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Abstract 

The emergence of smart cities aims at mitigating the challenges raised due to the continuous 
urbanization development and increasing population density in cities. To face these challenges, 
governments and decision makers undertake smart city projects targeting sustainable economic 
growth and better quality of life for both inhabitants and visitors. Information and Communication 
Technology (ICT) is a key enabling technology for city smartening. However, ICT artifacts and 
applications yield massive volumes of data known as big data. Extracting insights and hidden 
correlations from big data is a growing trend in information systems to provide better services to 
citizens and support the decision making processes. However, to extract valuable insights for 
developing city level smart information services, the generated datasets from various city domains 
need to be integrated and analyzed. This process usually referred to as big data analytics or big data 
value chain. Surveying the literature reveals an increasing interest in harnessing big data analytics 
applications in general and in the area of smart cities in particular. Yet, comprehensive discussions 
on the essential characteristics of big data analytics frameworks fitting smart cities requirements are 
still needed. This paper presents a novel big data analytics framework for smart cities called “Smart 
City Data Analytics Panel – SCDAP”. The design of SCDAP is based on answering the following 
research questions: what are the characteristics of big data analytics frameworks applied in smart 
cities in literature and what are the essential design principles that should guide the design of big 
data analytics frameworks have to serve smart cities purposes? In answering these questions, we 
adopted a systematic literature review on big data analytics frameworks in smart cities. The 
proposed framework introduces new functionalities to big data analytics frameworks represented in 
data model management and aggregation. The value of the proposed framework is discussed in 
comparison to traditional knowledge discovery approaches. 
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1. Introduction

The concept of smart cities emerged as a strategy to mitigate the unprecedented challenges of 
continuous urbanization, increasing population density and at the same time provide better quality 
of life to the citizens and visitors [1]. A smart city is composed of smart components such as smart 
buildings, smart farms and smart hospitals, which constitute various city domains where the 
meaning of the label “smart” has different connotations in each domain [2]. ICT applications and 
intensive use of digital artifacts such as sensors, actuators and mobiles are essential means for 
realizing smartness in any of smart city domains [3]. However, “smartening” of various city 
domains is not enough for a city to be smart, whereas the interrelationship between the underlying 
city domains should be taken into account to realize city smartness [3, 4]. As such, a smart city is 
viewed as a whole body of systems or system of systems. This integrated view for a smart city 
implies cross-domain sharing of information [5]. This holistic view for smart city characterizes the 
meaning of “smart” in the context of “smart city” compared to smartening of particular city 
domain.  



On the other hand, the extensive use of digital technologies in various city domains and the 
diffusion of digital technologies in people’s daily life have boosted human-to-human, human-to-
machine, and machine-to-machine interactions which yield massive volumes of data, commonly 
known as big data which is a mixture of complex data characterized by large and fast growing 
volumes datasets which go beyond the abilities of commonly known data management systems to 
accommodate. By analyzing these big data volumes, valuable insights and correlations can be 
extracted [6]. The process of analyzing big data to extract useful information and insights is usually 
referred to as big data analytics or big data value chain [6], which is considered as one of the key 
enabling technologies of smart cities [7, 8, 9]. 

However, big data complexities comprise non-trivial challenges for the processes of big data 
analytics [3]. Although literature is replete with articles addressing big data analytics frameworks 
and their applications of in different smart domains, detailed discussions on the characteristics of 
big data analytics frameworks fitting smart city’s requirements are still needed. The lack of this 
type of articles is the essential motive for this research. The main contribution of this paper is a 
proposal of a novel big data analytic framework for smart cities. To identify the necessary 
characteristics of big data analytics frameworks for smart cities, we adopted a systematic literature 
review approach on big data analytics frameworks in smart cities to answer two basic research 
questions. RQ1: what are the characteristics of big data analytics frameworks applied in smart cities 
in literature? And RQ2: what are the essential design principles that should characterize big data 
analytics frameworks to serve smart cities purposes? To achieve this objective, 30 articles 
addressing big data analytics frameworks and applications in smart cities are analyzed. 

This paper is organized as follows: This section is an introductory section about the subjects and 
motive for this paper. The second section presents fundamental concepts about big data and smart 
cities and how the two subjects are related. The scope of the review is defined in the third section. 
In the fourth section, the 30 articles selected for review are analyzed with respect to the value chain 
operators and the functional requirements that fit smart cities. Findings are discussed in the fifth 
section. The sixth section presents the main contribution of this paper, proposal for a novel big data 
analytics framework for smart cities and its Hadoop-based prototype implementation. In the same 
section, SCDAP design principles are discussed. Also, the value of SCDAP approach is 
demonstrated in comparison to traditional knowledge discovery approaches. The seventh section is 
the conclusion section. Finally, in the eighth section SCDAP architecture limitation is discussed 
and list of recommended directions for future research is presented. This paper includes three 
appendices: Appendix A: Details of the search process, Appendix B: Results with respect to big 
data value chain operators and Appendix C: Results with respect to Functional Requirements. 
Appendices are available on the following URL: [Appendices] 
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software platform to enable construction of scalable integrated smart city applications. The study 
concluded with eight functional requirements: data management, application run-time, Wireless 
Sensor Network WSN management, data processing, external data access, service management, 
software engineering tools and definition of city model. This is in addition to eight non-functional 
requirements: interoperability, scalability, security, privacy, context awareness, adaption, 
extensibility and configurability. 

Authors in [23] specified six characteristics a big data analytics platform should maintain to 
accommodate with the V challenges of big data, specifically: scalability, I/O performance, fault 
tolerance, real-time processing, data size and support for iterative tasks. 

In summary, we can recap the functional requirements into interoperability, real time analysis, 
historical data analysis, mobility, iterative processing, data integration and model aggregation. 
While the non-functional requirements are scalability, security, privacy, context awareness, 
adaption, extensibility, sustainability, availability, and configurability. 

3. The Scope of Literature Review 

In order to define the scope of this literature review, authors followed a widely known taxonomy 
scheme proposed by [25] and adapted by [26] that includes six characteristics for literature review: 
(1) focus, (2) goal, (3) organization, (4) perspective, (5) audience and (6) coverage. 

3.1 Focus 

Focus is the central area of interest to the review process. According to [25], it could be research 
outcomes, research methods, theories, practices or applications. The candidate articles for review 
are analyzed in two dimensions. The first is the analysis with respect to big data value chain 
operators presented in subsection 2.1.2 (appendix B). The second one is the analysis with respect to 
the functional requirements mentioned in section 2.3 (appendix C). The reason for choosing these 
two dimensions for analysis is that they complement each other. This approach gives a broader 
picture about the traits of big data analytics frameworks in smart cities, which in return gives a 
pointer to answer the first research question. In this regard, it is worth mentioning that non-
functional will be not be addressed in this article as it is considered general requirements applicable 
for any analytics system which also required in smart cities with different levels of complexity.  

3.2 Goal 

Goal refers to the objectives to be fulfilled by the review that could be integration, criticism, central 
issue. As the objective of this research is to study the traits of the available big data analytics 
frameworks applied in smart cities and identify the essential functionalities that should characterize 
big data analytics frameworks to serve smart cities purposes, the goal of this research is to integrate 
and criticize the finding of the past literature. 

3.3 Organization 

Organization refers how the literature review is organized. The literature could be organized as 
chronological order, conceptual order (sharing of the same ideas) or methodological order (sharing 
of the same methods of work). In this article, literature is organized and discussed in a conceptual 
order. 

3.4 Perspective 

Perspective refers to the reviewer’s point of view in discussing the literature. Perspective could be: 
a neutral position (impartial role as an honest “judge”) or an espousal position (advocate to certain 



 

 

idea(s) or methodology). In this research, the author adopted a neutral position search perspective 
since there is no need to foster a specific position. 

3.5 Audience 

Audience refers to beneficiaries whom the review addresses (specialized researchers, general 
researchers, practitioners, policy makers). Since the second research question is identifying 
essential functionalities that should big data analytics frameworks have to serve smart cities 
purposes, the audience of this literature review are specialized scholars, practitioners and smart 
cities planners. 

3.6 Coverage 

Coverage refers to how the reviewer searches the literature and how he makes decisions about the 
suitability and quality of documents. According to Cooper, there are four categories of coverage: 
exhaustive (including the entirety of literature on a topic or at least most of it), exhaustive with 
selective citation (considering all the relevant sources, but describing only a sample), representative 
(including only a sample that typifies larger groups of articles), and central (reviewing the literature 
pivotal to a topic). In this literature review, authors adopted exhaustive with selected citations 
coverage since it is not realistic to claim exhaustive coverage. Additionally, adoption of 
representation or central coverage does not serve the objectives of this review. 

Table (1) summarizes the choices made by the author, regarding the Cooper’s taxonomy about the 
review scope. 

Table (1) Taxonomy of literature review 

Characteristics Categories 

Focus Research outcomes Research methods Theories Applications 

Goal Integration Criticism Central Issue 

Organization Historical Conceptual Methodological

Perspective Neutral representation Espousal of position 

Audience Specialized scholars General scholars 
Practitioners\ 
Policy-makers 

General public 

Coverage Exhaustive 
Exhaustive with 
selective citation 

Representative 
Central or 

pivotal 
 

4. Literature analysis and synthesis 

According to the reference review scheme [26], the search process involves four steps: (1) 
identifying search databases; (2) search keywords; (3) forward and backward search; and (4) 
evaluation of articles. 

To collect quality scholar articles, six information systems online databases were searched using 
two search keywords “big data” and “smart city”, total of 247 articles were retrieved. After 
filtration and evaluation, process only 30 articles were shortlisted for analysis. Details of the search 
process and sources of shortlisted articles are listed in appendix A. 

The process of evaluating the articles in terms of addressing the two dimensions of analysis in 
section 3.1 involved reading and evaluating the article’s abstract and conclusion sections to decide 
which of the focus points (section 3.1) are addressed. If article abstract and conclusion does not 



 

 

lead into clear decision, the article’s full body is reviewed. In the following two subsections, the 
results of analysis with respect to big data value chain operators and functional requirements are 
demonstrated. For a more detailed analysis of some proposed end-to-end architectural frameworks 
are reviewed in details, namely: BASIS [27], SWIFT [28] and RADICAL [16] are reviewed in 
details in subsections 4.3, 4.4 and 4.5 respectively. Points of strength and weakness of each 
architectural framework are listed after each review. 

4.1 Analysis with respect to value chain operators 

Results of the evaluation process with respect to big data value chain operators are shown in the 
table presented in appendix B. From these, we could recognize that most of the analyzed articles 
focused on data gathering (21 out of 30). This ratio reflects the high interest of researchers in 
finding efficient solutions for data gathering from different sources, while relatively, less number of 
researches addressed the rest of data input functionalities (selection, preparation, transformation) 
although its significant impact on the efficiency of the analysis processes. In the following three 
subsections, we will review how each of these operators is addressed. 

4.1.1 Data Input 

The central challenge in this operator is related to the ability to acquire timely raw data about city 
events from a large number of heterogeneous sources. Also, in through this operator data are 
prepared to the following operator for analysis, where data are either analyzed online for real time 
(or near real time analysis) or stored for later analysis. In this context, researches have been 
directed towards dealing with the technologies enabling city smartness such as IoT, Smart Sensor 
Networks, Social Networks and mobile applications. Researchers adopted several techniques to 
deal with this challenge such as developing an autonomous middleware layer with unified data 
access through WEB API services e.g. [27, 29, 30]. Authors in [31] introduced a location-aware 
architecture using the merge between IoT and Cloud technologies (referred to as FOG computing) 
where local computations and analytics can be performed on the edge of network where machine 
learning and other artificial intelligence techniques are used in. This approach supports quick 
response at neighborhood-wide providing high computing and network traffic performance. 
Relatively little number of articles addressed other data input functionalities (e.g. selection, 
filtering, transformations) in addition to data gathering [32, 19]. 

4.1.2 Analysis 

There are two main types of data analytics in general, online and historical. The first one serves 
real-time or near real-time applications while the second one is appropriate for applications that can 
afford late results. In the context of smart cities, both types of analysis is required. For example, 
online analytics is required traffic surveillance while historical data analytics is required in the 
initial phases of city planning in addition to online analytics. Surveyed articles have addressed 
many areas related to smart cities domains such as traffic control [18, 15, 19], pollution monitoring 
[22], crime analysis [20] and planning [33]. To mitigate the V challenges of big data, Hadoop and 
Cloud technology are reliable platforms to host and process data [34, 32, 35, 36]. 

4.1.3 Output 

Within the scope of reviewed articles, it is noted that output results are presented to the end user in 
the form of graphs and charts that serve the results of the addressed domain of applications. 



 

 

4.2 Analysis with respect to functional requirement 

Results of the evaluation process with respect to functional requirements are shown in the table 
presented in appendix C. Results in appendix C show that number of articles targeted real-time 
analysis (25 out of 30) is three times the number of articles targeted historical data analysis (8 out 
of 30) while only (8 out of 30) addressed the two types of analysis. In addition, only nine articles 
address integration of data from multiple sources. In the following subsections, we will review how 
each of these functional requirements is addressed. 

4.2.1 Interoperability 

In a smart city environment, there are various types of data generating devices. For example, 
sensors from multiple vendors, systems implemented with different languages and standards (refer 
to subsection 4.1.1). Interoperability challenge is to make all these devices operate in integrated 
software platforms. In this context, researches adopted layered design where separate layer is 
dedicated to interact with our world through standard interfacing gateways [27, 29, 30].  

4.2.2 Real-time and Historical data Analysis 

Choice between real-time and\or historical data analysis depends on the nature of the target 
analysis-based applications. As mentioned in section 4.1.2, surveyed articles have addressed the 
two types of analysis. Traffic control [18, 15, 19] and pollution monitoring [22] are examples of 
real-time analysis. Crime analysis [20] and planning [33] are examples of historical data analysis.  

4.2.3 Mobility 

Mobility is one of the key characteristics of smart cities [4]. Linking of traffic, communication and 
analytics is becoming increasingly important. Transportation infrastructures are pushed to their 
limits demanding for smart and adaptive means of transporting and routing policies to optimize 
existing systems grows. In return, mobility requires data analysis systems to be able to deal with 
mobile data sources. In [37, 38] authors introduced a real-time mobility patterns detection system 
able to describe how people move around Point of Interests (POI). Policy makers and Journey 
Planners to provide final users with accurate travel plans can exploit these mobility patterns. 

4.2.4 Iterative processing 

The demand for iterative processing in a big data analytics system emerged because the supported 
programming paradigm supported by Hadoop, MapReduce, in primarily sequential data processing 
model which is not efficient for fast data processing requirements (e.g. real time analysis). That 
was the reason for introducing Spark for in-memory iterative data processing. In [39, 32, 40] 
authors introduced various design scheme based on Spark over Hadoop for real-time data analytics. 
The test results show significant performance efficiency of big data processing platform using 
distributed architecture with iterative processing. In this context, it is worth mentioning that 
iterative processing is not an alternative for batch processing. However, both processing schemes 
are required in smart cities applications. 

4.2.5 Data Integration 

The challenge of data integration involves combining data from several disparate sources, which 
are generated and\or, stored using various technologies to provide a unified view of the data. Data 
integration becomes increasingly important in case of smart cities being a complex system of 
systems. In [20] authors introduced an effective real time crime analysis system based on 
integrating data from different data sources. The systems applies machine learning approach for 



 

 

developing ‘tactical information profiles’ timely manner to support and optimize investigators 
decision making actions. Also, in [32] proposed a smart city system based on data generated from 
smart home sensors, vehicular networking, weather and water sensors, smart parking sensors, 
surveillance objects, etc. The system implementation includes various data preparation steps 
starting from data generation and collecting, aggregating, filtration, classification, preprocessing. 

4.3 BASIS 

BASIS is a three-layer big data architecture for smart cities [27]. The architecture of BASIS is built 
upon a fundamental design principle of strict separation between abstraction layers. The three 
layers are the conceptual layer, the technological layer and the infrastructure layer.  

The conceptual layer encapsulates the internal and external functionalities of BASIS including data 
capturing, integration, storage and APIs for web streams and data analysis. The technological layer 
is realized using Hadoop platform. The infrastructural layer addresses the physical hardware design 
aspects to interact with external world. In other words, it is the interfacing part of the technological 
layer to interact with external requests. Also, the architectural design of BASIS considered also the 
following design principles: 

- Makes available Open Data, facilitating the appearance of new services developed by Smart 
Cities governments, organizations or citizens,  

- Multiple abstraction layers, from the most conceptual to the most technological, 

- Distributed data storage and processing, 

- Data security, privacy and thrust concerns, 

- Incorporates ways of managing data’s lifecycle, using inherent concepts about data 
partitioning,  

- Establishes cooperation strategies between entities involved in the development of smart city 
services,  

- Service-oriented and client-independent, 

- Use of open source technologies, except in cases where that choice is not cost effective. 

BASIS was validated using real case study to find the delay profile in flights in several cities at the 
USA. The profile was extracted using K-means algorithm running in multiple clusters (13 cluster) 
using dataset containing 3.5 million records about flight performance. Table (2.a) shows the 
strengths and weaknesses of BASIS architecture. 

Table (2.a) Strengths and weaknesses of BASIS architecture 

Strengths Weaknesses 

- Adoption of layered design principle (three 
separate layers), 

- Domain independent design, 
- Support of both batch and stream data 

analytics, 
- Service-oriented analytics (analytics as-a-

service), 
- Data capturing and data analysis services are 

provided through APIs, 
- Implementation using Hadoop, a commonly 

- Distinction between the technological and 
infrastructure layers are not clearly 
demonstrated. As the infrastructure layer is 
concerned the physical hardware design 
aspects to interact with external world which 
could be considered as an extension 
functionality of the technological layer, 

- Although BASIS is comprehensive big data 
analytics architecture, it did not show the 
particular design considerations pertaining to 



Strengths Weaknesses

known horizontally scalable platform. smart cities, 
- Relevance of the validation case (flight delay 

profile) to smart cities is questionable, it 
would much better if the authors considered 
extracting insights related to one or more 
smart city domains (transportation, energy, 
traffic…etc.). Also, the validation case dealt 
with batch data analysis,  

- Batch data analysis for offline applications is 
not clearly compared with stream data 
analysis. 

4.4 SWIFT 

SWIFT stands for: “Smart wireless sensor network (WSN)-based Infrastructural Framework for 
smart Transactions”. It is a three-tiered architectural framework that supports integration of 
heterogeneous devices. The base layer is Smart Wireless Sensor Network (S-WSN). The second 
layer is the “Smart Wireless-based Pervasive Edifice” (SWIPE) which resides on the S-WSN layer. 
The third layer is the “Smart Decision & Control Enabler” (SDCE). 

The S-WSN layer acts as the sensory probes of SWIFT where several hundreds of physically 
dispersed wireless sensor nodes that sense a phenomenon of interest and report the data for further 
analysis. Sensors are grouped in clusters and headed by a Smart Cluster Heads (SCHs) deployed at 
various locations in the city. SCHs collect and aggregate data from nearby sensor nodes. In addition 
to sensed data, the nodes transmit their node identification and battery status to the SCHs. The 
SCHs are capable of taking low-end, but important decisions like raising an alarm, generating 
emergency actuation signals etc. After aggregating and processing the data, the SCHs transmit data 
to nearby Smart Fusion Nodes (SFN) in the following layer SWIPE. 

SWIPE is the heart of SWIFT architecture, which comprises several Smart Fusion Nodes (SFN) 
that act as the edifice for SWIFT architecture. SFNs act as data classifiers and perform data fusion 
to draw meaningful interpretation of the sensed data for query processing and other related 
services. They collect data from S-WSN layer to facilitate ubiquitous computing. Smart Decision & 
Control Enabler (SDCE) is the core layer that provides a host of services (cloud) to all smart 
objects in the city based on data provided by SWIPE. Table (2.b) shows the strengths and 
weaknesses of SWIFT architecture. 

Table (2.b) Strengths and weaknesses of SWIFT architecture 

Strengths Weaknesses

- Relevance to smart city domains is 
emphasized through the proposed application 
domain (traffic monitoring and control), 

- Scalability to accommodate with 
heterogeneous large number of sensors, 

- Adoption of the hierarchical uncomplicated 
layered approach, 

- Ability to build location-aware data, 

- Only sensor-captured data is considered, data 
from other data sources are not considered, 

- Batch data analysis for offline applications 
are not applicable, 

- Performance of SWIFT framework is not 
tested. 



 

 

Strengths Weaknesses 

- Online or near online application geared 
architecture, 

- Although SWIFT is proposed for traffic 
monitoring and control domain, it can be 
adapted for other online analytics domains. 

 

4.5 RADICAL 

“RApid Deployment on Intelligent Cities And Living”, RADICAL is a Service Oriented 
Architecture -based (SOA) platform that enables retrieval and analysis of IoT (Internet of Things) 
sensed and Social Networks (SN) data to offer variety of added-value services for smart cities. 

IoT data are pushed into RADICAL repository (MySQL database) through the respective 
Application Programming Interface (API). Device related data are saved in the form of 
observations and measurements. Observations correspond to general reported IoT events while 
measurements to more specific metrics included in an observation (e.g. CO2 measurements). On the 
other side, SN data are accessed in real time from underlying SN adaptors by communicating with 
the respective Networks’ APIs. 

On top of the main platform, RADICAL provides a set of application management tools that allow 
end users to make better use of the platform, such as configuring the registered IoT devices or 
extracting general activity statistics. Table (2.c) shows the strengths and weaknesses of 
RADICAL architecture. 

Table (2.c) Strengths and weaknesses of RADICAL architecture 

Strengths Weaknesses 

- Combination of retrieval and analysis of data 
sourced from heterogeneous sources (IoT 
and SN). As for smart cities, this is a key 
feature for considering the interrelationship 
of between the city underlying domains, 

- Interoperability to accommodate with 
heterogeneous large number of sensors (IoT 
and SN), 

- Support for of SOA to provide smart city 
services, 

- Domain independent architecture. 

- Reliance on MySQL database as a main 
repository is a restrictive factor when it 
comes to big data considerations, 

- Inability to retain analysis results for future 
analyses or reference. 

 

5. Findings and discussion 

In this section, we analyze and discuss the findings of the reviews in section 4. Findings of these 
reviews are compiled from three different perspectives: design principles, enabling technologies 
and application domains to identify the characteristics of the big data analytics frameworks in smart 
cities hence answer the first research questions. 



 

 

Design principles 

 Adoption of layered design principle. Where each layer is designated a specific functionality 
with well-defined interfacing with preceding and following layers, 

 Standardization of the data acquisition from external world (interoperability and mobility). 
Similarly and output data access through unified access (e.g. API or standard message formats) 
to enable fact-based applications [29], 

 Enabling of both real-time and historical data analytics are necessary, 

 Support of both iterative and sequential data processing to accommodate with real-time and 
historical data analytics requirements,  

 Scalability to adapt with potentials of increasing number of data capturing devices and the 
volumes of data generated from these devices. 

Enabling technologies 

In this subsection, we review key enabling technologies for harnessing big data analytics in smart 
cities. However, we will try to focus only on the aspects pertained specifically to smart city’s 
applications to avoid repeating what is already addressed in literature. 

 Horizontally scalable platforms: Hadoop seems to be feasible to accommodate with scalability 
requirements of big data analytics frameworks in smart cities. They support cost effective 
resilient platforms able to host and process increasing volumes of big data [27, 34]. 

 Fog computing (also known as Edge computing) a technology which provides computing and 
storage between end devices and cloud data centers are used for data preprocessing to detect 
anomalous and hazardous events [31]. 

 Cloud systems provides scalable, robust and highly available hosting environment for both data 
storage and computation fitting with the volume characteristic of big data and complex dynamic 
nature of smart cities [19, 40]. 

 Data mining (DM) and machine learning (ML): DM and ML are crucial technologies for data-
centric smart cities. DM is used to extract hidden, unknown and potentially valuable information 
from big data. DM is a broad field that includes many algorithms and techniques from statistics, 
ML and information theory to extract information from data. Additionally, ML is an application 
of artificial intelligence (AI) that provides computers the ability to learn and improve from 
experience from data without being programmed. ML algorithms are usually classified into two 
categories, namely supervised and unsupervised learning. Algorithms belong to the first 
category learn from past data with labeled examples (training dataset). After sufficient training 
iterations, the system will be able to predict future events. In contrast, unsupervised machine 
learning algorithms are used when the data used for training are not labeled. Unsupervised 
learning studies how systems can infer a function to describe a hidden structure from unlabeled 
data. 

There are many applications of DM and ML for smart cities in literature [41]. The main 
challenge in this domain is finding appropriate data sets from massive city data to fit with data 
mining requirements. Solving the problem of dataset selection and data combination is very 
important for smart city data mining. 

 In-memory databases for high performance analytics: relational databases systems (RDBMS) 
were not designed to cope with big data scalability and agility challenges, nor were they built to 



take advantage of the commodity storage and processing power available today. In contrary, not 
only SQL databases (NoSQL) are designed to fit with big data requirements from that aspect. 
There are four basic types of NoSQL databases: key-value, document-based, column-based and 
graph-based. Apache Hadoop suite includes HBase. HBase is a NoSQL database that runs on 
top of HDFS which supports both key-value and column-based store. HBase provides real-time 
read/write access to those large datasets. The main advantage of HBase is the high linear 
scalability of handling huge data sets with large number of rows and columns. In addition, 
HBase can easily combines data sources that use a wide variety of different structures and 
schemas. 

 Data visualization: data visualization is the presentation of data and\or information in a friendly
pictorial format. This technique of presenting data helps users and decision makers to quickly
identify interesting patterns from data visually. When it comes to big data, visualization
becomes more challenging because of its V characteristics. Applications of big data in smart
cities, especially those targeting decision makers, add more complexity for data visualization
since data is sourced from different domains [42]. However, the emergence of new technologies
such as augmented reality (AR), virtual reality (VR), mixed reality (MR) and Google Maps are
paving the way for the development of practical efficient smart city applications. Traffic
management [18] and points of interest (POI) [38] are examples data visualization applications
in smart cities.

Application domains  

Within the scope of reviewed articles, application domains are approached in two ways. Some 
research articles proposed analytics solutions driven by specific application domain (e.g. 
environment, traffic…etc.) while other articles were driven by finding technical solutions for 
analysis functionalities (e.g. interoperability, mobility…etc.). In the latter case, domain of 
application is used as a proof of concept to the proposed idea. 

Based on article analysis and review in the previous section and the above findings, we can realize 
that factors influencing the design of the proposed frameworks are driven by either finding 
solutions for specific smart city domain(s) or finding solutions for some technical challenges. 
Another important observation, the basic design concept of the reviewed architectures lack 
addressing the holistic view of smart cities being complex system of systems where the 
interrelationship between different smart city domains should be taken into consideration. 
Consideration of the interrelationship between different smart city domains necessitates 
comprehensive analytics based on datasets generated from different domains which might be 
reiterated for a wider scope of extracted information and insights (e.g. during the smart city 
planning phase were the strategic objectives are set) [17, 43, 44]. There are two approaches to meet 
this demanding requirement. The first one is to persist datasets generated from different domains, 
integrate selected datasets for analysis then start the whole analytics processes. The second 
approach is ability to persist the resultant information form the analytics processes for later analysis 
usages, where the extracted data models can be retrieved and combined together for comprehensive 
analytics. Of course, this approach is conditioned by the applicably of merging these models with 
each other. However, the second approach will optimize execution time compared to the first 
approach in the sense that no need to re-analyze the same dataset many times. Of course, the 
second approach does not mean dispensing with the first approach completely. However, both 
approaches are complementary to each other to optimize execution time.  

In the context of big data analytics for smart cities, we recommend inclusion of two significant 
design aspects, namely: model management and model aggregation. The first one enables 
persisting extracted information an insights (data models) for future analysis without reiterating the 



analy
mode
analy

6. P

In lig
city, 
SCDA
Secur

 Plat

The
syst
nod

 Sec

Alth
phy
phy

- 

- 

- 

 Dat

Thi
data
proc
prov
mod
dele
as f

 D
c

ysis process. 
els. The sec
ytics. 

Proposal for

ght of the fin
we propose 
AP is shown
rity layer and

F

tform Layer:

e platform la
tems and co

des can be ad

curity Layer: 

hough a com
ysical implem
ysical design 

Restricted

Multi lev

A comple

ta Processing

s is the core
a acquisition
cessing for 
vides two im
del aggregat
eted) and agg
follows: 

Data acquis
characterized

In other w
cond one wi

r a Novel Fr

ndings and d
a “Smart C

n in figure (
d c) Data pro

Figure (5) - S

 

ayer is a ho
mmunication

dded as neede

mplete visio
mentation of
especially fo

d sign on acc

vels user auth

ete audit log 

g Layer: 

e data proces
n to knowle

real-time a
mportant fu
tion where e
gregated, res

sition: The 
d by scalab

words, it will
ill enable m

ramework 

discussion in 
City Data An
(5). SCDAP 
ocessing laye

Smart City D

orizontally s
n protocols. 
ed.  

n for the fu
f SCDAP, th
or critical an

cess to the fr

hentication, 

should be ke

ssing engine 
edge extract

and historica
nctionalities 
extracted dat
spectively. B

main compo
bility, intero

l help buildi
model ensem

section 5 an
nalytics Pane
is a 3-layer

er. 

Data Analytic

scalable plat
In horizonta

unctionality 
he following
nalytics: 

ramework sh

ept for impor

that provide
tion. This l
al data ana
 that disting

ata models c
Broadly, comp

onent for da
operability.

ing a some 
mble for mo

nd understan
el (SCDAP)

r architecture

cs Panel SCD

form includ
ally scalable

of the secur
g security m

ould be gran

rtant operatio

es all the dat
layer suppor
lytics respec
guish SCDA
an be mana
ponents com

ata capturing
Scalability 

sort of libra
ore compreh

nding the hol
”. The sche

e including: 

DAP Architec

ing hardwar
 platforms, a

rity layer w
easures shou

nted for critic

ons. 

ta processing
rts both on
ctively. Add

AP namely: 
ged (i.e. per

mposing this l

g from the 
is the abili

ary for the 
hensive mult

listic view o
ematic archit

a) Platform 

cture 

re clusters, 
additional co

will be cleare
uld be adher

cal and sensit

g functionali
nline and ba
ditionally, th
model man

rsisted, retri
layer are sum

external wo
ity to acco

extracted 
ti-domain 

of a smart 
tecture of 

layer, b) 

operating 
omputing 

er during 
red to on 

tive data, 

ities from 
atch data 
his layer 
ager and 
eved and 
mmarized 

orld. It is 
mmodate 



dynamically with the increasing number of data generating artifacts. Interoperability is the 
ability to interact with heterogeneous types of generating artifacts (Wireless Sensors Networks 
(WSN), IoT, Social Media Networks (SMN), etc.). 

 Data preprocessing: Provides input data cleansing, transformation and integration
functionalities. This component is responsible for transforming input data into analysis-ready 
format(s). 

 Online analytics: Ability of performing stream data processing for applications that involve
interactivity with acceptable limited latency.

 Real time analytics: Ability of performing stream data processing for real time applications.
Real time applications are applications that function within time frames that the user senses as
immediate or current. The latency must be less than a defined value.

 Batch data repository: Data storage management system (e.g. Hadoop HDFS, NoSQL
database management systems).

 Batch data analytics: Batch data analytics for applications that afford latency.

Model management: Extracted data model management system, where resultant data analysis
models can be persisted, retrieved (or deleted) with relevant metadata for future inquiries or
reuse. Additionally, static (semi-static data) of the city is persisted in this repository.

 Model aggregation: Extracted data model ensemble functionality for higher level and more
complicated analytics and inquiries.

 Smart application: smart applications built on resultant data analysis models.

 User interface: End user interface to provide efficient flexible tools allowing access, reporting 
and ad hoc inquiries for persisted and\or aggregated models. 

6.1 Hadoop Based Prototype Implementation 

In this section, we discuss the implementation of SCDAP using Apache Hadoop and Spark suites. 
Since Hadoop is a popular horizontally scalable platform for storing, managing and processing big 
data it fits smart city’s big data analytic applications. It constitutes the base platform in realizing 
SCDAP. For this reason, we opted to introduce the initial structure of SCDAP using Hadoop and 
Spark stacks. A high-level schematic diagram for the functional architecture of SCDAP is shown in 
figure 6.a. The architecture is composed of eight components. The function of each component is 
described hereafter: 

 Resource Management Layer (YARN): YARN (Yet, Another Resource Negotiator) is Hadoop
2.0’s resource management framework. YARN isolates resource management and scheduling
from the data processing components. Also, it enables Hadoop to support diverse of processing
approaches and a broader range of applications. For example, YARN enables Hadoop to run
interactive queries, real-time applications and batch jobs simultaneously on one shared dataset.

 Data Storage Layer: data storage layer is the data stowing layer. In Hadoop platform, available
types of data storage are:
HDFS (Hadoop Distributed File System): It is the native Hadoop data management system. It
is a high performance scalable, distributed, fault-tolerant and reliable data storage. HDFS is
designed to span large clusters of commodity servers and manage large volumes data files.
HDFS allows file creation, write once, read many and remove operations. It does not allow
update operations.
NoSQL (Not Only SQL) Databases: The demand for NoSQL databases technology evolved to
handle huge volumes of semi-structured and unstructured data properly at which traditional
relational databases are not designed for these types of data. NoSQL databases have no
declarative query language and no predefined schema. There are four types of NoSQL



 

 

databases. Each of these categories has its own specific attributes and limitations (Key-value, 
Column-oriented, Graph, Document oriented). There is no single solution that is better than all 
others are; however, there are some databases that are better to solve specific problems. HBase 
and Kudu are examples of column-oriented database where every column (or family of 
columns) is treated individually. Column-oriented databases are appropriate for aggregation 
queries, data warehouses and business intelligence application. However, Apache Kudu 
provides some additional features similar to traditional relational databases. 

 Data Integration Layer: This is the first layer where data is collected for the external world to 
the proposed framework. The proposed design of this layer enables the ability to collect stream 
data (e.g. twitter and sensed data) and batch data from traditional enterprise databases and data 
warehouses. Apache Hadoop ecosystem provides efficient application to serve data integration 
purposes: 

Apache Flume: Flume is an efficient distributed service for collecting, aggregating, and moving 
large volumes of log data for streaming into Hadoop. Flume’s main use-case is to ingest data 
into Hadoop. 
Apache Kafka: Kafka is a distributed publish-subscribe message streaming platform. It is used 
to build real-time streaming data pipelines that reliably get data between systems or applications 
(in which Hadoop is one of them). Also, it allows processing of data stream records as they 
occur. 
Apache Sqoop: Sqoop is a tool designed for transferring bulk data between relational databases 
(e.g. MySQL and Oracle) into the Hadoop Distributed File System (HDFS) and vice versa. 

 Data Analytics Layer: This is the main layer for Analyzing incoming data to extract knowledge 
and insights. This layer consists of two components: Stream data analyzer (e.g. machine 
learning) and batch data analyzer (e.g. data mining). Stream data analyzer capture data from the 
data integration layer (stream data). Apache Hadoop ecosystem provides applications 
appropriate for this objective, namely Apache Storm and Apache Spark. Batch data analyze 
access data persisted in any data storage system (e.g. HDFS, HBase…etc.). 

Apache Storm: Storm is a powerful distributed real time computation framework for processing 
streaming data and can perform micro-batch processing. It can process huge number of records 
per second per node on a cluster of modest size. Storm supports many programming languages 
such as Java, Scala and Python. 

Apache Spark: Spark is a batch in-memory computing framework and can perform micro-batch 
procession via Spark-streaming. Spark is an efficient alternative to Hadoop MapReduce 
programming framework as it offers faster performance given memory requirements 
considerations. It provides APIs and supports Java development, Scala and Python 
programming languages. Also, Spark supports MLlib (Machine Learning Library), an algorithm 
library about big data machine learning algorithms such as classification, clustering and 
regression. 

Extracted models are dispatched to the model management layer to be persisted for future 
reference or transferred directly to the smart applications layer for real-time and online 
applications. 

 Model Management Layer: This layer provides two modules: 

Model management: This module is responsible for managing extracted models (stowing, 
discarding) with relevant metadata for future inquiries and applications.  

Aggregation manager: This module provides the ability to ensemble persisted models for higher 
level inquiries. This functionality enables more complicated smart city cross-domain analytics.  
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In this paper, we reviewed 30 papers addressing big data analytics in smart cities from two 
perspectives, namely: big data analytics value chain and functional requirements. The review 
process aimed at answering two research questions: what are the characteristics of big data 
analytics frameworks applied in smart cities in literature? And, what are the essential design 
principles that should guide the design of big data analytics frameworks have to serve smart cities 
purposes? Based on the answers of these two questions, we proposed a novel framework titled 
“Smart City Data Analytics Panel – SCDAP”  

The answer of the first research question showed that adoption of layered design approach, 
standardized data acquisition\access, enabling of both real-time and historical data analytics, 
support of both iterative and sequential data processing and scalability are the commonly followed 
design principles. In addition, horizontally scalable platforms, cloud systems, data mining, machine 
learning, in-memory databases and data visualization are the enabling technology. On the other 
side, the answer of the second research question showed the necessity of including two additional 
functions to the analytics frameworks for smart cities, namely: model management and model 
aggregation, that is the main contribution of this paper. The proposed framework SCDAP features 
the compiled functionalities of the surveyed architectures and suggested ones on the answers of 
second research question. Additionally, a schematic architectural design for SCDAP and it 
implementation using Hadoop platform were provided. Finally, the value of SCDAP approach is 
discussed through comparison with traditional knowledge extraction approaches.  

8. SCDAP Limitation and Future Research Directions

Although the proposed framework SCDAP presents new functionalities to big data analytics 
frameworks for smart city applications, the main feature of this architecture is limited to Apache 
Hadoop suite as an underlying data storage and management layer. Separation between SCDAP 
functionalities and the underlying data storage and management layer will add enhance the 
generality of SCDAP and its ability to deal with many other platforms. However, recommended 
future research directions involve the following points: 

 Develop efficient model persistence, retrieval and ensemble algorithms.

 Develop efficient, powerful and friendly end-used interfaces involving multi-model
visualization and OLAP style tools.

 Enable export/import of smart city analytical data models functionality to/from other analytical
frameworks (e.g. knowledge exchange).

 Defining smart city performance measures (Key Performance Indicators - KPIs) in which
analytics frameworks can be evaluated.
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