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A B S T R A C T

An elasto-plastic spring is utilized in a tuned mass damper (TMD) with eliminating its viscous damper to es-
tablish a new seismic response control system. A novel method to find the most appropriate parameters of the
proposed elasto-plastic TMD (P-TMD) including its initial stiffness/frequency and yield strength is presented so
as to reduce the seismic response of the main system with the P-TMD to a level of that obtained with a previously
suggested optimum TMD. The parameters are used to compute the responses of several main structures in the
form of single-degree of freedom systems with the proposed P-TMD under different earthquake excitations. To
evaluate the effectiveness of the proposed device and tuning method, maximum displacements and accelerations
are compared to those of optimum TMD systems as well as those obtained from uncontrolled ones. The nu-
merical results show that the proposed device, when using the introduced procedure for selecting its design
parameters, reduces the seismic responses significantly and can be used instead of the optimum TMD without the
need for a viscous damper.

1. Introduction

The tuned mass damper (TMD) is a typical passive control device
attached to the main system with the goal of reducing vibrations of
mechanical and structural systems under the action of external loads.
This device consists of a mass, a spring and a viscous damper which all
should be selected properly according to the properties of the main
system and the applied loads. Because of its simple and reliable im-
plementation, TMD has been widely used and studied. Effectiveness of
TMDs depends on their properties, such as mass ratio, frequency and
damping ratios, hence various studies have been carried out to obtain
the optimal parameters of these devices.

Den Hartog [1] derived closed-form expressions for the optimum
TMD parameters for undamped single-degree-of-freedom (SDOF) main
systems under harmonic external forces. Simple expressions for op-
timum TMD parameters are also derived by Warburton [2] for un-
damped main systems subjected to external forces or support accel-
erations in the forms of harmonic and white noise random excitations.
The effect of light damping in the main system on the optimum para-
meters of the TMD has also been investigated in [2] for random ex-
citations and in [3,4] for harmonic force excitations. Tsai and Lin [5]
developed a numerical searching procedure to find the optimum tuning
frequency and damping ratio of the TMD for minimizing steady-state
response of damped main systems subjected to harmonic support mo-
tions. In addition to harmonic excitations, the effectiveness of TMDs for
wind loads has also been confirmed by several investigations [6–8].

Performance of single TMD systems, however, in structures subjected to
earthquake loads, which possess many frequency components, is ex-
pected to be different and to depend on the ground motion properties
[9–11]. While effectiveness of a TMD will be greatest when a real
structure with a number of degrees of freedom oscillates around a
predominant mode, this device does not reduce the structural response
to a great extent when several modes contribute significantly to the
main system response. Nevertheless, several successful studies have
been devoted to improve the seismic performance of TMDs in different
structural systems [12–16].

The well-known high modal damping criterion was used by some
researchers such as Sadek et al. [12] and Miranda [13,14] to determine
the optimum parameters of TMDs for the purpose of seismic response
reduction. Some other criteria (or objective functions) have also been
considered for this purpose [15–18].

Most of the studies on TMDs including those discussed above have
employed the devices with elastic springs and linear behavior.
However, the nonlinear behavior in TMDs has been considered for more
effective control of unwanted vibrations in some investigations. The
nonlinearity can be achieved with some simple implementation of
practical engineering options such as combined action of several elastic
and linear springs coming into action sequentially [19], equipping with
friction-spring elements [20], using nonlinear viscous damping ele-
ments [21], and using Duffing spring for stiffness element of TMD
[22,23]. Contrary to these sources of nonlinearity, here the nonlinear
behavior of a TMD arising from inelastic behavior of its spring is of
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particular interest.
Jaiswal et al. [24] examined the effectiveness of an elasto-plastic

TMD in controlling the seismic response of SDOF systems. For such a
TMD, they used the same parameters that had already been suggested
for the optimum elastic TMD with a limited parameter study on that
TMD. It was seen that such an elasto-plastic TMD became more efficient
than the elastic one only in certain frequency range of base excitations,
while it became less effective in the other frequency ranges. However,
they did not propose an approach to identify the optimum parameters
of this TMD for seismic applications and highlighted the need for more
rigorous studies on this issue. Moreover, to the best of our knowledge,
any approach to determine optimum parameters of an elasto-plastic
TMD has not previously been reported in the literature. Here, as a first
attempt to establish a framework for utilizing the elasto-plastic beha-
vior of the spring of TMDs, we try to present a novel method for esti-
mating the most appropriate parameters of the elasto-plastic TMD
(hereafter referred to as P-TMD) under seismic loads and to assess the
effectiveness of the proposed technique. The proposed P-TMD consists
of a mass and an elasto-plastic spring without the need to employ a
supplementary viscous damper which is essential in the traditional/
optimal TMDs.

It is important to note that the inelastic behavior of the TMD not
only is proposed to be utilized in a new passive control device in the
present study, but also can be activated in traditional TMDs undergoing
large displacements during severe earthquake events. From this point of
view, inelastic response analysis of TMDs is also of practical interest in
structural and earthquake engineering.

2. Mathematical model of the tuned mass dampers

A SDOF system with a TMD as shown in Fig. 1(a) is modeled by two
masses, springs and viscous dampers where m, k, and c are the mass,
stiffness and damping coefficient of the main system. For this system,
ω=(k/m)0.5 and ζ= c/2mω are the natural frequency and damping
ratio of the main system, respectively. The parameters of the TMD are
the mass, md, stiffness, kd, and damping coefficient, cd. The natural
frequency and damping ratio of the TMD are ωd=(kd/md)0.5 and
ζd= cd/2mdωd, respectively. A TMD is usually characterized in terms of
mass ratio γ=md/m, frequency (tuning) ratio f=ωd/ω, and damping
ratio ζd.

The P-TMD suggested in this paper consists of only a mass and an
elasto-plastic spring as shown in Fig. 1(b). The idealized elastic-per-
fectly plastic behavior of the spring is shown in Fig. 2. The spring has an
initial stiffness of kp, a yield deformation of uy and a yield strength of
Fy= kpuy.

The spring of the proposed P-TMD with an idealized elastic-per-
fectly plastic behavior is representative of a structural element having
elasto-plastic behavior with a negligible hardening. A well-known class
of such devices has already been used as metallic-yielding dampers in

different structural systems. There are several simple and economical
types of these devices with large deformation capacities and good low
cycle fatigue performances such as U-shaped steel strips [25–27] and
crawler steel damper [28] among others. The energy dissipating steel
elements of such devices can be easily calibrated to obtain the desired
initial elastic stiffness and the plastic threshold, as well as to undergo as
large as desired displacements. Furthermore, the elastic-perfectly
plastic behavior can be achieved with a combination of a conventional
linear spring in series with a friction element. Such friction elements
have wide structural applications such as those used as friction dampers
in series with the bracing elements in building structures.

It should be noted that both above-mentioned ideas to achieve the
elasto-plastic behavior have already been used in the base isolation
systems. Of course, other practical suggestions can be made to achieve
this behavior in the theoretical proposition of the P-TMD.

The natural frequency of the P-TMD vibrating within its linearly
elastic range is ωp=(kp/md)0.5. Assuming Fy=mday, the yield accel-
eration of the proposed device becomes ay=ωp

2uy which can be in-
terpreted as the acceleration of the mass md to produce the yield force
similar to that defined in a general inelastic SDOF system [29].
Therefore, the proposed P-TMD can be characterized in terms of non-
dimensional parameters of mass ratio γ=md/m, frequency (tuning)

Nomenclature

apb acceleration ratio of the P-TMD,= üb0/ay
ay yield acceleration of the P-TMD,= Fy/md=ωp

2uy
c damping coefficient of the main system
cd damping coefficient of the TMD
f frequency (tuning) ratio of the TMD,=ωd/ω
fp frequency (tuning) ratio of the P-TMD,=ωp/ω
Fy yield strength of the P-TMD,= kpuy
k stiffness of the main system
kd stiffness of the TMD
keff secant stiffness of the P-TMD at u0
kp initial stiffness of the P-TMD
m mass of the main system

md mass of the mass damper (TMD and/or P-TMD)
T natural period of the main system,= 2π/ω
u0 resonant response amplitude of the mass damper (TMD

and/or P-TMD)
uy yield deformation of the P-TMD
üb0 acceleration amplitude in the base of the P-TMD
γ mass ratio of the mass damper (TMD and/or P-

TMD),=md/m
ζ damping ratio of the main system,= c/2mω
ζd damping ratio of the TMD,= cd/2mdωd

ω natural circular frequency of the main system,= (k/m)0.5

ωd natural circular frequency of the TMD,= (kd/md)0.5

ωp natural circular frequency of the P-TMD vibrating within
its linearly elastic range,= (kp/md)0.5

Fig. 1. Mass dampers attached to main systems.
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ratio fp=ωp/ω, and acceleration ratio apb= üb0/ay, where üb0 is the
acceleration amplitude in the base of the proposed mass damper (see
Fig. 3). The non-dimensional parameter apb represents the ratio be-
tween the base acceleration and a measure of the yield strength of the
proposed mass damper. It is noted that using such a non-dimensional
ratio is often unavoidable in the parametric study of the seismic re-
sponse of inelastic systems [29].

For the new device, energy dissipation through inelastic deforma-
tions of the elasto-plastic spring is considered to be a replacement for
the contribution of the eliminated viscous damper. It should be noted
that the main structure is considered to remain elastic in both above
mentioned systems.

3. A method of estimating parameters of proposed P-TMD

There exist several methods to determine the equivalent viscous
damping for a yielding structure. Jennings [30] has addressed and ex-
amined in detail some of these methods based on the assumption of
harmonic response behavior. The application of the concept of
equivalent viscous damping to seismic response of yielding structures is
also examined by him. In the current study, an inverse procedure is
proposed in which the elsto-plastic system called P-TMD (Fig. 3(a)) can
be obtained as an equivalent to the elastic TMD with viscous damper
(Fig. 3(b)). It is evident that yielding response is different from linear
response, and therefore only limited success can be obtained by using
such approximate methods; however, it will be shown that the adopted

method, i.e. Geometric Stiffness (GS) method, leads to quite satisfactory
results for the purpose of this study. In most of the other linearization
methods, the maximum equivalent viscous damping is usually limited

Fig. 2. Elasto-plastic behavior of P-TMD spring.

(a) P-TMD  (b) TMD
Fig. 3. A sketch showing P-TMD and TMD characteristics.

Table 1
Optimum TMD parameters suggested by Sadek et al. [12].

Mass ratio γ ζ = 0.00 ζ = 0.02 ζ = 0.05

f ζd f ζd f ζd

0.005 0.9950 0.0705 0.9936 0.0904 0.9915 0.1199
0.01 0.9901 0.0995 0.9881 0.1193 0.9852 0.1488
0.02 0.9804 0.1400 0.9776 0.1596 0.9735 0.1889
0.03 0.9709 0.1707 0.9676 0.1900 0.9626 0.2190
0.04 0.9615 0.1961 0.9578 0.2153 0.9521 0.2440
0.05 0.9524 0.2182 0.9482 0.2372 0.9420 0.2656
0.06 0.9434 0.2379 0.9389 0.2567 0.9322 0.2848
0.07 0.9346 0.2558 0.9298 0.2744 0.9226 0.3022
0.08 0.9259 0.2722 0.9209 0.2906 0.9133 0.3181
0.09 0.9174 0.2873 0.9122 0.3056 0.9042 0.3329
0.10 0.9091 0.3015 0.9036 0.3196 0.8954 0.3466
0.11 0.9009 0.3148 0.8952 0.3328 0.8867 0.3595
0.12 0.8929 0.3273 0.8870 0.3451 0.8782 0.3716
0.13 0.8850 0.3392 0.8790 0.3568 0.8699 0.3831
0.14 0.8772 0.3504 0.8710 0.3679 0.8618 0.3939
0.15 0.8696 0.3612 0.8633 0.3785 0.8538 0.4042

Table 2
Proposed P-TMD parameters.

Mass ratio γ ζ = 0 ζ = 0.02 ζ = 0.05

fp apb fp apb fp apb

0.005 1.0551 0.1410 1.0727 0.1808 1.1005 0.2398
0.01 1.0779 0.1990 1.0961 0.2386 1.1255 0.2976
0.02 1.1100 0.2800 1.1294 0.3192 1.1608 0.3778
0.03 1.1349 0.3414 1.1552 0.3800 1.1885 0.4380
0.04 1.1559 0.3922 1.1774 0.4306 1.2124 0.4880
0.05 1.1748 0.4364 1.1971 0.4744 1.2339 0.5312
0.06 1.1921 0.4758 1.2154 0.5134 1.2540 0.5696
0.07 1.2084 0.5116 1.2327 0.5488 1.2729 0.6044
0.08 1.2238 0.5444 1.2491 0.5812 1.2912 0.6362
0.09 1.2385 0.5746 1.2650 0.6112 1.3091 0.6658
0.10 1.2530 0.6030 1.2805 0.6392 1.3266 0.6932
0.11 1.2671 0.6296 1.2958 0.6656 1.3439 0.7190
0.12 1.2810 0.6546 1.3108 0.6902 1.3611 0.7432
0.13 1.2948 0.6784 1.3258 0.7136 1.3785 0.7662
0.14 1.3082 0.7008 1.3406 0.7358 1.3957 0.7878
0.15 1.3221 0.7224 1.3558 0.7570 1.4131 0.8084

S. Bagheri, V. Rahmani-Dabbagh Engineering Structures 172 (2018) 712–722

714



while being less than the optimum damping of TMDs. They are thus not
appropriate for the aim of this study.

According to the GS method, the following four conditions should
be applied:

(i) The masses of the elasto-plastic system (P-TMD) and associated
linear system (TMD) are taken to be equal (i.e. md).

(ii) The resonant response amplitudes of the two systems are also as-
sumed to be the same (i.e. u0) which can be written as

=u u
ω ζ
¨

2
b

d d
0

0
2 (1)

(iii) The stiffness of the associated linear system (i.e. kd) is fixed by the
geometry of the hysteresis loops of the elasto-plastic system. This is
accomplished by using the secant stiffness of the elasto-plastic
system at u0, as the effective linear system stiffness, i.e. kd= keff.
This gives

= → =k
u
u

k k u
u

kd
y

p p
y

d
0

0

(2)

(iv) The energies dissipated per cycle by the two systems are equated at
resonance. With the aid of Eq. (2), this condition simplifies to

⎜ ⎟= ⎛
⎝

− ⎞
⎠

→ = ⎛
⎝

− ⎞
⎠

ζ
π

u
u

u u π ζ2 1 1
2d

y
y d

0
0

(3)

Now, we can obtain a closed-form solution for the proposed P-TMD
parameters as follows:

Substituting Eq. (3) into Eq. (2) leads to an expression for the initial
stiffness of the P-TMD in terms of the equivalent linear TMD para-
meters. Then, the natural frequency ( =ω k m/ )p p d and the non-di-
mensional tuning frequency (fp=ωp/ω) of the P-TMD are respectively
given as

=
−

ω ω
ζ1

p
d
π

d2 (4)

Fig. 4. Estimated P-TMD parameters for different mass and damping ratios.

Fig. 5. Acceleration time history of the artificial record used in this study.

Fig. 6. Response spectrum of the artificial record used in this study.
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=
−

f
f

ζ1
p π

d2 (5)

It now remains to determine the second non-dimensional parameter
of the P-TMD, i.e. acceleration ratio, apb. Substituting Eq. (1) into Eq.
(3) leads to an expression for the yield deformation of the P-TMD in
terms of the equivalent linear TMD parameters and base acceleration
amplitude as

= ⎛
⎝

− ⎞
⎠

u u
ω ζ

π ζ¨
2

1
2y

b

d d
d

0
2 (6)

Using Eq. (4), Eq. (6) can be rewritten as

=u u
ω ζ
¨

2y
b

p d

0
2 (7)

Thus, the acceleration ratio (apb= üb0/ay= üb0/ωp
2uy) is given as

=a ζ2pb d (8)

Therefore, as a final outcome of the above procedure, the non-di-
mensional parameters of the proposed P-TMD, i.e. fp and apb, are ob-
tained as Eqs. (5) and (8) in terms of the elastic TMD parameters, i.e. f
and ζd. These two equations indeed allow us to use the proposed P-TMD
as an equivalent to any given elastic TMD. It is self-evident that the
most proper P-TMD will correspond to an optimum TMD. Hereafter, the
optimum TMD suggested by Sadek et al. [12] for seismic applications is
considered as a reference TMD; however, one may consider any other
previously suggested TMD.

The optimum TMD parameters suggested by Sadek et al. [12] are
listed in Table 1, while the parameters of the equivalent P-TMD ac-
cording to Eqs. (5) and (8) are presented in Table 2 for different mass
ratios, γ, between 0.005 and 0.15, and three different damping ratios of
the main system, ζ=0, 0.02 and 0.05. The proposed parameters of the
P-TMD are also plotted in Fig. 4 as functions of mass ratio for the three
damping ratios of the main system. It is seen that the higher the main
system’s damping, the higher both the tuning ratio, fp, and acceleration
ratio, apb, of the P-TMD. Fig. 4 also reveals that increasing the mass
ratio, γ, requires high values of fp and apb.

Unlike the optimum values for the tuning ratio of the linear TMD
which are less than unity (see Table 1), the estimated ratios for the P-
TMD appear to be always greater than one. This implies that a P-TMD
typically requires a spring with a higher initial stiffness compared to the

Fig. 7. Reduction effect of P-TMD on a system with ζ=0.02 and γ=0.1 under the artificial record using different values for üb0.

Fig. 8. Proposed values of üb0 for a system with different mass and damping
ratios subjected to the considered design motion.

Fig. 9. Displacement responses of a main structure with ζ=0.02, γ=0.1 and T=1 s under the artificial record.
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corresponding linear TMD. The overall reason for this stems from the
fact that we obtained the P-TMD (with elasto-plastic behavior) as an
equivalent to the elastic TMD: since the effective (secant) stiffness of the
P-TMD is assumed to be equal to the stiffness of the corresponding
elastic TMD, the initial stiffness of the P-TMD will be greater than the
stiffness of the optimum TMD.

In addition to the tabulated results, simple equations were derived
through a curve fitting procedure to represent the optimum TMD
parameters in [12]. Substituting those equations into Eqs. (5) and (8)
leads to the following relations for the proposed P-TMD parameters, fp
and apb, in terms of γ and ζ, which give very close approximations to the
values in Table 2.

=
−

+ − ⎛
⎝

+ ⎞
⎠

+

+ +

f
ζ

γ

1

(1 ) 1
p

γ
γ

π ζ
ζ

γ
γ

1

2 1 1 (9)

=
+

+
+

a
ζ

γ
γ

γ
2

1
2

1pb
(10)

After estimating the non-dimensional parameters for a given set of
mass and damping ratios of the main system, initial stiffness of the P-
TMD spring can be directly obtained from the value of the first para-
meter, i.e. fp; however, to determine its yield level from the value of the
second parameter, i.e. apb, the acceleration amplitude in the base of the

Fig. 10. Displacement responses of mass dampers relative to the main structure with ζ=0.02, γ=0.1 and T=1 s under the artificial record.

Fig. 11. Energy responses of a system with ζ=0.02, γ=0.1 and T=1 s under the artificial record, equipped with optimum TMD and proposed P-TMD.
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mass damper, üb0, needs to be known a priori. In other words, in order
to specify the value of uy (or Fy) for this device, it seems that the in-
tensity level of the input motions should be prescribed, which may
introduce a difficulty in the design of this device in comparison to the
design of traditional TMDs. It is, however, noticeable that the seismic
excitation is applied at the base of the main system but not at the base
of the device; hence the value of üb0 will be a function of both input
motion and system properties. Therefore, a trial and error approach is
required to determine üb0 for a system subjected to the specified
earthquake ground motion. For design purposes, one may obtain the
desired seismic response of the main system and the reduction effect of
the P-TMD for a reasonable range of values of üb0 under the design
earthquake motion which may be represented by a single or a set of real
or artificial earthquake record(s) compatible with the design spectrum.
Then, a value is chosen for üb0 so as to make the seismic response of the
P-TMD system a minimum.

4. A practical example for validation of the method

To illustrate the proposed approach with a practical example, an
artificial earthquake record compatible with the design spectrum of
ASCE7-10 [31] for Site Class D, with SDS of 1.0g and SD1 of 0.6g is
generated using the software SIMQKE [32]. The acceleration time his-
tory of this artificial record is shown in Fig. 5 and the response spec-
trum of the record for 5% damping is compared with ASCE's design
spectrum in Fig. 6. Here, displacements of the main systems with nat-
ural periods over the range of 0.1–2.0 s are considered as the responses
to be reduced as much as possible. Thus, the seismic response ratio due
to the utilization of P-TMD can be computed as the ratio of the peak
displacement response of the main system with P-TMD to the peak re-
sponse without P-TMD. For example, in Fig. 7, this effect is shown for
four different values of üb0 in a system with damping ratio of 0.02 and
mass ratio of 0.1. This figure also shows that the effectiveness of the P-
TMD is not very sensitive to small variations in üb0 as long as the values
do not lie in a physically unreasonable range. However, for a specified
system, one can find the best value among the examined values of üb0.
Fig. 8 shows the obtained values for the acceleration amplitude in the
base of the mass damper, üb0, which lead to the best reduction effects of
P-TMDs on the mean displacement responses of the main systems with

different natural periods over the range of 0.1–2.0 s subjected to the
above-considered earthquake. In a same manner, similar diagrams can
be obtained for other design spectrums.

Now, we can show and assess the time history results obtained from
the proposed method of estimating design parameters of the P-TMD for
the above example. Fig. 9 shows the displacement time history of a
main system with the natural period of 1.0 s in three different cases:
without mass damper, with P-TMD, and with optimum TMD suggested
by Sadek et al. [12]. As can be seen from this figure, the mass dampers,
both TMD and P-TMD, are quite effective in reducing the seismic re-
sponse of the main system and the responses match reasonably together
as expected. The maximum response of the main structure decreases
from 0.250m to 0.120m when using the optimum TMD, and to 0.128m
when using the proposed P-TMD, indicating ∼50% reduction effect for
both mass dampers in this example. Displacements of the mass dampers
relative to the main structure (stroke lengths) are compared in Fig. 10.
Since the proposed P-TMD has elasto-plastic behavior, the permanent
deformation in the mass damper occurs, as observed in Fig. 10. This
may require replacement of the P-TMD spring after severe earthquake
events. Energy responses of the considered system equipped with the
TMD and P-TMD are shown in Fig. 11. It is seen that the input energies
imposed on the system by the artificial earthquake are almost the same
when using either TMD or equivalent P-TMD. This figure also indicates
that the hysteretic behavior of P-TMD can dissipate remarkable seismic
energy which is equivalent to the energy dissipated by the viscous
damper of TMD. Therefore, this example indeed confirms the concept of
an equivalent elasto-plastic TMD to a previously suggested optimum
TMD.

5. Numerical studies

To examine the effectiveness of the proposed device (P-TMD) in
reducing the structural responses, SDOF structures with natural periods
between 0.1 and 2.0 s with increments of 0.1 s are considered as the
main systems. The structures are assumed to have damping ratios ζ=0,
0.02 and 0.05 and the mass ratios are taken to be γ=0.01, 0.02, 0.04,
0.06, 0.08 and 0.10. The seismic responses of the uncontrolled systems
and controlled ones by the proposed P-TMDs as well as by the optimum
TMDs are obtained and then for the purpose of comparison, the

Table 3
Earthquake records used for numerical studies.

Earthquake Date Station Component Significant Duration
(s)

Arias Intensity
(m/s)

Housner Intensity
(m)

Specific Energy Density
(m2/s)

PGA
(g)

PGV
(m/s)

Scale Factor

W. Washington 1949 325 N04W 25.8 0.75 0.75 0.169 0.17 0.18 2.74
N86E 18.1 1.13 0.80 0.104 0.28 0.17

Eureka 1954 022 N11W 14.2 0.34 0.84 0.133 0.17 0.30 1.74
N79E 9.9 0.71 0.87 0.102 0.26 0.30

San Fernando 1971 241 N00W 16.6 1.28 1.55 0.369 0.25 0.30 1.96
S90W 21.7 0.68 1.18 0.301 0.13 0.24

San Fernando 1971 458 S00W 26.4 0.55 1.06 0.394 0.12 0.30 2.22
S90W 28.2 0.52 1.25 0.288 0.11 0.29

Loma Prieta 1989 Gilroy 2 90 9.9 1.23 1.84 0.179 0.32 0.39 1.07
0 11.0 1.20 1.20 0.092 0.35 0.33

Loma Prieta 1989 Hollister 90 29.7 0.79 1.09 0.443 0.18 0.31 1.46
0 16.4 2.22 2.52 0.660 0.37 0.63

Landers 1992 Yermo 360 21.4 0.69 0.91 0.216 0.15 0.29 1.28
270 19.4 0.94 1.49 0.515 0.25 0.51

Landers 1992 Joshua 90 28.2 2.41 1.64 0.395 0.28 0.43 1.48
0 30.8 1.68 1.27 0.205 0.27 0.27

Northridge 1994 Moorpark 180 14.9 0.94 0.78 0.063 0.29 0.20 2.61
90 17.0 0.78 0.82 0.069 0.19 0.20

Northridge 1994 Century 90 13.6 1.19 1.05 0.116 0.26 0.21 2.27
360 14.7 0.76 0.98 0.083 0.23 0.25
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displacement (relative to the ground) and acceleration (absolute) re-
sponse ratios are computed as the ratio of the peak response of the
structure with mass damper to the peak response without mass damper.
The TMD and P-TMD parameters used are those presented in Tables 1
and 2, respectively.

5.1. Response to design basis earthquake (DBE) ground motions

The twenty horizontal components of the ten earthquake motions
used by Tsopelas et al. [33] are adopted here for linear and nonlinear
dynamic analyses. Each of these earthquakes has a magnitude larger
than 6.5, an epicentral distance between 10 and 20 km, and site con-
ditions of soft rock to stiff soil. The ground motions were scaled by
Tsopelas et al. [33] so that the average of the 20 scaled records re-
presented well the design spectrum, which was 1994 NEHRP spectrum

for soil type of C-D. This target spectrum is similar to the aforemen-
tioned design spectrum of ASCE7-10, hence the curves of Fig. 8 can be
used to estimate üb0 for these input motions. The complete list of the
earthquake records is given in Table 3.

The mean displacement response ratios of the 20 scaled records are
shown in Fig. 12 for the three different damping ratios of the main
system. The effectiveness of the proposed P-TMD in reducing dis-
placement demands can be compared with that of the optimum TMD in
this figure. Although less displacement of the main system is the main
purpose of using mass dampers, less acceleration would be desirable.
Thus, similar comparisons are made for acceleration demands in
Fig. 13. It is seen from Figs. 12 and 13 that reductions in displacement
and acceleration demands can be achieved by the proposed P-TMD for
structural systems with different values of ζ, T and γ. It is also evident in
these figures that the effectiveness of the P-TMD in reducing the seismic

Fig. 12. Mean displacement response ratios of structures with TMDs and P-TMDs.
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responses is about the same as that of the optimum TMD. This is, of
course, the expected outcome of the proposed method for determining
the P-TMD parameters. Therefore, observations on the seismic perfor-
mance of the P-TMD in terms of system properties are similar to those
reported by Sadek et al. [12] for the optimum TMD. The most important
ones are: (a) increase of the mass ratio can reduce the displacement and
acceleration responses of the main system, and consequently, can en-
hance the effectiveness of the proposed mass damper; (b) the effec-
tiveness of the mass damper also increases as the damping ratio of the
main system decreases; (c) for damped structures with very low per-
iods, the mass dampers are no longer effective.

As a quantitative confirmation of the above findings, the mean re-
sponse ratios (displacement and acceleration) averaged over the con-
sidered period range (i.e. 0.1–2.0 s) are calculated and compared for the
analyzed systems. To simplify this discussion, we only consider the

maximum and minimum averages in the following. When using either
the optimum TMD or the proposed P-TMD it is found that: (i) the
maximum reduction effect in displacement response is achieved in the
undamped main system and in the maximum assumed mass ratio (i.e.
γ=0.1) with averaged response ratio of 0.54 for the TMD and 0.59 for
the P-TMD; (ii) the lowest reduction is observed in ζ=5% and γ=0.01
with averaged response ratios of 0.95 and 0.96 for the TMD and P-TMD,
respectively. Reduction effects of both mass dampers on the accelera-
tion response are also similar to those found in the displacement re-
sponse. The averaged acceleration response ratios for utilizing the op-
timum TMD and the proposed P-TMD are 0.50 and 0.58, respectively, at
the maximum reduction level, whereas they are 0.95 for both of TMD
and P-TMD, at the minimum level.

Fig. 13. Mean acceleration response ratios of structures with TMDs and P-TMDs.
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5.2. Response to maximum considered earthquake (MCE) ground motions

As mentioned before, the acceleration amplitude in the base of the
mass damper, üb0, which should be known to determine the yield
strength of the P-TMD spring, can be best estimated by a trial and error
process, as a function of input motion and system properties. For the
purpose of practical application, however, it is useful to evaluate the
effectiveness of the above-designed P-TMDs (Section 5.1) in controlling
the responses of structures at a higher seismic hazard level such as MCE.
The ground acceleration data of the MCE ground motions are con-
sidered to be 1.5 times that of the DBE records according to ASCE7-10
[31]. The previous structural models with and without P-TMDs have
been analyzed again under these MCE ground motions and the mean
displacement and acceleration response ratios are presented in Figs. 14
and 15, respectively.

It is seen that the P-TMDs designed for DBE ground motions, are also
effective in reducing both displacement and acceleration responses at
the MCE seismic hazard level. These response reduction effects are si-
milar to those obtained for DBE records; that is, the maximum reduc-
tion effect on both displacement and acceleration responses is achieved
in the undamped main system and in the maximum assumed mass ratio
(i.e. γ=0.1) with averaged response ratio of 0.61 for the displacement
and 0.60 for the acceleration, whereas the minimum reduction is ob-
served in ζ=5% and γ=0.01 with averaged response ratio of 0.96 for

both displacement and acceleration.

6. Conclusions

The present study can be summarized as follows:

• A new approach for seismic response control of structures with the
elasto-plastic TMD (P-TMD), which consists of a mass and an elasto-
plastic spring without the need for a viscous damper, has been
presented in this paper.

• A simple yet effective method to estimate the design parameters of
the device was developed and applied to the structural systems
subjected to the seismic excitations. The proposed procedure has
resulted in the explicit formulas to compute the tuning and accel-
eration ratios of the device for a given set of mass and damping
ratios of the main system so that the inelastic behavior of the P-TMD
can be equivalent to the visco-elastic behavior of a given optimum
TMD.

• For the purpose of comparative analysis, the suggested optimum
TMD by Sadek et al. [12] was then considered as a reference TMD.
Comparison of the energy responses of a structural system equipped
with P-TMD and optimum TMD shows that hysteretic behavior of P-
TMD dissipates nearly the same energy as that dissipated by the
viscous damper of TMD.

• In order to evaluate the effectiveness of the P-TMD when designed

Fig. 14. Mean displacement response ratios of structures with P-TMDs under
MCE ground motions.

Fig. 15. Mean acceleration response ratios of structures with P-TMDs under
MCE ground motions.
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according to the proposed method, several SDOF structures with and
without P-TMDs as well as with optimum TMDs subjected to a
number of earthquake excitations, each scaled to the DBE and MCE
levels, were analyzed. The numerical results indicate that using the
proposed P-TMD parameters reduces displacement and acceleration
responses considerably at both seismic hazard levels.

• The effectiveness of the P-TMD in reducing the seismic responses is
similar to the optimum TMD, which increases as the mass ratio in-
creases and decreases as the main system’s damping increases.

• As an alternative to the traditional/optimum TMDs, the main ad-
vantage of our proposed device in the current form is in the elim-
ination of the expensive viscous damper. However, if further re-
ductions of structural responses are desired, P-TMD with an
additional viscous damper can be investigated.
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