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The modern day advancement is increasingly digitizing our lives which has led to a rapid growth of data. Such multidimensional
datasets are precious due to the potential of unearthing new knowledge and developing decision-making insights from them.
Analyzing this huge amount of data from multiple sources can help organizations to plan for the future and anticipate changing
market trends and customer requirements.While the Hadoop framework is a popular platform for processing larger datasets, there
are a number of other computing infrastructures, available to use in various application domains.The primary focus of the study is
how to classify major big data resourcemanagement systems in the context of cloud computing environment.We identify some key
features which characterize big data frameworks as well as their associated challenges and issues.We use various evaluationmetrics
from different aspects to identify usage scenarios of these platforms. The study came up with some interesting findings which are
in contradiction with the available literature on the Internet.

1. Introduction

We live in the information age, and an important measure-
ment of present times is the amount of data that is gen-
erated anywhere around us. Data is becoming increasingly
valuable. Enterprises are aiming at unlocking data’s hidden
potential and deliver competitive advantage [1]. Stratistics
MRC projected that the data analytics and Hadoop market,
which accounted for $8.48 billion in 2015, is expected to
reach at $99.31 billion by 2022 [2]. The global big data
market has estimated that it will jump from $14.87 billion
in 2013 to $46.34 billion in 2018 [3]. Gartner has predicted
that data will grow by 800 percent over the next five years
and 80 percent of the data will be unstructured (e-mails,
documents, audio, video, and social media content) and 20
percent will be structured (e-commerce transactions and
contact information) [1].

Today’s largest scientific institution, CERN, produces
over 200 PB of data per year in the Large Hadron Collider
project (as of 2017). The amount of generated data on the
Internet has already exceeded 2.5 exabytes per day. Within
one minute, 400 hours of videos are uploaded on YouTube,

3.6 million Google searches are conducted worldwide each
minute of every day, more than 656 million tweets are shared
on Twitter, and more than 6.5 million pictures are shared
on Instagram each day. When a dataset becomes so large
that its storage and processing become challenging due to
the constraints of existing tools and resources, the dataset
is referred to as big data [4, 5]. It is the first part of the
journey towards delivering decision-making insights. But
instead of focusing on people, this process utilizes a much
more powerful and evolving technology, given the latest
breakthroughs in this field, to quickly analyze huge streams
of data, from a variety of sources, and to produce one single
stream of useful knowledge [6].

Big data applicationsmight be viewed as the advancement
of parallel computing, but with the important exception of
the scale. The scale is the necessity arising from the nature of
the target issues: data dimensions largely exceed conventional
storage units, the level of parallelism needed to perform
computation within a strict deadline is high, and obtaining
final results requires the aggregation of large numbers of
partial results.The scale factor, in this case, does not only have
the same effect that it has in classical parallel computing, but
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it surges towards a dimension in which automated resource
management and its exploitation are of significant value [7].

An important factor for the success in big data analytical
projects is the management of resources: these platforms use
a substantial amount of virtualized hardware resources to
optimize the tradeoff between costs and results. Managing
such resources is definitely a challenge. Complexity is rooted
in their architecture: the first level of complexity stems from
their performance requirements of computing nodes: typical
big data applications utilize massively parallel computing
resources, storage subsystems, and networking infrastructure
because of the fact that results are required within a certain
time frame, or they can lose their value over time. Hetero-
geneity is a technological need: evolvability, extensibility, and
maintainability of the hardware layer imply that the system
will be partially integrated, replaced, or extended by means
of new parts, according to the availability on the market
and the evolution of technology [7]. Another important
consideration of modern applications is the massive amount
of data that need to be processed. Such data usually originate
from different sets of devices (e.g., public web, business
applications, satellites, or sensors) and procedures (e.g., case
studies, observational studies, or simulations).Therefore, it is
imperative to develop computational architectures with even
better performance to support current and future application
needs. Historically, this need for computational resources was
provided by high-performance computing (HPC) environ-
ments such as computer clusters, supercomputers, and grids.
In traditional owner-centric HPC environments, internal
resources are handled by a single administrative domain
[19]. Cluster computing is the leading architecture for this
environment. In distributed HPC environments, such as
grid computing, virtual organizations manage the provi-
sioning of resources, both internal and external, to meet
application needs [20]. However, the paradigm shift towards
cloud computing has been widely discussed in more recent
researches [19, 21], targeting the execution of HPCworkloads
on cloud computing environments. Although organizations
usually prefer to store their most sensitive data internally
(on-premises), huge volumes of big data (owned by the
enterprises or generated by third parties) may be stored
externally; some of it may already be on a cloud. Retaining
all data sources behind the firewall may result in a significant
waste of resources. Analyzing the data where it resides either
internally or in a public cloud data center makes more sense
[1, 22].

Even if cloud computing has to be an enabler to the
growth of big data applications, common cloud computing
solutions are rather different from big data applications. Typ-
ically, cloud computing solutions offer fine-grained, loosely
coupled applications, run to serve large numbers of users that
operate independently, from multiple locations, possibly on
own, private, nonshared data, with a significant amount of
interactions, rather than being mainly batch-oriented, and
generally fit to be relocated with highly dynamic resource
needs. Despite such differences, cloud computing and big
data architectures share a number of common requirements,
such as automated (or autonomic) fine-grained resource
management and scaling related issues [7].

As cloud computing begins to mature, a large number
of enterprises are building efficient and agile cloud envi-
ronments, and cloud providers continue to expand service
offerings [1]. Microsoft’s cloud Hadoop offering includes
Azure Marketplace, which runs Cloudera Enterprise, MapR,
andHortonworks Data Platform (HDP) in a virtual machine,
and Azure Data Lake, which includes Azure HDInsight, Data
Lake Analytics, and Data Lake Store as managed services.
The platform offers rich productivity suites for database,
data warehouse, cloud, spreadsheet, collaboration, business
intelligence, OLAP, and development tools, delivering a
growing Hadoop stack to Microsoft community. Amazon
Web Services reigns among the leaders of cloud computing
and big data solutions. Amazon EMR is available across 14
regions worldwide. AWS offers versions of Hadoop, Spark,
Tez, and Presto that can work off data stored in Amazon S3
and Amazon Glacier. Cloud Dataproc is Google’s managed
Hadoop and Spark cluster to use fullymanaged cloud services
such as Google BigQuery and Bigtable. IBM differentiates
BigInsights with end-to-end advanced analytics. IBM BigIn-
sights runs on top of IBM’s SoftLayer cloud infrastructure
and can be deployed on more than 30 global data centers.
IBM is making significant investments in Spark, BigQuality,
BigIntegrate, and IBM InfoSphere BigMatch that run natively
with YARN to handle the toughest Hadoop use cases [23].

In this paper, we give an overview of some of the most
popular and widely used big data frameworks, in the context
of cloud computing environment, which are designed to cope
with the above-mentioned resource management and scaling
problems. The primary object of the study is how to classify
different big data resource management systems. We use
various evaluation metrics for popular big data frameworks
from different aspects. We also identify some key features
which characterize big data frameworks as well as their
associated challenges and issues. We restricted our study
selection criteria to empirical studies from existing literature
with reported evidence on performance evaluation of big
data resource management frameworks. To the best of our
knowledge, thus far there has been no empirical based per-
formance evaluation report on major resource management
frameworks. We investigated the validity of existing research
by performing a confirmatory study. For this purpose, the
standard performance evaluation tests as well as custom load
test cases were performed on a 10+1 nodes t2.2xlarge Amazon
AWS cluster. For experimentation and benchmarking, we fol-
lowed the same process as outlined in our earlier study [24].

The study came up with some interesting findings which
are in contradiction with the available literature on the
Internet. The novelty of the study includes the categorization
of cloud-based big data resource management frameworks
according to their key features, comparative evaluation of the
popular big data frameworks, and the best practices related to
the use of big data frameworks in the cloud.

The inclusion and exclusion criteria for relevant research
studies are as follows:

(i) We selected only those resource management frame-
works for whichwe found empirical evidence of being
offered by various cloud providers.
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Figure 1: Classification of big data resource management frameworks.

(ii) Several vendors offer their proprietary solutions for
big data analysis which could be the potential candi-
date for comparative analysis being conducted in this
study. However, these frameworks were not selected
based on two reasons. Firstly, most of these solutions
are the extension of open-source solution and hence
these exhibit the identical perform results in most
of the cases. Secondly, for our empirical studies,
researchers mostly prefer open-source solutions as
the documentation, usage scenarios, source code, and
other relevant details are freely available. Hence, we
selected open-source solutions for the performance
evaluation.

(iii) We did not include the frameworks which are now
deprecated or discounted, such as Apache S4, in favor
of other resource management systems.

This paper is organized as follows. Section 2 reviews the
popular resource management frameworks. The comparison
of big data frameworks is presented in Section 3. Based on the
comparative evaluation, we categorize these systems in Sec-
tion 4. Related work is presented in Section 5 and, finally,
we present conclusion and possible future directions in
Section 6.

2. Big Data Resource
Management Frameworks

Big data is offering new emerging trends and opportunities to
unearth operational insight towards data management. The
most challenging issues for organizations are often that the
amount of data is massive which needs to be processed at an
optimal speed to synthesize relevant results. Analyzing such

huge amount of data from multiple sources can help orga-
nizations plan for the future and anticipate changing market
trends and customer requirements. In many of the cases, big
data is analyzed in batch mode. However, in many situations,
we may need to react to the current state of data or analyze
the data that is in motion (data that is constantly coming in
and needs to be processed immediately). These applications
require a continuous stream of often unstructured data to
be processed. Therefore, data is continuously analyzed and
cached in memory before it is stored on secondary storage
devices. Processing streams of data works by filtering in-
memory tables of data across a cluster of servers. Any delay
in the data analysis can seriously impact customer satisfaction
or may result in project failure [25].

While the Hadoop framework is a popular platform
for processing huge datasets in parallel batch mode using
commodity computational resources, there are a number
of other computing infrastructures that can be used in
various application domains. The primary focus of this study
is to investigate popular big data resource management
frameworks which are commonly used in cloud computing
environment. Most of the popular big data tools available for
cloud computing platform, including the Hadoop ecosystem,
are available under open-source licenses. One of the key
appeals of Hadoop and other open-source solutions is the
low total cost of ownership. While proprietary solutions
have expensive license fees and may require more costly
specialized hardware, these open-source solutions have no
licensing fees and can run on industry-standard hardware
[14]. Figure 1 demonstrates the classification of various styles
of processing architectures of open-source big data resource
management frameworks.

In the subsequent section, we discuss various open-
source big data resource management frameworks that are
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widely used in conjunction with cloud computing environ-
ment.

2.1. Hadoop. Hadoop [26] is a distributed programming and
storage infrastructure based on the open-source implementa-
tion of theMapReducemodel [27].MapReduce is the first and
current de facto programming environment for developing
data-centric parallel applications for parsing and processing
large datasets.TheMapReduce is inspired byMap andReduce
primitives used in functional programming. In MapReduce
programming, users only have to write the logic of Mapper
and Reducer while the process of shuffling, partitioning, and
sorting is automatically handled by the execution engine [14,
27, 28].The data can either be saved in theHadoop file system
as unstructured data or in a database as structured data [14].
Hadoop Distributed File System (HDFS) is responsible for
breaking large data files into smaller pieces known as blocks.
The blocks are placed on different data nodes, and it is the
job of the NameNode to notice what blocks on which data
nodes make up the complete file. The NameNode also works
as a traffic cop, handling all access to the files, including reads,
writes, creates, deletes, and replication of data blocks on the
data nodes. A pipeline is a link between multiple data nodes
that exists to handle the transfer of data across the servers. A
user application pushes a block to the first data node in the
pipeline. The data node takes over and forwards the block to
the next node in the pipeline; this continues until all the data,
and all the data replicas, are saved to disk. Afterwards, the
client repeats the process by writing the next block in the file
[25].

The two major components of Hadoop MapReduce are
job scheduling and tracking. The early versions of Hadoop
supported limited job and task tracking system. In particular,
the earlier scheduler could not manage non-MapReduce
tasks and it was not capable of optimizing cluster utiliza-
tion. So, a new capability was aimed at addressing these
shortcomings which may offer more flexibility, scaling, effi-
ciency, and performance. Because of these issues, Hadoop 2.0
was introduced. Alongside earlier HDFS, resource manage-
ment, and MapReduce model, it introduced a new resource
management layer called Yet Another Resource Negotia-
tor (YARN) that takes care of better resource utilization
[25].

YARN is the core Hadoop service to provide two major
functionalities: global resource management (ResourceMan-
ager) and per-application management (ApplicationMaster).
The ResourceManager is a master service which controls
NodeManager in each of the nodes of a Hadoop cluster. It
includes a scheduler, whose main task is to allocate system
resources to specific running applications. All the required
system information is tracked by a Resource Container
which monitors CPU, storage, network, and other important
resource attributes necessary for executing applications in
the cluster. The ResourceManager has a slave NodeManager
service to monitor application usage statistics. Each deployed
application is handled by a corresponding ApplicationMas-
ter service. If more resources are required to support the
running application, the ApplicationMaster requests the
NodeManager and the NodeManager negotiates with the

ResourceManager (scheduler) for the additional capacity on
behalf of the application [26].

2.2. Spark. Apache Spark [29], originally developed as Berke-
ley Spark, was proposed as an alternative to Hadoop. It can
perform faster parallel computing operations by using in-
memory primitives. A job can load data in either local mem-
ory or a cluster-wide shared memory and query it iteratively
with much great speed as compared to disk-based systems
such as Hadoop MapReduce [27]. Spark has been devel-
oped for two applications where keeping data in memory
may significantly improve performance: iterative machine
learning algorithms and interactive data mining. Spark is
also intended to unify the current processing stack, where
batch processing is performed using MapReduce, interac-
tive queries are performed using HBase, and the processing
of streams for real-time analytics is performed using other
frameworks such Twitter’s Storm. Spark offers programmers
a functional programming paradigm with data-centric pro-
gramming interfaces built on top of a new data model called
Resilient Distributed Dataset (RDD) which is a collection of
objects spread across a cluster stored in memory or disk [28].
Applications in Spark can load these RDDs into the memory
of a cluster of nodes and let the Spark engine automatically
manage the partitioning of the data and its locality during
runtime. This versatile iterative model makes it possible to
control the persistence and manage the partitioning of data.
A stream of incoming data can be partitioned into a series
of batches and is processed as a sequence of small-batch
jobs. The Spark framework allows this seamless combination
of streaming and batch processing in a unified system. To
provide rapid application development, Spark provides clean,
concise APIs in Scala, Java, and Python. Spark can be used
interactively from the Scala and Python shells to rapidly
query big datasets.

Spark is also the engine behind Shark, a complete
Apache Hive-compatible data warehousing system that can
run much faster than Hive. Spark also supports data access
from Hadoop. Spark fits in seamlessly with the Hadoop 2.0
ecosystem (Figure 2) as an alternative to MapReduce, while
using the same underlying infrastructure such as YARN and
the HDFS. Spark is also an integral part of the SMACK
stack to provide the most popular cloud-native PaaS such
as IoT, predictive analytics, and real-time personalization
for big data. In SMACK, Apache Mesos cluster manager
(instead of YARN) is used for dynamic allocation of cluster
resources, not only for running Hadoop applications but also
for handling heterogeneous workloads.

The GraphX and MLlib libraries include state-of-the-
art graph and machine learning algorithms that can be
executed in real time. BlinkDB is a novel parallel, sampling-
based approximate query engine for running interactive SQL
queries that trade off query accuracy for response time, with
results annotated bymeaningful error bars. BlinkDBhas been
proven to run 200 times faster than Hive within an error
rate of 2–10%. Moreover, Spark provides an interactive tool
called Spark Shell which allows exploiting the Spark cluster
in real time. Once interactive applications are created, they
may subsequently be executed interactively in the cluster.
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Figure 2: Hadoop 2.0 ecosystem, source: [14].

MLlib SparkSQL Spark Streaming GraphX

Driver Program
Spark Context

Cluster Manager
Worker Node

Worker Node Worker Node

Worker Node

Cluster Manager:
(i) Spark Standalone

(ii) YARN
(iii) Mesos

DBMSHDFS Laptop Server

Figure 3: Spark architecture, source: [15].

In Figure 3, we present the general Spark system architec-
ture.

2.3. Flink. Apache Flink is an emerging competitor of Spark
which offers functional programming interfaces, much sim-
ilar to Spark. It shares many programming primitives and
transformations in the same way as what Spark does for
iterative development, predictive analysis, and graph stream
processing. Flink is developed to fill the gap left by Spark,
which uses minibatch streaming processing instead of a
pure streaming approach. Flink ensures high processing
performance when dealing with complex big data structures
such as graphs. Flink programs are regular applicationswhich
are written with a rich set of transformation operations (such
as mapping, filtering, grouping, aggregating, and joining) to
the input datasets.TheFlink dataset uses a table-basedmodel;
therefore application developers can use index numbers to
specify a particular field of a dataset [27, 28].

Flink is able to achieve high throughput and a low latency,
thereby processing a bundle of data very quickly. Flink is

designed to run on large-scale clusters with thousands of
nodes, and in addition to a standalone cluster mode, Flink
provides support for YARN. For distributed environment,
Flink chains operator subtasks together into tasks. Each task
is executed by one thread [16]. Flink runtime consists of two
types of processes: there is at least one JobManager (also
called masters) which coordinates the distributed execution.
It schedules tasks, coordinates checkpoints, and coordinates
recovery on failures. A high-availability setup may involve
multiple JobManagers, one of which one is always the leader,
and the others are standby. The TaskManagers (also called
workers) execute the tasks (or,more specifically, the subtasks)
of a dataflow/buffer and exchange the data streams. There
must always be at least one TaskManager. The JobManagers
and TaskManagers can be started in various ways: directly on
the machines as a standalone cluster, in containers, or man-
aged by resource frameworks like YARN orMesos. TaskMan-
agers connect to JobManagers, announcing themselves as
available, and are assigned work. Figure 4 demonstrates the
main components of Flink framework.

2.4. Storm. Storm [17] is a free open-source distributed
stream processing computation framework. It takes several
characteristics from the popular actor model and can be
used with practically any kind of programming language for
developing applications such as real-time streaming analytics,
critical work flow systems, and data delivery services. The
engine may process billions of tuples each day in a fault-
tolerant way. It can be integrated with popular resource
management frameworks such as YARN,Mesos, and Docker.
Apache Storm cluster is made up of two types of processing
actors: spouts and bolts.

(i) Spout is connected to the external data source of a
stream and is continuously emitting or collecting new
data for further processing.

(ii) Bolt is a processing logic unit within a streaming
processing topology; each bolt is responsible for a
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certain processing task such as transformation, filter-
ing, aggregating, and partitioning.

Storm defines workflow as directed acyclic graphs (DAGs),
called topologies with connected spouts and bolts as vertices.
Edges in the graph define the link between the bolts and
the data stream. Unlike batch jobs being only executed
once, Storm jobs run forever until they are killed. There
are two types of nodes in a Storm cluster: nimbus (master
node) and supervisor (worker node). Nimbus, similar to
Hadoop JobTracker, is the core component of Apache Storm
and is responsible for distributing load across the cluster,
queuing and assigning tasks to different processing units, and
monitoring execution status. Each worker node executes a
process known as the supervisor which may have one or
more worker processes. Supervisor delegates the tasks to
worker processes. Worker process then creates a subset of
topology to run the task. Apache Storm does rely on an
internal distributed messaging system, called Netty, for the
communication between nimbus and supervisors. Zookeeper
manages the communication between real-time job trackers
(nimbus) and supervisors (Storm workers). Figure 5 outlines
the high-level view of Storm cluster.

2.5. Apache Samza. Apache Samza [18] is a distributed stream
processing framework, mainly written in Scala and Java.
Overall, it has a relatively high throughput as well as some-
what increased latency when compared to Storm [8]. It uses
Apache Kafka, which was originally developed for LinkedIn,
for messaging and streaming, while Apache Hadoop YARN/
Mesos is utilized as an execution platform for overall resource
management. Samza relies on Kafka’s semantics to define the
way streams are handled. Its main objective is to collect and
deliver massively large volumes of event data, in particular,
log data with a low latency. A Kafka system’s architecture is
comparatively simple as it only consists of a set of brokers
which are individual nodes that make up a Kafka cluster.
Data streams are defined by topics, which is a stream of
related information that consumers can subscribe to. Topics
are divided into partitions that are distributed over the broker
instances for retrieving the corresponding messages using a
pull mechanism.The basic flow of job execution is presented
in Figure 6.

Tables 1 and 2 present a brief comparative analysis of these
frameworks based on some common attributes. As shown
in the tables, MapReduce computation data flow follows
chain of stages with no loop. At each stage, the program
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Table 2: Comparative analysis of big data resource frameworks (𝑠 = 5).

Hadoop Spark Flink Storm Samza
Processing speed ‰‰‰ ‰‰‰‰ ‰‰‰‰‰ ‰‰‰‰ ‰‰‰‰
Fault tolerance ‰‰‰‰ ‰‰ ‰‰‰‰ ‰‰‰ ‰‰‰‰
Scalability ‰‰‰‰‰ ‰‰‰‰ ‰‰‰ ‰‰‰ ‰‰‰
Machine learning ‰‰ ‰‰‰‰‰ ‰‰‰‰ ‰‰‰ ‰‰‰‰
Low latency ‰‰ ‰‰‰ ‰‰‰ ‰‰‰‰ ‰‰‰‰
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Figure 5: Architecture of Storm Cluster, source: [17].
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Figure 6: Samza architecture, source: [18].

proceeds with the output from the previous stage and
generates an input for the next stage. Although machine
learning algorithms are mostly designed in the form of cyclic
data flow, Spark, Storm, and Samza represent it as directed
acyclic graph to optimize the execution plan. Flink supports
controlled cyclic dependency graph in runtime to represent
the machine learning algorithms in a very efficient way.

Hadoop and Storm do not provide any default interactive
environment. Apache Spark has a command-line interactive
shell to use the application features. Flink provides a Scala
shell to configure standalone as well as cluster setup. Apache
Hadoop is highly scalable and it has been used in the
Yahoo production consisting of 42000 nodes in 20 YARN
clusters. The largest known cluster size for Spark is of 8000
computing nodes while Stormhas been tested on amaximum
of 300 node clusters. Apache Samza cluster, with around a
hundred nodes, has been used in LinkedIn data flow and
application messaging system. Apache Flink has been custo-
mized for Alibaba search engine with a deployment capacity
of thousands of processing nodes.

3. Comparative Evaluation of
Big Data Frameworks

Big data in cloud computing, a popular research trend,
is posing significant influence on current enterprises, IT
industries, and research communities. There are a number
of disruptive and transformative big data technologies and
solutions that are rapidly emanating and evolving in order
to provide data-driven insight and innovation. Furthermore,
modern cloud computing services are offering all kinds of
big data analytic tools, technologies, and computing infras-
tructures to speed up the data analysis process at an afford-
able cost. Although many distributed resource management
frameworks are available nowadays, the main issue is how to
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select a suitable big data framework. The selection of one big
data platform over the others will come down to the specific
application requirements and constraints that may involve
several tradeoffs and application usage scenarios. However,
we can identify some key factors that need to be fulfilled
before deploying a big data application in the cloud. In this
section, based on some empirical evidence from the available
literature, we discuss the advantages and disadvantages of
each resource management framework.

3.1. Processing Speed. Processing speed is an important per-
formance measurement that may be used to evaluate the
effectiveness of different resource management frameworks.
It is a commonmetric for the maximum number of I/O oper-
ations to disk ormemory or the data transfer rate between the
computational units of the cluster over a specific amount of
time. Based on the context of big data, the average processing
speed represented as𝑚, calculated after 𝑛 iterations run, is the
maximum amount of memory/disk intensive operations that
can be performed over a time interval 𝑡𝑖:

𝑚 = ∑
𝑛
𝑖=1𝑚𝑖
∑𝑛𝑖=1 𝑡𝑖
. (1)

Veiga et al. [30] conducted a series of experiments on a
multicore cluster setup to demonstrate performance results
of Apache Hadoop, Spark, and Flink. Apache Spark and
Flink resulted to be much efficient execution platforms over
Hadoop while performing nonsort benchmarks. It was fur-
ther noted that Spark showed better performance results for
operations such asWordCount and𝐾-Means (CPU-bound in
nature) while Flink achieved better results in PageRank algo-
rithm (memory bound in nature). Mavridis and Karatza [31]
experimentally compared performance statistics of Apache
Hadoop and Spark onOkeanos IaaS cloud platform. For each
set of experiments, necessary statistics related to execution
time, working nodes, and the dataset size were recorded.
Spark performance was found optimal as compared to
Hadoop for most of the cases. Furthermore, Spark on YARN
platform showed suboptimal results as compared to the case
when it was executed in standalone mode. Some similar
results were also observed by Zaharia et al. [32] on a 100GB
dataset record. Vellaipandiyan and Raja [33] demonstrated
performance evaluation and comparison of Hadoop and
Spark frameworks on resident’s record dataset ranging from
100GB to 900GB of size. Spark scale of performance was
relatively better when the dataset size was between small and
medium size (100GB–750GB); afterwards, its performance
declined as compared to Hadoop.The primary reason for the
performance decline was evident as Spark cache size could
not fit into the memory for the larger dataset. Taran et al.
[34] quantified performance differences ofHadoop and Spark
using WordCount dataset which was ranging from 100KB
to 1GB. It was observed that Hadoop framework was five
times faster than Spark when the evaluation was performed
using a larger set of data sources. However, for the smaller
tasks, Spark showed better performance results. However, the
speed-up ratio was decreased for both databases with the
growth of input dataset.

Gopalani and Arora [35] used 𝐾-Means algorithm on
some small, medium, and large location datasets to compare
Hadoop and Spark frameworks.The study results showed that
Spark performed up to three times better than MapReduce
for most of the cases. Bertoni et al. [36] performed the
experimental evaluation of Apache Flink and Storm using
large genomic dataset data on Amazon EC2 cloud. Apache
Flink was superior to Storm while performing histogram
and map operations while Storm outperformed Flink while
genomic join application was deployed.

3.2. Fault Tolerance. Fault tolerance is the characteristic
that enables a system to continue functioning in case of
the failure of one or more components. High-performance
computing applications involve hundreds of nodes that are
interconnected to perform a specific task; failing a node
should have zero or minimal effect on overall computation.
The tolerance of a system, represented as TolFT, to meet its
requirements after a disruption is the ratio of the time to
complete tasks without observing any fault events to the
overall execution time where some fault events were detected
and the system state is reverted back to consistent state:

TolFT =
𝑇𝑥
𝑇𝑥 + 𝜎2
, (2)

where 𝑇𝑥 is the estimated correct execution time obtained
from a program run that is presumed to be fault-free, or by
averaging the execution time from several application runs
that produce a known correct output, and 𝜎2 represents the
variance in a program’s execution time due to the occurrence
of fault events. For anHPC application that consists of a set of
computationally intensive tasks Γ = {𝜏1, 𝜏2, . . . , 𝜏𝑛} and since
TolFT for each individual task is computed as Tol𝜏𝑖 , then the
overall application resilience, Tol, may be calculated as [37]

Tol = 𝑛√Tol𝜏1 ⋅ Tol𝜏2 ⋅ . . . ⋅ Tol𝜏𝑛 . (3)

Lu et al. [38] used StreamBench toolkit to evaluate perfor-
mance and fault tolerance ability of Apache Spark, Storm,
Spark, and Samza. It was found that, with the increased data
size, Spark is much stable and fault-tolerant as compared to
Storm but may be less efficient when compared to Samza.
Furthermore, when compared in terms of handling large
capacity of data, both Samza and Spark outperformed Storm.
Gu and Li [39] used PageRank algorithm to perform a
comparative experiment on Hadoop and Spark frameworks.
It was observed that, for smaller datasets such as wiki-Vote
and soc-Slashdot0902, Spark outperformed Hadoop with a
much better margin. However, this speed-up result degraded
with the growth of dataset, and for large datasets, Hadoop
easily outperformed Spark. Furthermore, for massively large
datasets, Spark was reported to be crashed with JVM heap
exception while Hadoop still performed its task. Lopez et al.
[40] evaluated throughput and fault tolerance mechanism of
Apache Storm and Flink. The experiments were based on a
threat detection system where Apache Storm demonstrated
better throughput as compared to Flink. For fault tolerance,
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different virtual machines were manually turned off to ana-
lyze the impact of node failures. Apache Flink used its internal
subsystem to detect and migrate the failed tasks to other
machines and hence resulted in very few message losses.
On the other hand, Storm took more time as Zookeeper,
involving some performance overhead, was responsible for
reporting the state of nimbus and thereafter processing the
failed task on other nodes.

3.3. Scalability. Scalability refers to the ability to accommo-
date large loads or change in size/workload by provisioning of
resources at runtime.This can be further categorized as scale-
up (by making hardware stronger) or scale-down (by adding
additional nodes). One of the critical requirements of enter-
prises is to process large volumes of data in a timely manner
to address high-value business problems. Dynamic resource
scalability allows business entities to perform massive com-
putation in parallel, thus reducing overall time, complexity,
and effort. The definition of scalability comes from Amdahl’s
and Gustafson’s laws [41]. Let 𝑊 be the size of workload
before the improvement of the system resources; the fraction
of the execution workload that benefits from the improve-
ment of system resources is 𝛼 and the fraction concerning
the part that would not benefit from improvement in the
resources is 1 − 𝛼. When using an 𝑛-processor system, user
workload is scaled to

𝑊́ = 𝛼𝑊 + (1 − 𝛼) 𝑛𝑊. (4)

The parallel execution time of a scaled workload 𝑊́ on 𝑛-
processors is defined as scaled-workload speed-up ́𝑆 as shown
in

́𝑆 = 𝑊́𝑊 =
𝛼𝑊 + (1 − 𝛼) 𝑛𝑊
𝑊 . (5)

Garćıa-Gil et al. [42] performed scalability and performance
comparison of Apache Spark and Flink using feature selec-
tion framework to assemble multiple information theoretic
criteria into a single greedy algorithm. The ECBDL14 dataset
was used to measure scalability factor for the frameworks.
It was observed that Spark scalability performance was 4–10
times faster than Flink. Jakovits and Srirama [43] analyzed
four MapReduce based frameworks including Hadoop and
Spark for benchmarking partitioning aroundMedoids, Clus-
tering Large Applications, and Conjugate Gradient linear
system solver algorithms using MPI. All experiments were
performed on 33 Amazon EC2 large instances cloud. For
all algorithms, Spark performed much better as compared
to Hadoop, in terms of both performance and scalability.
Boden et al. [44] aimed to investigate the scalability with
respect to both data size and dimensionality in order to
demonstrate a fair and insightful benchmark that reflects the
requirements of real-world machine learning applications.
The benchmark was comprised of distributed optimization
algorithms for supervised learning as well as algorithms for
unsupervised learning. For supervised learning, they imple-
mented machine learning algorithms by using Breeze library,
while for unsupervised learning they chose the popular 𝑘-
Means clustering algorithm in order to assess the scalability

of the two resource management frameworks. The overall
execution time of Flink was relatively low on the resource-
constrained settings with a limited number of nodes, while
Spark had a clear edge once enough main memory was
available due to the addition of new computing nodes.

3.4. Machine Learning and Iterative Tasks Support. Big data
applications are inherently complex in nature and usually
involve tasks and algorithms that are iterative in nature.These
applications have distinct cyclic nature to achieve the desired
result by continually repeating a set of tasks until these cannot
be substantially reduced further.

Spangenberg et al. [45] used real-world datasets, consist-
ing of four algorithms, that is, WordCount,𝐾-Means, PageR-
ank, and relational query, to benchmark Apache Flink and
Storm. It was observed that Apache Storm performs better in
batchmode as compared to Flink. However, with the increas-
ing complexity, Apache Flink had a performance advantage
over Storm and thus it was better suited for iterative data
or graph processing. Shi et al. [46] focused on analyz-
ing Apache MapReduce and Spark for batch and iterative
jobs. For smaller datasets, Spark resulted to be a better choice,
but when experiments were performed on larger datasets,
MapReduce turned out to be several times faster than Spark.
For iterative operations such as 𝐾-Means, Spark turned out
to be 1.5 times faster as compared to MapReduce in its first
iteration, while Spark was more than 5 times faster in sub-
sequent operations.

Kang and Lee [47] examined five resource manage-
ment frameworks including Apache Hadoop and Spark
with respect to performance overheads (disk input/output,
network communication, scheduling, etc.) in supporting
iterative computation. The PageRank algorithm was used to
evaluate these performance issues. Since static data process-
ing tends to be a more frequent operation than dynamic data
as it is used in every iteration of MapReduce, it may cause
significant performance overhead in case of MapReduce.
On the other hand, Apache Spark uses read-only cached
version of objects (resilient distributed dataset) which can be
reused in parallel operations, thus reducing the performance
overhead during iterative computation. Lee et al. [48] evalu-
ated five systems including Hadoop and Spark over various
workloads to compare against four iterative algorithms. The
experimentation was performed on Amazon EC2 cloud.
Overall, Spark showed the best performance when iterative
operations were performed in main memory. In contrast, the
performance of Hadoop was significantly poor as compared
to other resource management systems.

3.5. Latency. Big data and low latency are strongly linked.
Big data applications provide true value to businesses, but
these are mostly time critical. If cloud computing has to be
the successful platform for big data implementation, one of
the key requirements will be the provisioning of high-speed
network to reduce communication latency. Furthermore, big
data frameworks usually involve centralized design where
the scheduler assigns all tasks through a single node which
may significantly impact the latency when the size of data is
huge.
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Let𝑇elapsed be the elapsed time between the start andfinish
time of a program in a distributed architecture, 𝑇𝑖 be the
effective execution time, and 𝜆𝑖 be the sum of total idle units
of 𝑖th processor from a set of𝑁 processors.Then, the average
latency, represented as 𝜆(𝑊,𝑁), for the size of workload𝑊,
is defined as the average amount of overhead time needed for
each processor to complete the task:

𝜆 (𝑊,𝑁) =
∑𝑁𝑖=1 (𝑇elapsed − 𝑇𝑖 + 𝜆𝑖)

𝑁 . (6)

Chintapalli et al. [49] conducted a detailed analysis of
Apache Storm, Flink, and Spark streaming engines for latency
and throughput. The study results indicated that, for high
throughput, Flink and Storm have significantly lower latency
as compared to Spark. However, Spark was able to handle
high throughput as compared to other streaming engines. Lu
et al. [38] proposed StreamBench benchmark framework to
evaluate modern distributed stream processing frameworks.
The framework includes dataset selection, data generation
methodologies, program set description, workload suites
design, and metric proposition. Two real-world datasets,
AOL Search Data and CAIDA Anonymized Internet Traces
Dataset, were used to assess performance, scalability, and
fault tolerance aspects of streaming frameworks. It was
observed that Storm’s latency in most cases was far less than
Spark’s except in the case when the scales of the workload and
dataset were massive in nature.

3.6. Security. Instead of the classical HPC environment,
where information is stored in-house, many big data appli-
cations are now increasingly deployed on the cloud where
privacy-sensitive information may be accessed or recorded
by different data users with ease. Although data privacy
and security issues are not a new topic in the area of dis-
tributed computing, their importance is amplified by thewide
adoption of cloud computing services for big data platform.
The dataset may be exposed to multiple users for different
purposes which may lead to security and privacy risks.

Let𝑁 be a list of security categories that may be provided
for security mechanism. For instance, a framework may use
encryption mechanism to provide data security and access
control list for authentication and authorization services. Let
max(𝑊𝑖) be the maximum weight that is assigned to the
𝑖th security category from a list of 𝑁 categories and 𝑊𝑖 be
the reputation score of a particular resource management
framework. Then, the framework security ranking score can
be represented as

Secscore =
∑𝑁𝑖=1𝑊𝑖
∑𝑁𝑖=1max (𝑊𝑖)

. (7)

Hadoop and Storm use Kerberos authentication protocol
for computing nodes to provide their identity [50]. Spark
adopts a password based shared secret configuration as well
as Access Control Lists (ACLs) to control the authentication
and authorization mechanisms. In Flink, stream brokers are
responsible for providing authentication mechanism across
multiple services. Apache Samza/Kafka provides no built-in
security at the system level.

3.7. Dataset Size Support. Many scientific applications scale
up to hundreds of nodes to process massive amount of data
that may exceed over hundreds of terabytes. Unless big data
applications are properly optimized for larger datasets, this
may result in performance degradationwith the growth of the
data. Furthermore, in many cases, this may result in a crash
of software, resulting in loss of time and money. We used
the same methodology to collect big data support statistics
as presented in earlier sections.

4. Discussion on Big Data Framework

Every big data framework has been evolved for its unique
design characteristics and application-specific requirements.
Based on the key factors and their empirical evidence to
evaluate big data frameworks, as discussed in Section 3, we
produce the summary of results of seven evaluation factors
in the form of star ranking, RankingRF ∈ [0, 𝑠], where 𝑠 rep-
resents the maximum evaluation score. The general equation
to produce the ranking, for each resource framework (RF), is
given as

RankingRF =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑠
∑7𝑖=1∑𝑁𝑗=1max (𝑊𝑖𝑗)

∗
7

∑
𝑖=1

𝑁

∑
𝑗=1

𝑊𝑖𝑗
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
, (8)

where 𝑁 is the total number of research studies for a
particular set of evaluation metrics, max(𝑊𝑖𝑗) ∈ [0, 1] is
the relative normalized weight assigned to each literature
study based on the number of experiments performed, and
𝑊𝑖𝑗 is the framework test-bed score calculated from the
experimentation results from each study.

Hadoop MapReduce has a clear edge on large-scale
deployment and larger dataset processing. Hadoop is highly
compatible and interoperable with other frameworks. It also
offers a reliable fault tolerance mechanism to provide a
failure-free mechanism over a long period of time. Hadoop
can operate on a low-cost configuration. However, Hadoop
is not suitable for real-time applications. It has a significant
disadvantage when latency, throughput, and iterative job
support for machine learning are the key considerations of
application requirements.

Apache Spark is designed to be a replacement for batch-
oriented Hadoop ecosystem to run-over static and real-time
datasets. It is highly suitable for high throughput streaming
applications where latency is not a major issue. Spark is
memory intensive and all operations take place in memory.
As a result, it may crash if enough memory is not available
for further operations (before the release of Spark version 1.5,
it was not capable of handling datasets larger than the size of
RAM and the problem of handling larger dataset still persists
in the newer releases with different performance overheads).
Few research efforts, such as Project Tungsten, are aimed
at addressing the efficiency of memory and CPU for Spark
applications. Spark also lacks its own storage system so its
integration with HDFS through YARN or Cassandra using
Mesos is an extra overhead for cluster configuration.

Apache Flink is a true streaming engine. Flink supports
both batch and real-time operations over a common runtime
to fulfill the requirements of Lambda architecture. However,
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it may also work in batch mode by stopping the streaming
source. Like Spark, Flink performs all operations in memory,
but in case of memory hog, it may also use disk storage to
avoid application failure. Flink has some major advantages
over Hadoop and Spark by providing better support for
iterative processing with high throughput at the cost of low
latency.

Apache Storm was designed to provide a scalable, fault
tolerance, real-time streaming engine for data analysis, which
Hadoop did for batch processing. However, the empirical
evidence suggests that Apache Storm proved to be inefficient
to meet the scale-up/scale-down requirements for real-time
big data applications. Furthermore, since it uses microbath
stream processing, it is not very efficient where continuous
stream process is a major concern, nor does it provide a
mechanism for simple batch processing. For fault tolerance,
Stormuses Zookeeper to store the state of the processeswhich
may involve some extra overhead and may also result in
message loss. On the other hand, Storm is an ideal solution
for near-real-time application processing where workload
could be processed with a minimal delay with strict latency
requirements.

Apache Samza, in integration Kafka, provides some
unique features that are not offered by other stream pro-
cessing engines. Samza provides a powerful check-pointing
based fault tolerance mechanism with minimal data loss.
Samza jobs can have high throughput with low latency when
integrated with Kafka. However, Samza lacks some important
features as data processing engine. Furthermore, it offers no
built-in security mechanism for data access control.

To categorize the selection of best resource engine based
on a particular set of requirements, we use the framework
proposed by Chung et al. [51]. The framework provides a
layout for matching, ranking, and selecting a system based
on some particular requirements. The matching criterion is
based on user goals which are categorized as soft and hard
goals. Soft goals represent the nonfunctional requirements of
the system (such as security, fault tolerance, and scalability)
while hard goals represent the functional aspects of the
system (such as machine learning and data size support).The
relationship between the system components and the goals
can be ranked as very positive (++), positive (+), negative
(−), and very negative (−−). Based on the evidence provided
from the literature, the categorization of major resource
management frameworks is presented in Figure 7.

5. Related Work

Our research work differs from other efforts because the
subject goal and object of study are not identical, as we
provide an in-depth comparison of popular resource engines
based on empirical evidence from existing literature. Hesse
and Lorenz [8] conducted a conceptual survey on stream
processing systems. However, their discussion was focused
on some basic differences related to real-time data processing
engines. Singh and Reddy [9] provided a thorough analysis
of big data analytic platforms that included peer-to-peer
networks, field programmable gate arrays (FPGA), Apache
Hadoop ecosystem, high-performance computing (HPC)

clusters, multicore CPU, and graphics processing unit (GPU).
Our case is different here as we are particularly interested
in big data processing engines. Finally, Landset et al. [10]
focused on machine learning libraries and their evaluation
based on ease of use, scalability, and extensibility. However,
our work differs from their work as the primary focuses of
both studies are not identical.

Chen and Zhang [11] discussed big data problems,
challenges, and associated techniques and technologies to
address these issues. Several potential techniques including
cloud computing, quantum computing, granular computing,
and biological computing were investigated and the possible
opportunities to explore these domains were demonstrated.
However, the performance evaluation was discussed only
on theoretical grounds. A taxonomy and detailed analysis of
the state of the art in big data 2.0 processing systems were
presented in [12]. The focus of the study was to identify cur-
rent research challenges and highlight opportunities for new
innovations and optimization for future research and devel-
opment. Assunção et al. [13] reviewedmultiple generations of
data stream processing frameworks that providemechanisms
for resource elasticity to match the demands of stream
processing services. The study examined the challenges
associated with efficient resource management decisions and
suggested solutions derived from the existing research stud-
ies. However, the study metrics are restricted to the elasti-
city/scalability aspect of big data streaming frameworks.

As shown in Table 3, our work differs from the previ-
ous studies which focused on the classification of resource
management frameworks on theoretical grounds. In contrast
to the earlier approaches, we classify and categorize big
data resource management frameworks based on empirical
grounds, derived from multiple evaluation/experimentation
studies. Furthermore, our evaluation/ranking methodology
is based on a comprehensive list of study variables whichwere
not addressed in the studies conducted earlier.

6. Conclusions and Future Work

There are a number of disruptive and transformative big
data technologies and solutions that are rapidly emanating
and evolving in order to provide data-driven insight and
innovation. The primary object of the study was how to
classify popular big data resource management systems. This
study was also aimed at addressing the selection of candidate
resource provider based on specific big data application
requirements. We surveyed different big data resource man-
agement frameworks and investigated the advantages and
disadvantages for each of them. We carried out the perfor-
mance evaluation of resource management engines based on
seven key factors and each one of the frameworks was ranked
based on the empirical evidence from the literature.

6.1. Observations and Findings. Some key findings of the
study are as follows:

(i) In terms of processing speed, Apache Flink outper-
forms other resource management frameworks for
small, medium, and large datasets [30, 36]. However,
during our own set of experiments on Amazon EC2
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Figure 7: Categorization of resource engines based on key big data application requirements.

cluster with varied task managers settings (1–4 task
managers per node), Flink failed to complete custom
smaller size JVM dataset jobs due to inefficient mem-
orymanagement of Flinkmemorymanager.We could
not find any reported evidence of this particular use
case in these relevant literature studies. It seems that
most of the performance evaluation studies employed
standard benchmarking test sets where dataset size
was relatively large and hence this particular use case
was not reported in these studies. Further research
effort is required to elucidate the underlying specific
of factors under this particular case.

(ii) Big data applications usually involve massive amount
of data. Apache Spark supports necessary strate-
gies for fault tolerance mechanism, but it has been
reported to crash on larger datasets. Even during

our experimentations, Apache Spark version 1.6 (sel-
ected due to the compatibility reasons with earlier
researches) crashed on several occasions when the
dataset was larger than 500GB. Although Spark has
been ranked higher in terms of fault tolerance with
the increase of data scale in several studies [38, 52],
it has limitations in handling larger typical big data
dataset applications and hence such studies cannot be
generalized.

(iii) Spark MLlib and Flink-ML offer a variety of machine
learning algorithms and utilities to exploit distributed
and scalable big data applications. Spark MLlib out-
performs Flink-ML in most of the machine learning
use cases [42], except in the casewhen repeated passes
are performed on unchanged data. However, this
performance evaluation may further be investigated
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as research studies such as [53], reported differently
where Flink outperformed Spark on sufficiently large
cases.

(iv) For graph processing algorithms such as PageRank,
Flink uses Gelly library that provides native closed-
loop iteration operators, making it a suitable platform
for large-scale graph analytics. Spark, on the other
hand, uses GraphX library that has much longer pre-
processing time to build graph and other data struc-
tures, making its performance worse as compared
to Apache Flink. Apache Flink has been reported to
obtain the best results for graph processing datasets
(3x–5x in [54] and 2x-3x in [45]) as compared to
Spark. However, some studies such as [55] reported
Spark to be 1.7x faster than Flink for large graph pro-
cessing. Such inconsistent behavior may be further
investigated in the future research studies.

6.2. Future Work. In the area of big data, there is still a clear
gap that requiresmore effort from the research community to
build in-depth understanding of performance characteristics
of big data resource management frameworks. We consider
this study a step towards enlarging our knowledge to under-
stand the big data world and provide an effort towards the
direction of improving the state of the art and achieving the
big vision on the big data domain. In earlier studies, a clear
ranking cannot be established as the study parameters were
mostly limited to a few issues such as throughput, latency,
and machine learning. Furthermore, further investigation
is required on resource engines such as Apache Samza in
comparison with other frameworks. In addition, research
effort needs to be carried out in several areas such as data
organization, platform specific tools, and technological issues
in big data domain in order to create next-generation big data
infrastructures. The performance evaluation factors might
also vary among systems depending on the used algorithms.
As future work, we plan to benchmark these popular resource
engines for meeting resource demands and requirements
for different scientific applications. Moreover, a scalability
analysis could be done. Particularly, the performance eval-
uation of adding dynamic worker nodes and the resulting
performance analysis is of peculiar interest. Additionally,
further research can be carried out in order to evaluate
performance aspects with respect to resource competition
between jobs (on different research schedulers such as YARN
and Mesos) and the fluctuation of available computing
resources. Finally, most of the experimentations in earlier
studies were performed using standard parameter config-
urations; however, each resource management framework
offers domain specific tweaks and configuration optimization
mechanisms for meeting application-specific requirements.
The development of a benchmark suite that aims to find
maximum throughput based on configuration optimization
would be an interesting direction of future research.
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Hernández, “Spark versus flink: understanding performance in
big data analytics frameworks,” in Proceedings of the 2016 IEEE
International Conference on Cluster Computing, CLUSTER 2016,
pp. 433–442, Taipei, Taiwan, September 2016.



Computer Games 
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable
Computing

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

 Artificial 
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence 
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scienti�c  
Programming

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

