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Highlights:

• Several different centrality measures are considered as the

multi-attribute of complex network in AHP application.

• AHP is used to aggregate the multi-attribute for the evaluation of the

influence of each node.

• The global structure and local information in complex networks are

both taken into consideration to identify influential nodes.

• The proposed method can rank identify influential nodes accurately.

*Highlights (for review)
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Abstract

In the field of complex networks, how to identify influential nodes in the

network is still an important research topic. In this paper, a method to

identify the influence of the node based on Analytic Hierarchy Process

(AHP) is proposed. AHP, as a multiple attribute decision making (MADM)

technique has become an important branch of decision making since then.

Every centrality measure has its own disadvantages and limitations, thus

we consider several different centrality measures as the multi-attribute

of complex network in AHP application. AHP is used to aggregate the

multi-attribute to obtain the evaluation of the influence of each node. The

experiments on four real networks and an informative network show the

efficiency and practicability of the proposed method.
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1. Introduction

In recent years, complex network theory with advances in the under-

standing of the highly interconnected nature of various social, biological,

and communication systems has gained much attention[1, 2, 3, 4, 5, 6, 7, 8].

Transferring information, trust, ideas, diseases and influences between

any two nodes is the key function of complex networks[9, 10, 11]. The

information can spread rapidly to a large number of nodes begin with an

influential node. Hence, evaluating the influence of the nodes is a signif-

icant issue in complex networks [12], such as in the control of the disease

and rumor dynamics[13, 14, 15], research on public opinion[16, 17], and

creating new marketing tools [18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

Many measurements of node centrality have been used commonly such

as Degree centrality (DC)[28], Betweenness centrality (BC)[28, 29, 30], Close-

ness centrality (CC)[28] and so on. The DC method is very simple but

of little relevance, since the measure does not take into consideration the

global structure of the network. BC and CC are global metrics which can

better identify influential nodes, but they are difficult to apply in large-

scale networks due to their computational complexity. Another limitation

of CC is the lack of applicability to networks with disconnected compo-

nents: two nodes that belong to different components but do not have a

finite distance between them. Several spectral centrality measures are al-

so available, such as semi-local centrality(SLC)[31], eigenvector centrality

(EC)[32], PageRank (PR)[33], and LeaderRank (LR)[34]. In SLC the topo-
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logical connections among the neighbors are neglected, only the num-

ber of the nearest and the next nearest neighbors of a node is taken into

account[35]. EC can not be applied to asymmetric networks in which some

positions are unchosen[32]. PR, as well as LR, only has effect in directed

networks, it will degenerate to DC in undirected networks[31].

Multiple Attribute Decision Making (MADM) (or called Multi-Criteria

Decision-Making, MCDM) methods[36] have been proposed to decide a

preferred alternative, classify alternatives in a small number of categories,

and prioritize alternatives in a subjective preference order[37, 38, 39, 40].

It has been applied to many fields[41, 42]. Some math tools, such as fuzzy

sets [43, 44], evidence theory [45, 46] and D numbers [47, 48], are widely

used to address MADM. In this paper, we try to explore how to identify

influential nodes by employing MADM methods. Du et al.[49] used D-

C, CC, BC as the multi-attribute in TOPSIS to generate the ranking lists

to evaluate the node spreading influence. Hu et al.[50] proposed a mod-

ified method by considering different weights of these attributes in TOP-

SIS (W-TOPSIS). Among numerous MADM methods developed to solve

real-world decision problems, the Analytic Hierarchy Process (AHP) con-

tinues to work satisfactorily across different application areas. Thomas

Saaty[51] originally introduced AHP to deal with complex decision mak-

ing in a systematic and structured way, and may help the decision maker

to set priorities and make the best decision with a finite number of crite-

ria. By reducing complex decisions to a series of pairwise comparisons,

and then synthesizing the results, the AHP helps to capture both subjec-
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tive and objective aspects of a decision. In addition, the AHP incorporates

a useful technique for checking the consistency of the decision maker’s e-

valuations, thus reducing the bias in the decision making process[51, 52].

AHP makes full use of attribute information, provides a cardinal ranking

of alternatives and it’s inability to adequately handle the inherent uncer-

tainty and imprecision in the data is also often criticized[49, 53, 54, 55].

As a well-known classical MADM method, AHP has gained much interest

from researchers and practitioners[56, 57].

It is the first time for applying the AHP to identify influential nodes

in complex networks. Firstly, we calculate the value of different centrality

measures of the network. Notice that in different networks in which the

information is transmitted in different ways, the different centrality mea-

sures need to be used. Then, AHP is utilized to evaluate the importance of

nodes and identify influential nodes by regarding the centrality measures

as the multi-attribute of complex networks. To evaluate the algorithmic

performance, we use the Susceptible-Infected (SI) model[58] to examine

the influence of the nodes ranked by the proposed method.

The paper is organized as follows. Section 2 and 3 begins with a brief

overview of centrality measures and an introduction to AHP with a simple

example. In Section 4, the method for identifying influential nodes based

on AHP is proposed. Then, numerical examples are illustrated to show

the efficiency and practicability of the proposed method, the Susceptible-

Infected (SI) model and Kendall’s tau coefficient is used to evaluate the

performance in Section 5. Finally, some conclusions are presented in Sec-
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tion 6.

2. Centrality measures

Considering a graph G = (V, E) with n = |V| nodes and m = |E| links.

And the node centrality measurement of DC, CC and BC are well defined

as follows.

Definition 1. (DC)[49]. The DC of node i, denoted as CD(i), is defined as

CD(i) =
N

∑
j

xij (1)

where i is the focal node, j represents all other nodes, N is the total number

of nodes, and xij represents the connection between node i and node j. The

value of xij is defined as 1 if node i is connected to node j, and 0 otherwise.

Definition 2. (BC)[49]. The BC of node i, denoted as CB(i), is defined as

CB(i) = ∑
j,k ̸=i

gjk(i)
gjk

(2)

where gjk denotes the number of the shortest paths between node j and k,

and gjk(i) means the number of the shortest paths between node j and k

that go through node i.

Definition 3. (CC)[49]. The CC of node i, denoted as CC(i), is defined as

CC(i) =

[
N

∑
j

dij

]−1

(3)

where dij denotes the distance between node i and node j.
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Definition 4. (Semi-local Centrality)[31]. The Semi-local centrality of n-

ode i, Cl(i), is defined as

Q(v) = ∑
u∈Γ(v)

N(u) (4)

Cl(i) = ∑
j∈Γ(i)

Q(j) (5)

where Γ(v) is the set of the nearest neighbors of node v and N(u) is the

number of the nearest and the next nearest neighbors of node u.

Definition 5. (EC)[32]. Let A be an n × n similarity matrix. The eigen-

vector centrality xi of node i is defined as the ith entry in the normalized

eigenvector belonging to the largest eigenvalue of A. λ is the largest eigen-

value of A and n is the number of vertices:

Ax = λx, xi = u
n

∑
j=1

aijxj, i = 1, 2, ..., n (6)

with proportionality factor u = 1
λ so that xi is proportional to the sum of

similarity scores of all nodes connected to it.

Definition 6. (PR)[33]. PageRank algorithm[59] is a famous variant of

eigenvector centrality and is used to rank websites in Google search en-

gine and other commercial scenarios[60]. Similar to eigenvector centrality,

PageRank supposes that the importance of a webpage is determined by

both the quantity and the quality of the pages linked to it[61]. Initially,

each node gets one unit PR value. Then every node evenly distributes the
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PR value to its neighbors along its outgoing links. Mathematically, the PR

value of node vi at t step is

PRi(t) =
n

∑
j=1

aji
PRj(t − 1)

kout
j

(7)

where n is the total number of nodes in the network, and kout
j is the out-

degree of node vj. The above iteration will stops if the PR values of all

nodes reach the steady state.

Definition 7. (LR)[34]. The Leader Rank was proposed by Lu et al.[34]

which is a variant of the Page Rank algorithm. In general, they introduced

a ground node which bidirectionally connects to all other nodes. Then

the random walk process is used to find influential nodes and this process

continues until the steady state is attained. The process can be described

by the stochastic matrix P with a probability pij =
aij

kout
i

that a random walk-

er at node i goes to j the next time, where aij = 1 means node i pointing

to node j, and kout
i denotes the out-degree. So the score of node i at time t

can be defined as

si(t + 1) =
N+1

∑
j=1

aji

k j
out sj(t) (8)

The initial scores for all node i is 1 while 0 for the ground node. When the

score si(t) for all i converges to a unique steady state which can be denoted

as si(tc), where tc is the convergence time. Thus, the final score of a node

is defined as

Si = si(tc) +
sg(tc)

N
(9)

7



where sg(tc) is the score of the ground node at steady state. Hence, we can

rank each node with the Si value down. (For more detailed information

please refer to [34].)

3. The basic theory of AHP

The Analytic Hierarchy Process(AHP), proposed by Saaty[51, 52], are

theories of relative measurement of intangible criteria[62]. Saaty propos-

es the decision makers preferences by formulating the Fundamental S-

cale(Table 1, from Ref.[52]). Generally, the process to solve an MCDM

problem using AHP can be divided into the following subsections:

3.1. Modelling Decision Problem as a Hierarchy

The decision-making problem is established as a hierarchy structure

and is recursively decomposed into several levels. The main goal of the

decision problem is the top level of the hierarchy structure. The tangible

and/or intangible criteria and subcriteria that contribute to the goal are the

lower levels.The alternatives to evaluate in terms of the criteria formed the

bottom level[63].

3.2. Computing the vector of criteria weights

First, we create a m × m pairwise comparison matrix A, and m is the

number of criteria. In the matrix A, each element aij represents the impor-

tance of the ith criterion relative to the jth criterion. The element aij satisfy

the following properties: (1) aij ȧji = 1; (2) aii = 1; (3) aij >0. The numerical
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Intensity of Definition

importance

1 Equal importance/preference

2 Weak

3 Moderate importance/preference

4 Moderate plus

5 Strong importance/preference

6 Strong plus

7 Very strong or demonstrated

importance/preference

8 Very, very strong

9 Extreme importance/preference

Table 1: Saatys fundamental scale.

rating including 9 scales between two criteria is measured, as shown in

Table 1, where it is assumed that the ith criterion is equally or more im-

portant than the jth criterion. Finally, the priority weights of criteria w is

built by the equation:

Aw = λmaxw, w = (w1, w2, ..., wn)T (10)

where λmax is the largest eigenvalue of matrix A.

3.3. Computing the matrix of option scores

First, assume a n × m real matrix S. Each entry sij of S represents the

score of the ith option with respect to the jth criterion. Then, for each of
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the m criteria, a pairwise comparison matrix B(j) is first built for each of

the m criteria, j=1,...,m. The matrix B(j) is a n × n real matrix, where n is

the number of alternatives. Each element b(j)
ih of the matrix B(j) represents

the evaluation of the ith alternative compared to the hth alternative with

respect to the jth criterion. The evaluation scales suggested in Table 1 may

also be used to in this section.

Second, the same process described for the pairwise comparison matrix

A is applied to each matrix B(j), then the alternative vectors s(j) (j=1, ..., m)

are obtained. The vector s(j) contains the scores of the evaluated options

with respect to the jth criterion. Finally, the score matrix S is constructed

as

S = [s(l) · · · s(m)] (11)

3.4. Ranking the options

Finally, the scores v is obtained by multiplying the weight vector w and

the score matrix S,

v = S · w (12)

where the ith element vi of v represents the score of the ith alternative

calculated by AHP.

4. Proposed method

4.1. Basic method

In different networks information is transmitted in different ways, a

great number of centrality measures have been proposed for identifying
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influential nodes. However, every measure has its limitations and disadvantages[64].

So the different types of centrality measures need to be taken into account

when evaluating a network. Multiple Attribute Decision Making (MAD-

M) problem is a good choice to address this issue. Du et al.[49] has applied

TOPSIS to identify influential nodes in complex networks in 2014. Hu et

al.[50] proposed a modified method by considering different weights of

these attributes in TOPSIS. In this paper, the AHP is introduced to identify

the influence nodes in complex network. Degree centrality (DC), closeness

centrality (CC) and betweenness centrality (BC) are widely used in iden-

tifying the influential nodes in complex network. Thus, in the proposed

approach, they are chosen as the criteria for decision making.

The proposed method based on AHP is composed of the following

steps(shown in Fig. 4):

Step 1: Calculate the centrality value.

Degree centrality (DC), closeness centrality (CC) and betweenness cen-

trality (BC) are calculated first, which are taken into account as the criteria

in AHP application. Assuming the network has m nodes, so we can get a

m × 3 matrix A:

A =




DC1 BC1 CC1

DC2 BC2 CC2
...

...
...

DCm BCm CCm




Step 2: Calculate the weights.
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Figure 1: The flowchart of the proposed method.
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In order to apply AHP to identify influence nodes of complex network-

s, we should get the weight of each criterion firstly. However, the method

of obtaining the weights in the original AHP is not applicable. Hu’s[50]

method to calculate the weights of each attribute in w-TOPSIS is effec-

tive. In this method the Susceptible-Infected (SI) model[58] is used to cal-

culate the weights. In SI model, S(t) and I(t) are respectively the num-

bers of susceptible and infected individuals at time t. In each step, only

the individuals which have been infected are able to spread the disease

to susceptible individuals, and every susceptible individual gets infected

with probability λ (for uniformity, we set λ = 0.3) from the infected neigh-

bor. The total number of infected nodes at time t can be considered as an

indicator to evaluate the influence of the initially infected node, namely

F(t)[31]. Clearly, the number of cumulative infected nodes increases with

time t and eventually reaches a steady value. For different nodes initial-

ly infected, higher F(t) represents a larger influence. Thus the weight of

each attribute can be calculated by matching with F(t). The higher the

matching degree, the bigger the weight of the attribute. The process for

calculating the weights is illustrated as the following:

Consider a matrix D, the first 3 columns represent the value of dif-

ferent centrality measure. The last column represents the results of SI

model(F(t))[50]:
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D =




DC1 BC1 CC1 F1(t)

DC2 BC2 CC2 F2(t)
...

...
...

...

DCm BCm CCm Fm(t)




(13)

Normalize the matrix[50]:

rij =
xij

m
∑

i=1
xij

, i = 1, 2, . . . , m; j = 1, 2, 3, 4 (14)

Match the attribute to F(t) as follows[50]:

vij =
1

|rij − ri4|
, i = 1, 2, . . . , m; j = 1, 2, 3 (15)

where ri4 represents F(t).

Calculate the value of each criterion ej by sum the vij obtained in Eq.

(15):

ej =
m

∑
i=1

vij, i = 1, 2, . . . , m; j = 1, 2, 3 (16)

Finally, the weight of criterion j, wj, is obtained by normalizing the ej

calculated in Eq. (16).

wj =
ej

n
∑

j=1
ej

, j = 1, 2, 3 (17)

Step 3: Calculate the matrix of option scores

In this step, three pairwise comparison matrix B(j) is first built for each

of the criteria (DC, BC and CC), j=1, 2, 3. Each entry b(j)
ih of the matrix B(j) is

calculated by dividing the value of ith node and the value of hth node with
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respect to the jth criterion. Then the AHP applies to each matrix B(j) the

same two-step procedure described for the pairwise comparison matrix A

in Section 3.2, thus obtaining the score vectors s(j), j=1, 2, 3. The vector s(j)

contains the scores of the nodes with respect to the jth criterion. Finally,

the score matrix S is obtained.

Step 4: Ranking the nodes

By multiplying S and w obtained above, we can obtain the global score

of each node in the network.

4.2. Example explanation

Based on what has been proposed above, a simple example is giv-

en to explain how AHP performs in this part. The Kite network is a

classical interpersonal relationship network with 10 nodes designed by

Krackhardt[65](shown in Fig. 2). The different centrality measure values

of each node are shown in Table 2.
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Table 2: The different centrality measure values of each node of Kite network.

Degree Closeness Betweenness

Nodes Value Nodes Value Nodes Value

Diane 6 Fernando 0.071 Heather 0.622

Fernando 5 Garth 0.071 Fernando 0.370

Garth 5 Diane 0.067 Garth 0.370

Andre 4 Heather 0.067 Ike 0.356

Beverly 4 Andre 0.059 Diane 0.163

Carol 3 Beverly 0.059 Andre 0.037

Ed 3 Carol 0.056 Beverly 0.037

Heather 3 Ed 0.056 Carol 0.000

Ike 2 Ike 0.048 Ed 0.000

Jane 1 Jane 0.034 Jane 0.000
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Figure 2: The Kite network.

Firstly, we can construct a matrix A from the in Table 2:

A =




DC BC CC

Diane 6 0.067 0.163

Fernando 5 0.071 0.370

Grath 5 0.071 0.370

Andre 4 0.059 0.037

Beverly 4 0.059 0.037

Carol 3 0.056 0.000

Ed 3 0.056 0.000

Heather 3 0.067 0.622

Ike 2 0.048 0.356

Jane 1 0.034 0.000



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Because the Kite network is very small so we let t=6. Then we can get

the matrix D of which the last column represents the result of F(t).

D =




6 0.067 0.163 8

5 0.071 0.370 6

5 0.071 0.370 6

4 0.059 0.037 3

4 0.059 0.037 3

3 0.056 0.000 1

3 0.056 0.000 1

3 0.067 0.622 3

2 0.048 0.356 2

1 0.034 0.000 1




Then normalize the matrix D by Eq. (14), we can get the matrix R:

R =




0.1667 0.1139 0.0834 0.2353

0.1389 0.1207 0.1893 0.1765

0.1389 0.1207 0.1893 0.1765

0.1111 0.1003 0.0189 0.0882

0.1111 0.1003 0.0189 0.0882

0.0833 0.0952 0 0.0294

0.0833 0.0952 0 0.0294

0.0833 0.1139 0.3182 0.0882

0.0556 0.0816 0.1821 0.0588

0.0278 0.0578 0 0.0294



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Next, match the attributes to F(t) by Eq. (15), we can get a new matrix

V:

V =




0.1277 0.1268 0.1263

0.1706 0.1701 0.1721

0.1706 0.1701 0.1721

0.3462 0.3449 0.3354

0.3462 0.3449 0.3354

1.0909 1.1053 1.0000

1.0909 1.1053 1.0000

0.3429 0.3465 0.3729

0.5143 0.5213 0.5501

1.0286 1.0614 1.0000




Calculate the weight of each attribute by Eq. (16) and Eq. (17). We can

obtain the weights of all attributes. w=(0.3354 0.3397 0.3249).

Secondly, according to the step 3 described in subsection 4.1, we can

get three pairwise comparison matrix B(j)(j=1, 2, 3).

19



B(1) =




1 1 4/3 4/5 4/5 4/3 2/3 4/3 2 4

1 1 4/3 4/5 4/5 4/3 2/3 4/3 2 4

3/4 3/4 1 3/5 3/5 1 1/2 1 3/2 3

5/4 5/4 5/3 1 1 5/3 5/6 5/3 5/2 5

5/4 5/4 5/3 1 1 5/3 5/6 5/3 5/2 5

3/4 3/4 1 3/5 3/5 1 1/2 1 3/2 3

3/2 3/2 2 6/5 6/5 2 1 2 3 6

3/4 3/4 1 3/5 3/5 1 1/2 1 3/2 3

1/2 1/2 2/3 2/5 2/5 2/3 1/3 2/3 1 2

1/4 1/4 1/3 1/5 1/5 1/3 1/6 1/3 1/2 1




B(2) =




1 1 0 5/48 5/39 0 5/6 5/78 1/9 0

1 1 0 5/48 5/39 0 5/6 5/78 1/9 0

0 0 0 0 0 0 0 0 0 0

48/5 48/5 0 1 16/13 0 8 8/13 16/15 0

39/5 39/5 0 13/16 1 0 13/2 1/2 13/15 0

0 0 0 0 0 0 0 0 0 0

6/5 6/5 0 1/8 2/13 0 1 1/13 2/15 0

78/5 78/5 0 13/8 2 0 13 1 26/15 0

9 9 0 15/16 15/13 0 15/2 15/26 1 0

0 0 0 0 0 0 0 0 0 0



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B(3) =




1 1 18/17 14/17 14/17 18/17 15/17 15/17 21/17 29/17

1 1 18/17 14/17 14/17 18/17 15/17 15/17 21/17 29/17

17/18 17/18 1 7/9 7/9 1 5/6 5/6 7/6 29/18

17/14 17/14 9/7 1 1 9/7 15/14 15/14 3/2 29/14

17/14 17/14 9/7 1 1 9/7 15/14 15/14 3/2 29/14

17/18 17/18 1 7/9 7/9 1 5/6 5/6 7/6 29/18

17/15 17/15 6/5 14/15 14/15 6/5 1 1 7/5 29/15

17/15 17/15 6/5 14/15 14/15 6/5 1 1 7/5 29/15

17/21 17/21 6/7 2/3 2/3 6/7 5/7 5/7 1 29/21

17/29 17/29 18/29 14/29 14/29 18/29 15/29 15/29 21/29 1




to which correspond the score vectors

s(1) = [0.1111, 0.1111, 0.0833, 0.1389, 0.1389, 0.0833, 0.1667, 0.0833, 0.0556, 0.0278]T,

s(2) = [0.0155, 0.0155, 0, 0.1487, 0.1208, 0, 0.0186, 0.2416, 0.1394, 0]T,

s(3) = [0.1002, 0.1002, 0.0946, 0.1217, 0.1217, 0.0946, 0.1136, 0.1136, 0.0811, 0.0587]T.
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Hence, the score matrix S is obtained,

S = [s(1) s(2) s(3)] =




0.1111 0.0155 0.1002

0.1111 0.0155 0.1002

0.0833 0 0.0946

0.1389 0.1487 0.1217

0.1389 0.1208 0.1217

0.0833 0 0.0946

0.1667 0.0186 0.1136

0.0833 0.2416 0.1136

0.0556 0.1394 0.0811

0.0278 0 0.0587




Finally, by multiplying S and w obtained above, we can obtain the

global score vector v = [0.0762 0.0762 0.0599 0.1363 0.1272 0.0599

0.1005 0.1451 0.0915 0.0291]T.

The ranking results of each node with different centrality measure are

shown in Table 3. From the Table 3, we can know that node 8(Heather)

is ranked as the most influential node in the proposed method. In the

Kite network, node Heather is like an important connection point between

the kite and the line, so it’s not too much to be ranked first. And node

4(Fernando), node 5(Grath) and node 7(Diane) are like a kite’s support,

they should be ranked in the following. Fernando and Grath is closer to

the connection point, so they are more important. Node 1(Beverly), node

2(Andre), node 3(Carol), node 6(Ed) and node 10(Jane) are on the edge

of the kite network so it should be ranked in the back of the node 9(Ike),

22



Table 3: The ranking results of each node with different centrality measure.

DC CC BC Proposed method

7 4 8 8

4 5 4 4

5 7 9 5

1 8 5 7

2 1 7 9

3 2 1 1

6 3 2 2

8 6 3 3

9 9 6 6

10 10 10 10
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which plays the role of the kite line. Therefore the proposed method is

more reasonable than other centrality measures.

5. Experimental analysis

5.1. Data

In order to verify the efficiency of the proposed method, we use four re-

al network to evaluate the performance. (i) Email:the network of e-mail in-

terchanges between members of the University Rovirai Virgili(Tarragona)[66].

The data can be downloaded from http://www.cs.bris.ac.uk/steve/peacockpaper;

(ii) Groad: It includes the adjacency matrix (value 1 if two locations are di-

rectly connected by a highway) and the labels of all 1,168 nodes[67]. (iii)

Yeast: this is a network of yeast and protein interactions. Each node repre-

sents a protein and they are connected by the side if there is interaction be-

tween proteins. The data can be downloaded from http://snap.stanford.edu/data/;

(iv) USair97 network: It has 322 airports and the air line between two air

port can be denoted as a connection between two nodes in the network.

The data can be downloaded from http://pajek.imfm.si/doku.php?id=data:pajek:vlado&s[]=air.

The basic topological properties of these four networks are shown in Table

4.

5.2. Effectiveness

In this section, DC, CC, BC, EC, SLC, PR and LR are taken to compare

with the proposed method. The lists of top-10 influential nodes for four

networks are shown in Table 5 and Table 6. Because PR, as well as LR, only
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Table 4: The basic topological features of the four real networks. n and m are the total

number of nodes and links, respectively. < k > and kmax denote the average and the

maximum degree. C is the clustering coefficient[68].

Network n m < k > kmax C

Email 1133 5451 9.62 71 0.2202

Groad 1168 1243 2.13 12 0.0006

Yeast 2375 11693 9.85 118 0.1529

USair97 332 2126 12.81 139 0.3964

has effect in directed networks, we don’t compare the result of PR and LR

with the proposed method in Email, Groad and Yeast networks. In Email,

the results between the proposed method and BC or CC have the same

nine members in the top-10 lists; the proposed method and SLC have the

same eight members in the top-10 lists; the proposed method and DC have

the same seven members in the top-10 lists. In Groad, there are the same

eight members in the top-10 lists by comparing the proposed method and

BC, the proposed method and DC have the same five members in the top-

10 lists. In Yeast, in spite of the fact that the results of different measures

have many differences, the proposed method and DC, CC, BC still have

2, 3 and 7 same nodes in the top 10 nodes. In USAir97, the number of the

same members in the top-10 lists between the proposed method and other

centrality measures are 8, 7 8, 5, 9 and 6 respectively in DC, CC, BC, SLC,

PR and LR.

The SI model is also used to compare the proposed method with W-
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Table 5: The top-10 ranked nodes by degree centrality (DC), closeness centrality (CC),

betweenness centrality (BC), eigenvector centrality (EC), semi-local centrality(SLC), W-

TOPSIS and the proposed method in Email, Groad and Yeast.

Email

Rank DC CC BC EC SLC W-TOPSIS Proposed method

1 105 333 23 105 333 176 105

2 333 23 105 16 23 333 23

3 42 105 333 196 41 23 333

4 23 42 76 204 233 76 42

5 16 41 42 42 52 42 76

6 41 76 578 49 42 41 41

7 196 233 135 56 3 233 135

8 233 52 41 116 135 578 578

9 76 135 52 333 54 135 52

10 21 378 355 3 76 355 233

Groad

Rank DC CC BC EC SLC W-TOPSIS Proposed method

1 693 698 219 219 198 693 219

2 403 219 693 217 217 403 693

3 300 450 543 267 219 219 543

4 217 565 758 198 267 758 758

5 373 331 403 207 312 373 403

6 410 763 373 331 331 543 373

7 758 267 698 565 450 698 698

8 207 663 565 236 654 331 565

9 219 729 556 295 236 565 556

10 331 347 763 231 127 300 763

Yeast

Rank DC CC BC EC SLC W-TOPSIS Proposed method

1 68 321 321 176 321 321 321

2 176 1302 174 933 1302 375 375

3 933 288 375 192 246 174 174

4 91 246 2084 949 1335 2084 2084

5 192 1335 433 518 1360 433 433

6 206 1360 120 175 410 288 120

7 518 375 1711 924 288 120 1711

8 949 11 1194 177 144 1711 68

9 1101 892 11 112 375 1194 1101

10 112 410 892 186 400 246 288
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Table 6: The top-10 ranked nodes by degree centrality (DC), closeness centrality (CC), be-

tweenness centrality (BC), eigenvector centrality (EC), semi-local centrality(SLC), PageR-

ank (PR), LeaderRank (LR), W-TOPSIS and the proposed method in USair97.

USAir97

Rank DC CC BC EC SLC PR LR W-TOPSIS Proposed method

1 118 118 118 332 313 261 118 118 230

2 261 261 8 14 8 118 248 261 255

3 255 67 261 15 47 152 261 8 201

4 152 255 47 12 67 182 47 47 47

5 182 201 201 10 118 8 201 67 67

6 230 182 67 11 201 201 67 201 152

7 166 47 313 9 248 255 166 182 182

8 67 166 13 18 65 230 255 152 8

9 112 248 182 17 112 67 258 255 261

10 201 122 152 19 144 166 311 230 118

TOPSIS[50]. According to the SI model, the more outstanding infectious

ability the node is, the more important it is. The top-10 lists generated by

weighted TOPSIS and the proposed method respectively are shown in Ta-

ble 5 and Table 6. We compare the influence of the nodes that either appear

in the top-10 list by the proposed method or W-TOPSIS. The simulation-

s on the cumulative infected nodes for these four networks, are shown

in Fig. 3. In Email, it’s obvious that proposed method outperforms W-

TOPSIS. In Groad, the result for the proposed method and W-TOPSIS is

similar, because the lines of the proposed method and W-TOPSIS almost

overlap as shown in Fig. 3(b). We also can find that the average number of

infected nodes by the proposed method is slightly better than W-TOPSIS

at each step. In Yeast, we can also see that the proposed method outper-
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Figure 3: The cumulative number of infected nodes as a function of time in Email, Groad,

Yeast and USair97 with the initially infected nodes being those that either appear in the

top-10 list by the proposed method or W-TOPSIS.

forms W-TOPSIS, because the average number of infected nodes in each

step by the proposed method is larger than W-TOPSIS at the beginning

of infecting process shown in Fig. 3(c). In USair97, Fig. 3(d) presents the

cumulative number of the infected number of the proposed method and

W-TOPSIS. Obviously, the proposed method outperforms W-TOPSIS.

Finally, Kendall’s tau coefficient τ [69] are used to measure the corre-

lation between the node’s influence measured by two methods and the

result simulated by the SI model. It assumes that there are two random
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Figure 4: The Kendall’s tau coefficient τ obtained by comparing the ranking list generated

by the two methods and the ranking list generated by SI model on four real networks.

The results are obtained by over 100 independent runs where the spreading probability

λ is ranging from 0.01 to 0.1.
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variables X and Y, the ith value of two random variables are respectively

considered as Xi and Yi. The corresponding elements in X and Y form an

element pair of the set XY, which contains the elements (Xi, Yi). If both

Xi>Xj and Yi>Yj or if both Xi<Xj and Yi<Yj, these two elements (Xi,Yi),

(Xj,Yj) are considered coincident. In contrast, if Xi>Xj and Yi<Yj or if

Xi<Xj and Yi>Yj, they are said to be discordant. If Xi = Xj or Yi = Yj,

these two elements are neither concordant nor discordant. The Kendall’s

tau coefficient is defined as[70, 71]:

τ =
nc − nd

0.5n(n − 1)
(18)

where nc and nd represent the number of concordant and discordant pairs

respectively. Kendall’s tau coefficient can clearly show the matching ex-

tent between two kinds of sorts, it can be more intuitive to reflect the cor-

relation between the two methods in the numerical results. So we set the

spreading probability of SI model are gradually increasing from 0.01 to

0.1, then calculate the Kendall’s tau coefficient of different sorting meth-

ods and SI models with the change of spreading probability, the results

are shown in Fig. 4. It is clear that the higher the value of the Kendal-

l coefficient τ, the higher the correlation between the method and the SI

model. From Fig. 4, we can see that the proposed method outperforms

the W-TOPSIS on strongly positive correlation with real spreading process

in Groad, Yeast, and USair97. In Email, our method and W-TOPSIS al-

most have the same performance. But our method is slightly better than

W-TOPSIS around λ = 0.09.
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5.3. The proposed method applied in informative networks

In recent years, the concepts of complex networks have been widely

used in textual analysis[72, 73, 74, 75, 76, 77]. In this section, an appli-

cation of keywords detection is employed to illustrate the validity and

practicability of the proposed method[78]. We use the word adjacencies

network to represent adjacency of words in English text, in this case the

novel DavidCopper f ield[79] by Charles Dickens is used to carry out the

analysis. The vertices in the informative network represent words and if

one word adjoins one another at any point in the text then an edge will

generate to connect these two words. There are two traditional approach-

Table 7: Top ten keywords ranked using entropic approach (E), clustering ap-

proach (C), DC, CC, BC, EC, SLC, PR, LR and the proposed method from the novel

DavidCopper f ield.

Rank E C DC CC BC EC SLC PR LR Proposed method

1 other little little little little half little little little little

2 good old old old old glad face old old old

3 young good other good other fancy friend other other other

4 dear other good other first lost way good good good

5 pretty same same way good family place first first first

6 great room first same whole world right whole same same

7 best way way first man full other same whole man

8 eye small dear time better greater good man man whole

9 short poor man room way anything pretty nothing better way

10 beautiful black young thing same true old heart dear better

es used to copy with the problem of keyword detection have been proved

to have good effect: the entropic and clustering approaches. The entrop-
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ic approach (E) was proposed by Herrera and Pury[80], at first we need

to divide the text composed of N words into P parts. Then a probability

measure over the partition pi(w) for every word type w can be defined as

follows[78]:

pi(w) =
fi(w)

P
∑

j=1
f j(w)

(i = 1, ..., P), (19)

where fi(w) is the relative frequency of occurrence of the word type w in

the ith part.

Shannons entropy is employed by the expression as follows:

S(w) = − 1
ln(P)

P

∑
i=1

Pi(w)ln(pi(w)). (20)

Finally, Herrera and Pury[80] normalized the measure as follows:

Enor(w) =
1 − S(w)

1 − Sran(w)
(21)

where Sran ≈ 1 − P−1
2nln(P)

means a word with absolute frequency n in a

random text. The larger the value of Enor(w), the larger its relevance.

The clustering approach (C) was developed by Ortuño et al.[81], and

then modified by Carpena et al.[82]. Considering a text has N words and

a word with frequency of occurrence n in that text. We denote the inter-

occurrences distances as di(i = 1, 2, ..., n − 1). Ortuño et al.[81] proposed

σ = s/ < d > as a measure of the relevance of the word, where s =

(< d2 > −< d >2)
1/2

is the standard deviation and < d > is the average

distance. Then Carpena et al.[82] normalized the σ as follows:

σnor =
σ√

1 − p
(22)
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where
√

1 − p is the expected value of σ for a word with probability p

randomly distributed, p = n/N.

Finally, the clustering approach C, that uses the clustering σnor and the

frequency n, is defined as follows:

C(σnor, n) =
σnor− < σnor > (n)

sd(σnor)(n)
, (23)

where the mean < σnor > and the standard deviation sd(σnor)(n) is well

fitted by the functions:

< σnor >=
2n − 1
2n + 2

, sd(σnor) =
1√

n(1 + 2.8n−0.865)
(24)

The larger the value of C, the larger its relevance.

The top-10 keywords ranked using entropic approach, clustering ap-

proach, DC, CC, BC, EC, SLC, PR, LR and the proposed method from the

novel DavidCopper f ield are shown in Table 7, from the results we can ob-

serve that the proposed method works better than other centrality mea-

sures, because the proposed method has most of the same words with

other measures in the top-10 lists, where the number of the same words in

the top-10 lists between the proposed method and other measures are 2, 6,

8, 7, 10, 5, 8 and 9 respectively in entropic approach, clustering approach,

DC, CC, BC, SLC, PR and LR.

6. Conclusion

In this paper, a new method is proposed to identify the influential n-

odes in complex network based on the AHP. In our method, we consid-

er several different centrality measures as the multi-attribute of complex
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network in AHP application and give the corresponding weights to each

attribute according to the matching degree with F(t). AHP is used to ag-

gregate the multi-attribute to evaluate the importance of each node, which

can comprehensively consider different centrality measures. To evaluate

the performance, we used the SI model to estimate the spreading influence

of nodes by different methods. The Kendall’s tau coefficient τ between

different methods and F(t) is calculated to demonstrate the effectiveness

of the method. The experimental results on four real networks and an

informative network show that our method can successfully identify the

influential nodes in networks.
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