows that
frequency-dependent property of the soil is well captured as well.
The difference in the results is apparent when the foundation is
subjected to high intensity with high frequency of excitation (i.e.

Fig. 10. Time history analysis results for Hollister excitation.
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domain D from Fig. 1). There are still limitations with the proposed
model in capturing a full nonlinear frequency dependent behavior of
soil using the simplified model for high excitation frequencies.
However, the proposed model can capture the inelastic behavior of
foundation with wide range of excitation frequencies with small loss of
accuracy.

In order to summarize the overall analysis results, dynamic
impedance function has been used to plot all of the result findings in
frequency domain. Within the hysteretic graph, apparent secant
dynamic stiffness can be obtained by taking the slope of the hysteretic
loop while energy dissipation can be calculated as a dynamic damper of
the system. To normalize the dynamic impedance values, the dynamic
stiffness terms are normalized with rotation static stiffness of the
foundation. The equivalent damping terms are normalized with area
under maximum force and displacements as shown in Eq. (16). More
details on this formulation can be found in [22].

πE π
ζ= E

2
= Energy dissipated

2 ( )So
f u

d

2
max max

(16)

Fig. 7(a) shows the results of foundation without uplift for the
proposed model and FE model at different magnitude of moment
applied to the foundation, and Fig. 7(b) for the foundation with uplift
in frequency domain. Note that the magnitude of loads and excitation
frequency values are chosen for this specific example with a defined
geometric and material properties of soil and foundation. The propor-
tion of the load to the maximum load capacity of the foundation is also
shown in the results.

As shown in the figure, the results are in good agreement from load
intensity of 1 kN m to 100 kN m because uplift of the foundation has
not occurred at these loads. At the magnitude of 1000 kN m, the FE
and proposed model do have similar dynamic stiffness but the
equivalent damping is slightly different as the frequency increases.
The foundation uplift, plasticity of the soil and high excitation of
frequency in numerical model is quite difficult to capture. The
proposed model provides a satisfactory agreement with these non-
linearities as shown in Fig. 7(b).

In order to compare the proposed method with the existing model
for macro-element with frequency independent soil, macro-element
analysis has been carried out with frequency independent soil. A
specific damping coefficient of soil is defined at 10 Hz of the soil
impedance function in the analysis. The results are compared for
foundation with 2000 kN m applied to foundation as shown in Fig. 8.

The macro-element model with frequency independent soil does
not capture the full dynamic characteristics of soil at different excita-
tion frequency. The proposed model, however, provides results that are
in good agreement with the FE model by incorporating frequency-
dependent properties of soil.

In order to highlight the computational efficiency of the proposed
method, the measured computational time to complete the case study
examples are presented in Table 3. The analysis has been performed
using a processor with Intel ® Core ™ i7-4810MQ CPU @2.8 Ghz, and
8.00 GB of RAM.

As it can be observed from the table, FE model takes far more
computational demand in comparison with the simplified modelling
approach. While not quantitatively measured, the FE model also
requires significant time to develop a model. Although a full three
dimensional FE model provides can capture relatively realistic re-
sponse, it is not a feasible option in most routine engineering practice
due to the extensive modelling and computation time [1,11]. Therefore,
the proposed model provides efficient way to model soil foundation
system with inelastic soil and frequency dependency of soil.

4. Application example

To demonstrate how the proposed framework Eq. (9) and its

implementation with a macro element and a recursive parameter
model Eq. (14) can be used in a structural analysis, a simple soil-
foundation-structure model is used as shown in Eq. (15). The system
consists of total five DOFs where horizontal and rotational DOF are
located at the structure and horizontal, rotational, and vertical DOFs
are assigned at the foundation. It is assumed that the masses are
lumped at the nodal points where the diagonal terms in the mass
matrix are zeros. Also, the column is assumed to be axially rigid in the
analysis. The equation of motion of the overall soil-foundation-
structure system is presented in Eq. (15) and the diagram illustrates
the model in Fig. 9. In this example, an effective seismic load is applied
directly to the structure only in horizontal direction, Fx. The general
matrix formulation allows load to be applied in any DOF desired.
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As shown in the Eq. (15), matrix representation of the structure and
foundation is presented. The combination of the DOFs with structure
and foundation allow the model to analyze the seismic response of the
desired DOFs in the time domain. The M and Mstr f terms refer to mass
of the structure and foundation, while Istr and Jf are the moment of
inertia of the structure and foundation respectively. Cst represents the
damping matrix of the structure, while Kst represents stiffness matrix of
the structure. The rf 3×1refers to the restoring force occurring from the
soil foundation system as discussed in Eq. (14). This formulation
allows the proposed model to simultaneously analyze the structure and
foundation response with inelastic behavior of foundation including
frequency-dependent properties of the soil. A bridge pier example has
been analyzed using the proposed method as shown in Fig. 9.

This example illustrates the capacity of the model to analyze SSI
effect in bridge piers with earthquake load where the system exhibits
nonlinear soil behavior and the foundation uplift. The results are
verified with FE model. The same material properties and soil domain
size are used from the model in Section 3, and the structure and
foundation material properties are provided from the example pro-
vided in Chatzigogos et al. [17]. The model is created in OpenSees. The
details of the model material properties are provided in Fig. 9. Dynamic
impedance function of soil model is obtained prior to this example with
the FE model using sinusoidal sweep analysis as discussed in Section 3
with frequency range of 1–20 Hz.

The model is subjected to acceleration time history recorded in City
Hall recording station during Hollister earthquake (USA, 1974), which
is applied to the structure in horizontal direction as an effective force in
this analysis. The horizontal displacement of the structure is recorded,
and rotation of the foundation is recorded as well. The results from the
proposed model is compared with Opensees model in linear elastic
analysis (Fig. 10(a)), nonlinear soil domain analysis (material non-
linearity) (Fig. 10(b)) and nonlinear soil domain with uplift of the
foundation (material and geometric nonlinearity) (Fig. 10(c)).

On the right side of Fig. 10, the hysteretic loop of the foundation
rotation with moment is recorded when the structure is excited with
harmonic load of 1 Hz with amplitude equivalent to the peak magni-
tude of the Hollister ground motion. As shown in Fig. 10(a), the
proposed model is in good agreement with FE model linear elastic
analysis. In Fig. 10(b), as the nonlinearity of the soil is introduced to
the system, there is a slight difference at the peak magnitude of the
displacement along the time history results. By comparing the hys-
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teretic behavior of the system, the proposed method seems to calculate
a higher rotation at the foundation than the FE model. For the case of
nonlinear soil with foundation uplift, the results are in good agreement
for the peak horizontal displacement of the structure. Although the
horizontal displacement from the proposed method is slightly shifted
from FE model, the hysteretic behavior of the proposed method for
rotation of the foundation shows comparable results from the FE
model.

Therefore, the proposed model is in satisfactory agreement in
capturing the nonlinear soil behavior with frequency dependent
behavior of soil foundation system. For this specific example, macro-
element and Nakamura's recursive parameters are used to represent
the soil foundation system which accurately captures the response of
overall structure when subjected to a seismic excitation. Not only does
this model greatly simplify the modelling approach with few calibrated
parameters from users, but it also reduces significant amount of time to
analyze the model. The proposed method can handle various types of
analysis at a computationally efficient speed.

5. Conclusion

The paper presents a new framework to integrate the nonlinear
model of soil foundation system with frequency dependent properties
of soil in dynamic loading application. The nonlinearity of the soil and
foundation system is captured with a computationally efficient macro
element by Chatzigogos [17] while the frequency dependent behavior
of soil-foundation system is captured with a recursive parameter model
in Nakamura [20,21]. The proposed framework, however, is very
general such that any other nonlinear element or frequency-dependent
model can be integrated.

The results from the proposed framework have shown good
agreement with FE model at low amplitude excitation with a broad
range of frequencies. Also, the model can capture the nonlinear
behavior of soil foundation system with uplift of the foundation at
high amplitude excitation with low frequency. However, the accuracy of
the model decreases when both the excitation frequency and magni-
tude are high. Thus, there exist still limitation in capturing a full
inelastic frequency dependent behavior of soil foundation system. This
limitation might be one of the shortcomings of the proposed framework
in application to structures with significant higher mode effects.

It is also worthwhile to mention that while the framework was
implemented for shallow foundations, the framework can be applied to
embedded or deep foundations as long as reliable inelastic model and
dynamic impedance functions are available. In addition, depending on
the characteristics of the analyzed structure, the impact of the
nonlinearity or frequency-dependency of soil-foundation system is
expected to be different. Thus, it is equally important to have good
understanding on structural characteristics when determining the
modelling approach for soil-foundation system.
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