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Abstract—Gesturing is an instinctive way of communicating to 

present a specific meaning or intent. Therefore, research into sign 

language interpretation using gestures has been explored 

progressively during recent decades to serve as an auxiliary tool 

for deaf and mute people to blend into society without barriers. In 

this paper, a smart sign language interpretation system using a 

wearable hand device is proposed to meet this purpose. This 

wearable system utilizes five flex-sensors, two pressure sensors, 

and a three-axis inertial motion sensor to distinguish the 

characters in the American Sign Language alphabet. The entire 

system mainly consists of three modules: a wearable device with a 

sensor module and a processing module, and a display unit mobile 

application module. Sensor data are collected and analyzed using 

a built-in embedded support vector machine classifier. 

Subsequently, the recognized alphabet is further transmitted to a 

mobile device through Bluetooth low energy wireless 

communication. An Android-based mobile application was 

developed with a text-to-speech function that converts the 

received text into audible voice output. Experiment results 

indicate that a true sign language recognition accuracy rate of 

65.7% can be achieved on average in the first version without 

pressure sensors. A second version of the proposed wearable 

system with the fusion of pressure sensors on the middle finger 

increased the recognition accuracy rate dramatically to 98.2%. 

The proposed wearable system outperforms the existing method, 

for instance, although background lights, and other factors are 

crucial to a vision-based processing method, they are not for the 

proposed system. 

 
Index Terms—Gesture recognition, machine learning, mobile 

application, sign language recognition, wearable computing 

 

I. INTRODUCTION 

IGN language plays a vital role for deaf and mute people to 

communicate among themselves or with normal people in a 

non-verbal manner. Gestures are the primary method to convey 

messages, which are usually conducted in a three-dimensional 

space, known as a signing space [1], through an integration of 

manual and non-manual signals. Manual signals commonly 

correspond to hand motions and hand posturing, whereas 

non-manual signals correspond to an external appearance such 

as mouth movements, facial expressions, and body orientation 

[2]. Nevertheless, sign language has not been standardized 

globally. Each nation has developed its own sign language, 
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such as the American Sign Language (ASL) and Germany Sign 

Language (GSL). However, each sign language varies slightly 

within different regions of the same country. Hence, it can be a 

challenge to develop a standardized sign language 

interpretation system for use worldwide. In a previous study, 

sign languages have been recognized using two major 

techniques, i.e., vision and non-vision approaches [3].  

In fact, vision method is the major technique applied for sign 

recognition in the past decades. A system that uses a camera to 

observe the information obtained through hand and finger 

motions is the most widely adopted visual-based approach [4]. 

Tremendous effort and study has gone into the development of 

vision-based sign recognition systems worldwide. Indeed, 

vision-based gesture recognition systems can be subdivided 

into direct and indirect approaches.  

A direct approach detects the hand gestures based on the 

RGB color spaces of the skin color. For instance, Goyal et al. 

[5] identified Indian Sign Language (ISL) using the scale 

invariance Fourier transform (SIFT) algorithm by searching the 

matched key points between the input image and images stored 

in a database. A similar method was also applied by More et al. 

[6] using the SIFT algorithm, which further reduces the 

dimensions of the feature vector using a principal component 

analysis (PCA) algorithm for speeding up the processing time. 

To detect the dynamic hand gestures used in Japanese Sign 

Language (JSL), Murakami et al. [7] proposed the use of 

recurrent neural networks capable of recognizing the JSL finger 

alphabet, which has 42 symbols. In contrast, Chowdary et al. 

[8] used a simple scanning method to compute the orientation 

and movement of fingers in binary converted images captured 

from a web camera. Khan et al. [9] proposed a more 

sophisticated gesture recognition system using digital images, 

including image filtering (pre-processing), image 

segmentation, color segmentation, skin detection (finger and 

hand detection using binary images), and template matching.  

Meanwhile, an indirect approach identifies the fingers and 

hand gestures based on the RGB color spaces segmented based 

on different colors for each finger using a data glove. A 

possible segmentation method using RGB color spaces along 

with a hand glove for gesture detection was proposed by Siby et 

al. [10]. This method utilizes the RGB color space values 

extracted from a captured hand gesture image of a data glove, 

and compares the values with those stored in a database. 

Lamberti et al. [11] also proposed a real-time hand gesture 

recognition system using a learning vector quantization 

classifier to differentiate three colors of a wool glove 
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corresponding to the palm, fingers, and remaining parts of the 

glove, respectively, from captured images. An equivalent 

approach was also proposed by Iwai et al. [12], who divided a 

color glove into twelve regions with twelve different colors, 

i.e., ten finger regions, a wrist region, and a region made up of 

other parts of the hand. A decision tree pattern recognition 

method using these distinct image features is then applied to 

determine the regions of the hand. 

The exploitation of a vision-based method is greatly affected 

by the processing of the images, such as image filtering, 

background cancellation, color segmentation, and boundary 

detection. For instance, diverse and uncontrolled background 

images can influence the skin color segmentation or movement 

detection. Indeed, many researchers have failed to address 

these complications, and no solid solutions have yet been 

proposed. Consequently, a non-vision based method is an 

alternative approach. This method typically utilizes flex and 

motion sensors to measure the flexion of fingers and the 

orientation of the hand, respectively. Dawane et al. [13] 

attached five flex sensors on a glove with respect to each finger 

to identify hand gestures by matching the motions with those in 

a stored motion database. Preetham et al. [14] also proposed a 

similar technique of using flex sensors, but mapped the sensor 

data to a character set, which was implemented using a 

minimum mean square error (MMSE) algorithm for gesture 

recognition. The results are displayed as text on an LCD screen. 

This technique was improved by Patil et al. [15]; here, the 

bending of each sensor is further divided into three flexions, 

namely, a complete bend (finger close), partial bend, and 

straightening (finger open). Each ASL alphabet is then mapped 

according to the bend flexions to be used for template 

matching. 

On the other hand, inertial motions of hand or fingers are 

alternative approach for gestures recognition. Kim et al. [16] 

developed a glove-based 3-D hand motion tracking and gesture 

system that consists of three tri-axis accelerometer sensors 

placed on the thumb, middle finger, and back of the hand, 

respectively. The glove is able to detect simple rule-based hand 

gestures (e.g., scissor, rock, and paper) based on two different 

angular positions of the sensors: horizontal (z-axis) and vertical 

(x-axis) gestures. Lu et al. [17] implemented a YoBu glove 

with total of 18 inertial motion unit (IMU) sensors. Each finger 

consists of three IMMUs at each joint with a total of 15 for the 

five fingers. The remaining IMU sensors are placed on the arm, 

forearm, and upper arm. An extreme kernel-based learning 

machine is implemented to identify specific gestures based on a 

total of 54-dimension extracted features. On the other hand, 

Lim et al. [18] proposed a novel method that uses a small-sized 

infrared optic sensor, developed as a virtual button, to observe 

finger flexion patterns on the wrist caused by moving fingers. 

Five dynamic gestures were proposed: “bye,” “hi,” “hold,” 

“release,” and “wave,” all of which are detected using a hidden 

Markov model (HMM) algorithm. Xie et al. [19] developed an 

accelerometer based smart ring to detect eight basic and twelve 

complex gestures in 2-D space. A segmentation algorithm is 

utilized to identify subject gestures which are further encoded 

by a Johnson code. Hsu et al. [20] presented an inertial-based 

digital pen to recognize the handwriting and gestures with 

dynamic time warping (DTW) method. The pen is hold by the 

user when writing the numerals or English lowercase letters and 

further transmitted wirelessly to a computer for online 

recognition. The similar hand gesture recognition approach 

with DTW method is proposed by Yin et al. [21] that adopted 

training-free method which did not require training samples. 

The gesture recognition process is carried out by first extracting 

the features followed by a robust template matching method. 

Besides that, Galka et al. [22] proposed an accelerometer glove 

for sign language recognition which consisted of seven active 

three-axis acceleration sensors with five located on the fingers 

(one sensor on each finger), one on the arm and one on the 

wrist. The sign recognition model is defined by a HMM and a 

parallel HMM approach. Cai et al. [23] also developed a 

wireless data glove type with four fingers button. The raw 

sensor data are converted into movement, acceleration, rotation 

and other features for gesture recognition. Meanwhile, Liu et 

al. [24] presented an interesting idea to integrate inertial and 

vision depth sensors with HMM model to recognize six hand 

gestures, including “wave”, “hammer”, “punch”, “draw X”, 

“circle” and “other” gestures. However, the proposed system is 

not feasible in practical usage as both sensors needed to present 

for high accuracy gestures recognition. Nevertheless, a simple 

data glove with three-axis accelerometer, magnetometers and 

gyroscopes is proposed by Kim et al. [25] which converted the 

sensor data into angle data for sign language recognition. Sousa 

et al. [26] presented a GyGSLA system, a wearable glove that 

aimed to help inexperienced people in learning the new 

Portuguese sign language alphabet which is tested with three 

completely inexperienced sign language subjects. The similar 

study is also performed by Caporusso et al. [27] by introducing 

dbGLOVE, a wearable device for supporting deaf-blind people 

to communicate with others. 

Meanwhile, physiological sensors such as sEMG are also 

another popular gesture recognition technique. Lu et al. [28] 

proposed a score-based sensor fusion scheme using four sEMG 

sensors and a three-axis accelerometer connected to a mobile 

application to realize gestures-based real-time interaction. A set 

of 4 small-scale gestures, 15 large-scale gestures and user 

defined personalized gestures are proposed in the study. A 

similar method is also proposed by Wu et al. [29] with four 

sEMG and an inertial sensor that placed on the wrist to detect 

40 most commonly used ASL words. The study observed that 

only a single channel of sEMG located on the wrist is sufficient 

for the ASL recognition. Likewise, Wu et al. [30] fused the 

information from an inertial sensor and sEMG sensor which are 

placed on a wearable system to recognize 80 commonly ASL 

signs with selected feature subset and processed by a support 

vector machine classifier.  

This study aims at the development of a sign language 

interpretation system by analyzing hand and finger gestures 

from a smart wearable device. The finger gestures are observed 

through the flexion of the flex sensors, whereas the hand 

gestures are examined based on the hand motion through the 

orientation derived from an inertial motion sensor. The gestures 

are recognized using a support vector machine (SVM) model 
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implemented in the wearable device. The gestures are then 

received using our developed mobile application through a 

wireless Bluetooth transmission, and text is displayed on the 

mobile device screen. Moreover, a text-to-speech service is 

also available in the mobile application, which instantly 

converts the received texts into audible outputs. 

II. SYSTEM DESIGN 

A. Hardware Design and System Flow 

For this study, a custom-made wearable device was designed 

and built using a 3D printer to hold the hardware components, 

as illustrated in Fig. 1. The wearable device holder (see Fig. 2) 

is printed using flexible filaments with good elasticity. These 

filaments enable functional hinges, joints, and shaped parts, 

allowing the device to fit different hand sizes. Five finger 

holders were also designed using a flexible filament placed on 

the first joint of each finger to hold the flex sensors. Similarly, 

these flexible holders can also accommodate different finger 

sizes of different users. 

Finger gestures are exploited through the flexion of flex 

sensors placed on the top of the finger. The flex sensors used in 

this study are either 4.5 inches [31] or 2.2 inches [32] in size. 

The shorter length flex sensor is suitable for the pinky finger, 

whereas the longer length flex sensor is used for the other four 

fingers. The flex sensor for the thumb has a longer connection 

distance to the microcontroller board (see Fig. 1) as compared 

to the other fingers, and thus a longer length flex sensor is used 

instead of a shorter length one. In fact, the flex sensor consists 

of both omnidirectional and bidirectional types. The 

omnidirectional flex sensor changes its resistance when it 

bends in one direction only, whereas the bidirectional type 

changes its resistance when it bends in both the upward and 

downward directions. This study utilizes a bidirectional type, 

and each flex sensor is connected with a 10 kΩ resistor. In 

addition, an Adafruit BNO055 absolute orientation sensor [33] 

is used as an inertial motion unit (IMU) for observations of the 

hand gesture movements. A 9-degree-of-freeom (9-DOF) IMU 

is integrated with an MEMS accelerometer, magnetometer, and 

gyroscope under a single die, and processed using a high-speed 

ARM Cortex-M0 processor. The device abstracts the sensor 

fusion and derives the orientation data in quaternions, Euler 

angles, or in a vector format. 

The proposed sign interpretation system is divided into three 

distinct modules: a sensor module, processing module, and 

application module, as shown in Fig. 3. The sensor and 

processing modules are implemented in the smart wearable 

 
Fig. 3.  Overview of sign interpretation system that consists of three modules, 
namely, sensors module, processing module, and application module. 

  

 
(a) 

Fig. 1. 3D printed wearable device that holds the hardware components, which 

include an Android Pro Mini microcontroller, a flex sensor, a motion sensor, 

and a Bluetooth low energy (BLE) module. 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 2.  3D printed finger holder using a flexible filament that can 
accommodate different finger sizes, providing flexibility: (a) front view, (b) 

back view, and (c) holder with a flex sensor. 
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hand device, whereas the application module operates in an 

Android-based mobile device. The flex sensor and IMU data 

are collected using an Arduino Pro Mini 328 [34], which is 

operated at 5 V with an ATmega328 processor running at 16 

MHz with an external resonator (0.5% tolerance). The features 

are extracted from the sensor data and serve as inputs to the 

built-in SVM classifier to determine the sign language alphabet 

letters. In this study, there are a total of 28 gesture patterns, 

which refer to the 26 alphabet letters of ASL, a “neutral” state 

(indicating no gestures to be observed), and an invalid sign. The 

detected sign is translated into text and transmitted to a mobile 

device using a Bluetooth 4.0 module [35], i.e., Bluetooth low 

energy. The received text is displayed on the mobile screen. 

Concurrently, the automated text-to-speech service translates 

the text into an audible voice to be played by the built-in 

speaker of the mobile device. Finally, all of these hardware 

components are powered using a 3.7 V 500 mAh ion lithium 

polymer battery [36]. 

 

B. Experiment Setup 

Twelve subjects were recruited from a university campus 

and participated in the experiments voluntarily. The 

participating subjects do not possess any muscular diseases or 

neuromuscular disorders that would affect their sign gestures. 

The subjects were requested to perform all sign gestures for 20 

times with each approximately 10 s each, as shown in Fig. 4(a). 

In addition, a “neutral” state was also recorded in which all of 

their fingers were wide open regardless of the hand orientation 

(see Fig. 4(b)). All data were recorded during the experiments 

using a desktop computer application. The data were saved in a 

text file format for easy accessibility. The computer application 

is not described in detail herein because it only served as a 

recording device. 

III. METHODS 

A. Preprocessing 

Throughout the experiments, it was observed that the flexion 

values varied among the different subjects owing to the 

different hand sizes. A smaller hand size has a lower 

discrepancy in terms of the flex sensor values with respect to 

particular signs. In other words, the resistance of the flex 

sensors for a smaller hand has less variation as compared to the 

resistance with a larger hand. Thus, the differences among the 

signs are not discernable from the raw flex sensor values. To 

solve this issue, the sensor values were normalized based on the 

computed mean and standard deviation of each flex sensor for 

each subject into a range of [0, 1] for easier analysis as shown in 

(1), 

 

                                   𝑓𝑠�̂� =
(𝑓𝑠𝑖−𝑓𝑠̅̅ ̅)

𝜎𝑓𝑠
 (1)  

 

where 𝑓𝑠𝑖, 𝑓𝑠̅̅ ̅, and 𝜎𝑓𝑠 are the i-th sensor reading, mean and SD 

of flex sensor value respectively. The normalized values are 

computed individually for each sensor and for each test subject. 

In other words, due to the different hand size, the grasping of 

fingers into fist shape generate different maximum flex sensors 

values. Thus, the mean and SDs of flex sensors are computed 

separately for each subject based on the subject’s sensors 

readings. This method eliminated the necessity for the new user 

to perform all the sign gestures before the new user started to 

use the proposed system. 

Meanwhile, each hand movement was derived from the IMU 

in three orientations: pitch, roll, and yaw. The calculation of 

each orientation is similar depending on the axis used. The 

angle 𝑎𝑔𝑙𝑖  of each axis is computed using a complementary 

filter method at the i-th time, as illustrated in (2), 

 

  𝑎𝑔𝑙𝑖 = 0.98 × (𝑎𝑔𝑙𝑖−1 + 𝑔𝑦𝑟𝑖/𝑔𝑦𝑟𝐻𝑍) + 𝑎𝑔𝑙𝑐𝑖 × 0.02, (2) 

 

                      𝑎𝑔𝑙𝑐𝑖 = arctan(𝐴𝑢, 𝐴𝑣) × 180/𝜋, (3) 

 

where 𝑔𝑦𝑟𝑖 , 𝑔𝑦𝑟𝐻𝑍 , and 𝑎𝑔𝑙𝑐𝑖  are the raw gyroscope sensor 

reading, gyroscope sensor sampling rate, and the angular 

acceleration speed (refer to (3)) at the i-th time, respectively. In 

addition, 𝐴𝑢, and 𝐴𝑣 are the coordinates of the exclusive raw 

linear accelerometer readings that do not correspond to the 

angles being computed, e.g., to compute the pitch angle, 𝐴𝑢 

and 𝐴𝑣 are denoted as the y-axis and z-axis of the raw linear 

accelerometer readings, respe  ctively. The multiplier constant 

in (2) converts the angle from radians into degrees (°) for ease 

 
(a) 

 

 
(b) 

Fig. 4.  (a) American sign language with a total of 26 letters and a (b) neutral 

state indicating relaxation or no gestures to be observed. 
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of analysis. Further details of this computation can be found in 

our previous related study [37]. The flex sensors and IMU data 

are gathered at a sampling rate of 100 Hz. 

 

B. Feature Extraction 

To simplify and optimize the coding implementation, a 

vector of the flexion degree in tabular format was considered. 

The flexion degree is split into three regions in each vector. The 

first region is denoted as “no bend” or “slight bend,” which is 

associated with a normalized flexion value within the range of 

[0.0, 0.3). The second region is considered as a “partial bend” 

with the associated normalized flexion value within the range 

of [0.3, 0.7), and the last region is a “complete bend” with 

associated normalized flexion value within the range of [0.7, 

1.0]. These regions are abbreviated in order as OR (open 

region), PR (partially open or closed region), and CR (closed 

region). Table 1 shows a mapping of these regions for all 26 

alphabet letters in ASL, as well as a “neutral” gesture. 

It can be seen that some of the signs exhibit the same regions, 

for instance, the letters “U” and “V,” “K” and “P,” and “I” and 

“J,” as well as “G,” “L,” “Q,” and “Z.” To further distinguish 

these signs, sensor level fusion [38] is adopted. In this study, 

recognition with only flex sensors and inertial sensor are 

denoted as 1st version and addition of pressure sensors for 

sensor level fusion are designated as 2nd version. To support the 

sensor fusion, two Flexiforce pressure sensors were considered. 

The resistance of a Flexiforce pressure sensor [39] is reduced 

when the surface is pressed, but the resistance does not change 

while being flexed. In fact, the resistance changes only when 

the pressure is applied to the round area at the end of the sensor, 

and ranges from 0 to 25 lbs of pressure. These sensors are 

placed below and on the left side (right side for a left-handed 

user) of the first joint of the middle finger, as illustrated in Fig. 

5. The pressure sensors are connected to the digital inputs in 

processing module which produced reading of “0” if pressure 

sensor surface is not pressed, and produced reading of “1” if the 

pressure is sensed on the surface of the sensor. The inclusion of 

the pressure sensors on the middle finger managed to solve the 

issues for the letters “U” and “V,” whereas the second pressure 

sensor resistance value is high for letter “U” and low for the 

letter “V”. Moreover, the letters “G”, “L,” and “Q” can also be 

distingui shed based on the resistance of the respective pressure 

sensors.  

However, the letters “L” and “Z” still exhibit a similar 

pattern and can be differentiated through a hand motion. The 

letter “L” has static motion, whereas letter “Z” has dynamic 

motion over time, as depicted in Fig. 4(a). The same behavior is 

applied to discriminate the letters “I” and “J.” Finally, the 

letters “K” and “P” can only be differentiated based on the hand 

orientation. To determine the hand motion, standard deviation 

(SD) of the angular reading from the IMU sensors is computed 

for each axis. The SD is a measure that is used to quantify the 

amount of variation or dispersion of the motion readings. For 

instance, the preliminary results had indicated that the mean 

SDs of letter “I” are approximately 0.0369 (pitch), 0.0151 

(roll), and 0.0375 (yaw) while the mean SDs of letter “J” are 

1.3968 (pitch), 0.5603 (roll), and 1.1548 (yaw) respectively. 

Thus, in this study, the computed SDs are sufficient to observe 

the occurrence of hand motions. 

 

C. Sign Classifier 

In this study, the signs are classified into 28 classes using a 

support vector machine (SVM) [40]. An SVM is a binary 

supervised learning classifier, that is, the class labels can only 

take the values of +1 and -1. The training procedure used a 

quadratic optimization algorithm to derive structural axes to 

separate the training dataset into n numbers of a hyperplane. 

Assume the i-th training sample using 

 

                 (𝑥𝑖 , 𝑦𝑖), 𝑦𝑖 ∈ {−1,+1}, 𝑖 = 1,2,3, … , 𝑛, (4) 

 

where 𝑥𝑖  is the feature vector and 𝑦𝑖  is the training label in 

accordance to the feature vectors of the i-th training datasets. 

The decision boundary is defined as 

 

                                    𝑓(𝑥) = 𝑤 ∙ 𝑥 − 𝑏, (5) 

 

where the i-th feature is classified as positive (+1) if 𝑓(𝑥) > 0, 

and negative (-1) if 𝑓(𝑥) < 0. The separating hyperplane line is 

structured at 𝑓(𝑥) = 0 . The points positioned around the 

separating hyperplane line are known as support vectors (SVs) 

and their distance to the hyperplane line is known as the margin. 

Optimization of the SVM is calculated by finding the smallest 

distance among all SVs, as shown in (6), which is subject to (7).  

 

                                         min
𝑤,𝑏

‖𝑤‖2

2
 (6) 

 

                                    𝑦𝑖(𝑤𝑥𝑖 − 𝑏) ≥ 1 (7) 

 

The values of +1 and -1 are expressed as correctly classified 

alphabet and incorrectly classified alphabet respectively. 

 
Fig. 5.  Improved version (second prototype) of 3D printed wearable device 

(see Fig. 1) with fusion of pressure sensor added to the middle finger. 
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However, in this study, there are more than two classes that 

are being classified. To obtain an M-class of the SVM 

classifiers, a set of binary classifiers need to be constructed, 

where each binary classifier is trained to distinguish one class 

from the rest. The results are then integrated to form a 

multi-class classification according to the maximal output of 

each binary classifier 𝑥𝑗, which is also known as the confidence 

value and 𝑗 is referred to each alphabet binary classifier. Thus, 

𝑥 belongs to the class with the largest confidence value. In fact, 

there will be gestures that belong to none of the sign classes or 

the aforementioned “neutral” class in a real-world application, 

and thus any gesture with a confidence value of less than 0.5 

(50%) is considered as an “invalid” class. In this study, a 

feature vector 𝑥 is built using a total of ten features, which are 

the normalized flex sensor data for five fingers, two pressure 

sensor data, and finally, three computed SDs of angular 

readings from the IMU sensor. Sliding windows of 3 s are 

adopted to construct the feature vector for every 10 s sensor 

data in order to accommodate the changes in hand movement 

within a 3 s time period, particularly for the letters “J” and “Z.” 

The values of the ten features in 3 s time period are averaged for 

the feature vector construction. There are total of 6,480,000 

datasets (12 subjects × 20 times × 10 s × 100 Hz × 27 signs) 

collected in this experiments. 

The SVM is trained and tested using the “leave one subject 

out” (LOO) method. Here, the SVM is trained using n – 1 

subject datasets, where n is the total number of subjects. 

Subsequently, the trained model is tested using the leave-out 

subject dataset that did not participate in the training process. 

This process was repeated n times, where each subject was 

treated as a leave-out subject once when the testing dataset. The 

accuracy of each trained model is computed using (8), i.e., 

 

                             𝐴𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
, (8) 

 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 refer to a true positive (the number 

of signs correctly identified), true negative (the number of signs 

correctly rejected), false positive (the number of signs 

incorrectly identified), and false negative (the number of signs 

incorrectly rejected), respectively. The overall accuracy of the 

SVM is eventually averaged. From the cross-validation (CV) 

model selection point of view, Arlot et al. [41] concluded that 

LOO method is best to utilize for model training with high 

computational complexity which is proportional to the number 

of data splits. Thus, it is suitable method to estimate the risk 

when learning a model. 

IV.  RESULTS AND DISCUSSION 

A. Experiment Results  

Fig. 6(a) depicted a typical example plotting of the sensor 

value of index finger for the alphabet “A” (red), “B” (green), 

and “C” (blue) respectively. It was clearly observed that the 

flexion region for alphabet “A” of index finger is at CR region 

which is verified as shown in Table 1. The similar results also 

applied to the alphabet “B” (in OR region) and alphabet “C” 

(PR). The signs of the classification results are summarized in 

Table 2 for the first (see Fig. 1) and second (see Fig. 5) versions 

of the proposed system. The results clearly signified a large 

difference of 32.5% between the first and second versions of 

the system. The accuracy in the first version was low owing to 

similar patterns occurring among several of the signs, which 

caused negative classifications. The accuracy improved 

significantly after the pressure sensors were added to the 

system. However, there are still minor misclassifications in the 

second version of the system. An analysis indicated that the 

incorrect pattern recognitions for all subjects occurred more 

commonly between the letters “E” and “S.” This is due to the 

significantly lower differences in the flexion values for subjects 

with a smaller hand size. Thus, the system misinterpreted the 

thumb region as a PR instead of a CR, or vice versa. A similar 

issue appeared for letters “M” and “N” as well, with an 

incorrectly identified region for the ring finger as illustrated in 

Fig. 6(b). It was noticed that even though the flexion sensor 

  
(a) 

 

 
(b) 

 

 
(c) 

Fig. 6.  The sensor values of (a) index finger for the alphabet ‘A’ in red, ‘B’ in 

green and ‘C’ in blue, and sensor values of (b) ring finger for the alphabet ‘M’ 
in green and ‘N’ in red. (c) The plotting of hand motion sensor data for the 

alphabet ‘I’ and alphabet ‘J’. 
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value of ring finger for alphabet “N” had higher value than the 

value for alphabet “M”, they are both fall into same PR region 

which produce the false classification between both alphabets. 

Table 3 illustrated the comparison of first and second 

versions for the alphabet “R”, “U”, and “V”. The accuracy rate 

of signs recognition for alphabet “U” increased significantly 

from mean AC of 57.25% to 97.52% when two pressure 

sensors data are included for the classification. Likewise, the 

mean AC for alphabet “R” and “V” increased dramatically 

from 57.78% to 97.28% and 57.22% to 97.49% respectively. 

Even though the AC increased, but still, there was a slight 

misclassification between the letters “R” and “U,” where 

subjects with thicker fingers tended to touch the surface of the 

second pressure sensor for the letter “R”, e.g., subjects 4, 5, and 

12. On the contradictory, subjects with thinner fingers did not 

tend to touch the surface of the second pressure sensor. 

Nevertheless, the other signs did not incur this same issue. The 

inclusion of the first pressure sensor surface showed significant 

differences for the signs between the letters “U” and “V.” 

Lastly, Fig. 6(c) demonstrated the differences of alphabet “I” 

and “J” in term of hand motion. The result indicated that there 

was no motion in pitch, roll, and yaw angles when performing 

gesture for the alphabet “I” throughout the time. Meanwhile, 

the action of performing the sign gesture for alphabet “J” 

showed dynamic changes of angular which are distinguishable 

from the alphabet “I”.  

On the other hand, Table 4 shows a comparison of the 

proposed system with previous existing methods. In fact, there 

have been a number of studies over the past decades focusing 

on gesture recognition using image processing techniques. 

Many sophisticated algorithms have been proposed to 

distinguish gestures patterns, e.g., neural networks and decision 

trees. As semiconductor and electronic component 

technologies advance, hardware components of a smaller size, 

higher performance, and lower power consumption have 

created alternate methods for gesture recognition. 

Consequently, a data glove with small-scale sensors has been 

introduced. Recent studies have shifted focus from using image 

techniques to using a flex sensor, motion sensor, tilt sensor, or 

optical sensor for gesture recognition. Moreover, current 

studies are literally focusing solely on alphabets, numbers, and 

simple gestures. The average accuracy of sign or gesture 

recognition observed from these studies is over 90% for letters 

and numbers at the language level, but is slightly lower for 

more complicated gesture patterns. Conclusively, although the 

wearable device proposed in this study is currently only 

targeted at the alphabet level, its accuracy is significantly 

higher and it outperforms existing studies that have been 

proposed in recent decades. 

 

TABLE I 

VECTOR FOR FLEXION VALUES SEPARATED BY REGIONS 

Alphabets TB IN MD RG PK PS1 PS2 HM 

A OR CR CR CR CR O O X 

B PR OR OR OR OR X O X 

C OR PR PR PR PR X O X 

D PR OR CR CR CR O O X 

E CR CR CR CR CR O O X 

F PR PR OR OR OR X O X 

G OR OR CR CR CR O O X 

H OR OR OR CR CR X O X 

I PR CR CR CR OR O O X 

J PR CR CR CR OR O O O 

K OR OR OR CR CR X X X 

L OR OR CR CR CR X X X 

M OR PR PR PR CR O O X 

N OR PR PR CR CR O O X 

O PR PR PR PR PR X O X 

P OR OR OR CR CR X X X 

Q OR OR CR CR CR X O X 

R OR OR OR CR CR O X X 

S PR CR CR CR CR O O X 

T OR PR CR CR CR O O X 

U PR OR OR CR CR X O X 

V PR OR OR CR CR X X X 

W PR OR OR OR CR X X X 

X PR PR CR CR CR X X X 

Y OR CR CR CR OR O O X 

Z OR OR CR CR CR X X O 

NT OR OR OR OR OR X X X 

TB: Thumb finger 

IN: Index finger 

MD: Middle finger 
RG: Ring finger 

PK: Pinky finger 

PS1: Pressure Sensor 1 
PS2: Pressure Sensor 2 

HM: Hand in motion 

OR: Open region 
PR: Partially open/close region 

CR: Close region 

O: Yes 
X: No 

 

TABLE III 

COMPARISON OF CLASSIFICATION RESULTS FOR SIGN RECOGNITION FOR 

ALPHABET ‘R’, ‘U’ AND ‘V’ 

Alphabet \ 
Subject 

R U V 

1 65.1 / 97.2 66.2 / 97.5 65.8 / 98.5 

2 51.2 / 96.4 52.1 / 97.1 50.5 / 98.2 

3 53.4 / 97.4 52.8 / 98.6 53.5 / 97.2 

4 56.1 / 95.5 55.2 / 96.4 55.3 / 97.5 

5 61.5 / 95.8 60.8 / 97.5 61.1 / 96.7 

6 62.8 / 97.9 61.8 / 97.8 60.5 / 96.9 

7 60.8 / 96.4 61.1 / 98.4 61.0 / 97.5 

8 69.5 / 98.7 68.4 / 96.7 67.5 / 98.5 

9 51.6 / 97.5 50.8 / 97.2 51.1 / 96.9 

10 52.7 / 98.6 51.8 / 97.8 50.8 / 97.6 

11 53.8 / 99.5 52.8 / 99.4 53.1 / 98.2 

12 54.8 / 96.4 53.2 / 95.8 54.2 / 96.1 

/ – Accuracy rate for *1st version vs. (2nd) version in % 

TABLE II 
SUMMARY CLASSIFICATION RESULTS FOR SIGN RECOGNITION 

Subject 
Sample Size  

((TP + TN) / Total) 
AC (%) 

1st version 425,736 / 648,000 65.7 

2nd version 636,336 / 648,000 98.2 

AC: Accuracy 
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B. Sign Interpretation Application 

The classified sign gestures from the proposed smart 

wearable device is transmitted to the sign interpretation system.  

The sign interpretation system was built on an Android-based 

mobile device, a Google Nexus 6p [42]. First, the application 

searches for available Bluetooth devices and displays the 

search results through a card list, as shown in Fig. 7(a). Next, 

the selected Bluetooth device (HMSoft) initiates a wireless 

connection with the proposed wearable device. Once the 

connection is successfully established, the application will start 

to receive data in a text format, ranging from “A” to “Z,” or in a 

neutral state, i.e., “NT,” or as an invalid sign, i.e., “INV,” as 

illustrated in Fig. 7(b). The received text is displayed at the 

center of the screen, whereas the past history of received texts is 

displayed on the right side of the screen with the newest text 

shown at the bottom of the list. Moreover, a text-to-speech 

service is also implemented in the application. The service 

converts the received text into an output, which is played back 

concurrently by the mobile device speaker. In this study, the 

Android-based sign interpretation application is merely utilized 

for receiving classified sign gestures from the smart wearable 

device and further displaying the results on the screen. 

V. CONCLUSION 

In this study, we successfully designed and implemented a 

novel and smart wearable hand device as a sign interpretation 

system using a built-in SVM classifier. An Android-based 

mobile application was developed to demonstrate the usability 

of the proposed smart wearable device with an available 

text-to-speech service. The participating subjects gave a high 

rating to the proposed smart wearable sign interpretation 

system in terms of its comfort, flexibility, and portability. The 

device holders were 3D-printed using a flexible filament, and 

the same holders are able to fit different hand and finger sizes, 

thus eliminating the necessity of custom-made devices. Future 

work on the proposed smart wearable hand device will consider 

the design of a smaller sized printed circuit board, the inclusion 

of words and sentences at the sign language level, and instantly 

audible voice output components. 
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