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Abstract

Two modern economic trends are the increase in firm size and advances in information

technology. We explore the hypothesis that big data disproportionately benefits big

firms. Because they have more economic activity and a longer firm history, large

firms have produced more data. As processor speed rises, abundant data attracts

more financial analysis. Data analysis improves investors’ forecasts and reduces equity

uncertainty, reducing the firm’s cost of capital. When investors can process more data,

large firm investment costs fall by more, enabling large firms to grow larger.
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One of the main question in macroeconomics today is why small firms are being replaced15

with larger ones. Over the last three decades, the percentage of employment at firms with16

less than 100 employees has fallen from 40% to 35% (Figure 1a); the annual rate of new17

startups has decreased from 13% to less than 8%, and the share of employment at young18

firms (less than 5 years) has decreased from 18% to 8% (Davis and Haltiwanger, 2015).19

While small firms have struggled, large firms (more than 1000 employees) have thrived: The20

share of the U.S. labor force they employ has risen from one quarter in the 1980s, to about21

a third today. At the same time, the revenue share of the top 5% of firms increased from22

57% to 67% (Figure 1b).23

Figure 1 about here.24

One important difference between large and small firms is their cost of capital (Cooley25

and Quadrini, 2001). Hennessy and Whited (2007) document that larger firms, with larger26

revenues, more stable revenue streams, and more collateralizable equipment, are less risky27

to creditors and thus pay lower risk premia. But this explanation for the trend in firm size28

is challenged by the fact that while small firms are more volatile, the volatility gap between29

small firms and large firms cash flows has not grown.1 Alternative, the trend in covariance30

of firm stock prices with market portfolio, as measured by CAPM β, is not significantly31

different across firms of different sizes.32

If neither volatility nor covariance with market risk has diverged, how could risk premia33

and thus the cost of capital diverge? What introduces a wedge between unconditional vari-34

ance or covariance and risk is information. Even if the payoff variance is constant, better35

information can make payoffs more predictable and therefore less uncertain. Given this new36

1Evidence on the volatility gap between large and small firms is in Appendix A.4. Other hypotheses are
that the productivity of large firms has increased or that potential entrepreneurs instead work for large firms.
This could be because of globalization, or the skill-biased nature of technological change as in Kozeniauskas
(2017). These explanations are not exclusive and may each explain some of the change in the distribution
of firm size.
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data, the conditional payoff variance and covariance fall. More predictable payoffs lower37

risk and lower the cost of capital. The strong link between information and the cost of38

capital is supported empirically by Fang and Peress (2009), who find that media coverage39

lowers the expected return on stocks that are more widely covered. This line of reasoning40

points to an information-related trend in financial markets that has affected the abundance41

of information about large firms relative to small firms. What is this big trend in financial42

information? It is the big data revolution.43

Our goal is to explore the hypothesis that the use of big data in financial markets has44

lowered the cost of capital for large firms relative to small ones, enabling large firms to grow45

larger. In modern financial markets, information technology is pervasive and transformative.46

Faster and faster processors crunch ever more data: macro announcements, earnings state-47

ments, competitors’ performance metrics, export market demand, anything and everything48

that might possibly forecast future returns. This data informs the expectations of modern49

investors and reduces their uncertainty about investment outcomes. More data processing50

lowers uncertainty, which reduces risk premia and the cost of capital, making investments51

more attractive.52

To explore and quantify these trends in modern computing and finance, we use a noisy53

rational expectations model where investors choose how to allocate digital bits of information54

processing power among various firm risks, and then use that processed information to solve55

a portfolio problem. The key insight of the model is that the investment-stimulating effect56

of big data is not spread evenly across firms. Small firms benefit less. In our model, small57

firms are equivalent to young firms, and large firms to old firms. This is consistent with58

the data, where age and size are positively correlated. In the model, larger firms are more59

valuable targets for data analysis because more economic activity and a longer firm history60

generates more data to process. In contrast, all the computing power in the world cannot61

inform an investor about a small firm that has a short history with few disclosures. As big62
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data technology improves, large firms attract a more than proportional share of the data63

processing. Because data resolves risk, the gap in the risk premia between large and small64

firms widens. Such an asset pricing pattern enables large firms to invest cheaply and grow65

larger.66

The data side of the model builds on theory designed to explain human information67

processing (Kacperczyk et al., 2016), and embeds it into a standard model of corporate68

finance and investment decisions (Gomes, 2001). In this type of model, deviations from69

Modigliani-Miller imply that the cost of capital matters for firms’ investment decisions. In70

our model, the only friction affecting the cost of capital works through the information71

channel. The big data allocation model can be reduced to a sequence of required returns for72

each firm that depends on the data-processing ability and firm size. These required returns73

can then be plugged into a standard firm investment model. To keep things as simple as74

possible, we study the big-data effect on firms’ investment decision based on a simulated75

sample of firms – two, in our case – in the spirit of Hennessy and Whited (2007).76

The key link between data and real investment is the price of newly-issued equity. Assets77

in this economy are priced according to a conditional CAPM, where the conditional variance78

and covariance are those of a fictitious investor who has the average precision of all investors’79

information. The more data the average investor processes about an asset’s payoff, the80

lower is the asset’s conditional variance and covariance with the market. A researcher who81

estimated a traditional, unconditional CAPM would attribute these changes to a relative82

decline in the excess returns (alphas) on small firms. Thus, the widening spread in data83

analysis implies that the alphas of small firm stocks have fallen relative to larger firms. These84

asset pricing moments are new testable model predictions that can be used to evaluate and85

refine big data investment theories.86

This model serves both to exposit a new mechanism and as a framework for measurement.87

Obviously, there are other forces that affect firm size. We do not build in many other88
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contributing factors. Instead, we opt to keep our model stylized, which allows a transparent89

analysis of the new role that big data plays. Our question is simply how much of the change90

in the size distribution is this big data mechanism capable of explaining? We use data in91

combination with the model to understand how changes in the amount of data processed over92

time affect asset prices of large and small public firms, and how these trends reconcile with93

the size trends in the full sample of firms. An additional challenge is measuring the amount94

of data. Using information metrics from computer science, we can map the growth of CPU95

speeds to signal precisions in our model. By calibrating the model parameters to match the96

size of risk premia, price informativeness, initial firm size and volatility, we can determine97

whether the effect of big data on firms’ cost of capital is trivial or if it is a potentially98

substantial contributor to the missing small firm puzzle.99

Contribution to the existing literature Our model combines features from a few dis-100

parate literatures. The topic of changes in the firm size distribution is a topic taken up101

in many recent papers, including Davis and Haltiwanger (2015), Kozeniauskas (2017), and102

Akcigit and Kerr (2017). In addition, a number of papers analyze how size affects the cost103

of capital, e.g. Cooley and Quadrini (2001), Hennessy and Whited (2007), and Begenau104

and Salomao (2018). We explore a very different force that affects firm size and quantify its105

effect.106

Another strand of literature explores the feedback between information in financial mar-107

kets and investment: Maksimovic et al. (1999) models the relationship between a firm’s cap-108

ital structure and its information acquisition prior to capital budgeting decisions. Bernhardt109

et al. (1995) studies the effect of different levels of insider trading on investment. Ozdenoren110

and Yuan (2008) studies a setting where asset prices influence fundamentals through coor-111

dinated buying and thus self-fulfilling beliefs. Furthermore, there are papers that focus on112

long run data or information trends in finance: Asriyan and Vanasco (2014), Biais et al.113
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(2015) and Glode et al. (2012) model growth in fundamental analysis or an increase in its114

speed. The idea of long-run growth in information processing is supported by the rise in115

price informativeness documented by Bai et al. (2016).116

Over time, it has gotten easier and easier to process large amounts of data. As in Farboodi117

et al. (2017), this growing amount of data reduces the uncertainty of investing in a given118

firm. But the new idea that this paper adds to the existing work on data and information119

frictions, is this: Intensive data crunching works well to reduce uncertainty about large firms120

with long histories and abundant data. For smaller firms, who tend also to be younger firms,121

data may be scarce. Big data technology only reduces uncertainty if abundant data exists to122

process. Thus as big data technology has improved, the investment uncertainty gap between123

large and small firms has widened, their costs of financing have diverged, and big firms have124

grown ever bigger.125

1 Model126

We develop a model whose purpose is to understand how the growth in big data technologies127

in finance affects firm size and gauge the size of that effect. The model builds on the128

information choice model in Kacperczyk et al. (2016) and Kacperczyk et al. (2015).129

1.1 Setup130

This is a repeated, static model. Each period has the following sequence of events. First,131

firms choose entry and firm size. Second, investors choose how to allocate their data process-132

ing across different assets. Third, all investors choose their portfolios of risky and riskless133

assets. At the end of the period, asset payoffs and utility are realized. The next period, new134

investors arrive and the same sequence repeats. What changes between periods is that firms135

accumulate capital and the ability to process big data grows over time.136
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Firm Decisions We assume that firms are equity financed. Each firm i has a profitable137

1-period investment opportunity and wants to issue new equity to raise capital for that138

investment. For every share of capital invested, the firm can produce a stochastic payoff139

fi,t. Thus total firm output depends on the scale of the investment, which is the number of140

shares x̄i,t, and the output per share fi,t:141

yi,t = x̄i,tfi,t. (1)

The owner of the firm chooses how many shares x̄i,t to issue. The owner’s objective is142

to maximize the revenue raised from the sale of the firm, net of the setup or investment cost143

φ̃(x̄i,t, x̄i,t−1) = φ01(|∆x̄i,t|>0) + φ1|∆x̄i,t|+ φ2(∆x̄i,t)
2, (2)

where ∆x̄i,t = x̄i,t− x̄i,t−1, 1|∆x̄i,t|>0 is an indicator function taking the value of one if |∆x̄i,t|144

is strictly positive and φ0, φ1, φ2 > 0. This cost function represents the idea that issuing new145

equity (or buying equity back) has a fixed cost φ0 and a marginal cost that is increasing in146

the number of new shares issued. Each share sells at price pi,t, which is determined by the147

investment market equilibrium. The owner’s objective is thus148

Evi,t = E[x̄i,tpi,t − φ̃(x̄i,t, x̄i,t−1)|It−1], (3)

which is the expected net revenue from the sale of firm i.149

The firm makes its choice conditional on the same prior information that all the investors150

have and understanding the equilibrium behavior of investors in the asset market. But the151

firm does not condition on pi,t. In other words, it does not take prices as given. Rather, the152

firm chooses x̄i,t, taking into account its impact on the equilibrium price.153
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Assets The model features 1 riskless and n risky assets. The price of the riskless asset is154

normalized to 1 and it pays off rt at the end of period t. Risky assets i ∈ {1, ..., n} have155

random payoffs fi,t ∼ N(µ,Σ) , where Σ is a diagonal “prior” variance matrix.2 We define156

the n× 1 vector ft = [f1,t, f2,t, . . . , fn,t]
′ .157

Each asset has a stochastic supply given by x̄i,t + xi,t, where noise xi,t is normally158

distributed, with mean zero, variance σx, and no correlation with other noises: xt ∼159

N (0, σxI). As in any (standard) noisy rational expectations equilibrium model, the supply160

is random to prevent the price from fully revealing the information of informed investors.161

Portfolio Choice Problem There is a continuum of measure one of atomless investors.162

Each investor is endowed with begining-of-period wealth, Wt.
3 They have mean-variance163

preferences over end-of-period wealth, with a risk-aversion coefficient, ρ. Let Êj,t and V̂j,t164

denote investor j’s period t expectations and variances conditioned on all interim information,165

which includes prices and signals. Thus, investor j chooses how many shares of each asset166

to hold, qj,t to maximize period t interim expected utility, Ûj,t:167

Ûj,t = ρÊj,t[Ŵj,t]−
ρ2

2
V̂j,t[Ŵj,t], (4)

subject to the budget constraint:168

Ŵj,t = rtWt + q′j,t(ft − ptrt), (5)

where qj,t and pt are n× 1 vectors of prices and quantities of each asset held by investor j.169

2We can allow assets to be correlated. To solve a correlated asset problem simply requires constructing
portfolios of assets (risk factors) that are independent from each other, choosing how much to invest and learn
about these risk factors, and then projecting the solution back on the original asset space. See Kacperczyk
et al. (2016) for such a solution.

3Since there are no wealth effects in the preferences, the assumption of identical initial wealth is without
loss of generality.
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Prices Equilibrium prices are determined by market clearing:170

ˆ 1

0

qj,tdj = x̄t + xt, (6)

where the left-hand side of the equation is the vector of aggregate demand and the right-hand171

side is the vector of aggregate supply of the assets.172

Information sets, updating, and data allocation At the start of each period, each173

investor j chooses the amount of data that she will receive at the interim stage, before she174

invests. A piece of data is a signal about the risky asset payoff. A time-t signal, indexed by175

l, about asset i is ηl,i,t = fi,t + el,i,t, where the data error el,i,t is independent across pieces176

of data l, across investors, across assets i and over time. Signal noise is normally distributed177

and unbiased: el,i,t ∼ N(0, σe/δ). By Bayes’ law, choosing to observeM signals, each with178

signal noise variance σe/δ, is equivalent to observing one signal with signal noise variance179

σe/(Mδ), or equivalently, precision Mδ/σe. The discreteness in signals complicates the180

analysis, without adding insight. But if we have a constraint that allows an investor to181

process M̄/δ pieces of data, each with precision δ/σe, and then we take the limit δ → 0, we182

get a quasi-continuous choice problem. The choice of how many pieces of data to process183

about each asset becomes equivalent to choosing Ki,j,t, the precision of investor j’s signal184

about asset i in period t. Investor j’s vector of data-equivalent signals about each asset185

is ηj,t = ft + εj,t, where the vector of signal noise is distributed as εj,t ∼ N (0,Ση,j,t).The186

variance matrix Ση,j,t is diagonal with the ith diagonal element K−1
i,j,t. Investors combine187

signal realizations with priors and information extracted from asset prices to update their188

beliefs using Bayes’ law.189

Signal precision choices {Ki,j,t} maximize start-of-period expected utility, Uj,t, of the190

fund’s terminal wealth Ŵj,t. Thus the objective is191
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max{Ki,j,t}ni=1
E[Ûj,t|I+

t−1] (7)

192

where It = {I+
t−1, ηjt, pt} and I+

t−1 = {It−1, xt−1, f̃t−1} (8)

subject to the the budget constraint (5) and three constraints in the information choices.4193

The first constraint is the information capacity constraint. It states that the sum of the194

signal precisions must not exceed the information capacity:195

n∑

i=1

Ki,j,t ≤ Kt for each j, t. (9)

In Bayesian updating with normal variables, observing one signal with precision Ki,j,t or196

two signals, each with precision Ki,j,t/2, is equivalent. Therefore, one interpretation of197

the capacity constraint is that it allows the manager to observe N signal draws, each with198

precision Ki,j,t/N , for large N . The investment manager then chooses how many of those199

N signals will be about each shock.5200

The second constraint is the data availability constraint. It states that the amount of201

data processed about the future earnings of firm i cannot exceed the total data generated202

by the firm. Since data is a by-product of economic activity, data availability depends on203

the economic activity of the firm in the previous period. In other words, data availability in204

time t is a function of firm size in t− 1.205

Ki,j,t ≤ K̂(xi,t−1) for all i, j, t. (10)

4See Veldkamp (2011) for a discussion of the use of expected mean-variance utility in information choice
problems.

5The results are not sensitive to the exact nature of the information capacity constraint. We could instead
specify a cost function of data processing c(Ki,j,t). The problem we solve is the dual of this cost function
approach. For any cost function, there exists a constraint value Kt such that the cost function problem and
the constrained problem yield identical solutions.
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This limit on data availability is a new feature of the model. It is also what links firm size206

to the expected cost of capital.6 We assume that the data availability constraint takes a207

simple, exponential form: K̂(xi,t−1) = α exp (βxi,t−1).208

The third constraint is the no-forgetting constraint, which ensures that the chosen preci-209

sions are non-negative:210

Ki,j,t ≥ 0 for all i, j, t. (11)

It prevents the manager from erasing any prior information to make room to gather new211

information about another asset.212

1.2 Equilibrium213

To solve the model, we begin by working through the mechanics of Bayesian updating. There214

are three types of information that are aggregated in posterior beliefs: prior beliefs, price215

information, and (private) signals. We conjecture and later verify that a transformation216

of prices pt generates an unbiased signal about the risky payoffs, ηp,t = ft + εp,t, where217

εp,t ∼ N(0,Σp,t), for some diagonal variance matrix Σp,t. Then, by Bayes’ law, the posterior218

beliefs about ft are normally distributed: ft ∼ N(Êj,t[ft], Σ̂j,t), where the posterior mean219

and precision are given by:220

Êj,t[ft] = Σ̂j,t(Σ
−1µ+ Σ−1

η,j,tηj,t + Σ−1
p,tηp,t), (12)

Σ̂−1
j,t = Σ−1 + Σ−1

p,t + Σ−1
η,j,t. (13)

Next, we solve the model in four steps.221

Step 1: Solve for the optimal portfolios, given information sets and issuance.222

6As our model does not distinguish between size and age, the data availabality constraint can also be
thought of linking firm age to the expected cost of capital.
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Substituting the budget constraint (5) into the objective function (4) and taking the223

first-order condition with respect to qj,t reveals that optimal holdings are increasing in the224

investor’s risk tolerance, precision of beliefs, and expected return:225

q∗j,t =
1

ρ
Σ̂−1
j,t (Êj,t[ft]− ptrt). (14)

Step 2: Clear the asset market.226

Substitute each agent j’s optimal portfolio (14) into the market-clearing condition (6).227

Collecting terms and simplifying reveals that equilibrium asset prices are linear in payoff risk228

shocks and in supply shocks:229

Lemma 1. pt = 1
rt

(At +Bt(ft − µ) + Ctxt) .230

A detailed derivation of coefficients At, Bt, and Ct, expected utility, and the proofs of231

this lemma and all further propositions are in the Appendix.232

In this model, agents learn from prices because prices are informative about the asset233

payoffs ft. Next, we deduce what information is implied by Lemma 1. Price information234

is the signal about ft contained in prices. The transformation of the price vector pt that235

yields an unbiased signal about ft is µ + ηp,t ≡ B−1
t (ptrt − At). Note that applying the236

formula for ηp,t to Lemma 1 reveals that ηp,t = ft + εp,t, where the signal noise in prices237

is εp,t = B−1
t Ctxt. Since we assumed that xt ∼ N(0, σxI), the price noise is distributed238

εp,t ∼ N(0,Σp,t), where Σp,t ≡ σxB
−1
t CtC

′
tB
−1′
t . Substituting in the coefficients Bt and Ct239

from the proof of Lemma 1 shows that public signal precision Σ−1
p,t is a diagonal matrix with240

ith diagonal element σ−1
p,i,t =

K̄2
i,t

ρ2σx
, where K̄i,t ≡

´

Ki,j,tdj is the average capacity allocated241

to asset i.242

This market-clearing asset price reveals the firm’s cost of capital. We define the cost of243

capital as follows.244
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Definition 1. The cost of capital for firm i is the difference between the (unconditional)245

expected payout per share the firm will make to investors, minus the (unconditional) expected246

price per share that the investor will pay to the firm: Et[fi,t]− Et[pi,t].247

Because xt is a mean-zero random variable and the payoff ft has mean µ, the uncondi-248

tional expected price is Et[pi,t] = Ai,t/r. Therefore, the expected cost of capital for firm i is249

µ− Ai,t/r.250

Step 3: Compute ex-ante expected utility.251

Substitute optimal risky asset holdings from equation (14) into the first-period objective252

function (7) to get: Uj,t = ρrtWt+
1
2
Et[(Êj,t[ft]−ptrt)′Σ̂−1

j,t (Êj,t[ft]−ptrt)]. Note that the ex-253

pected excess return (Êj,t[ft]−ptrt) depends on signals and prices, both of which are unknown254

at the start of the period. Because asset prices are linear functions of normally distributed255

shocks, Êj,t[ft]−ptrt, is normally distributed as well. Thus, (Êj,t[ft]−ptrt)Σ̂−1
j,t (Êj,t[ft]−ptrt)256

is a non-central χ2-distributed variable. Computing its mean yields:257

Uj,t = ρrtWt +
1

2
tr(Σ̂−1

j,t Vj,t[Êj,t[ft]− ptrt]) +
1

2
Ej,t[Êj,t[ft]− ptrt]′Σ̂−1

j,tEj,t[Êj,t[ft]− ptrt].

(15)

Step 4: Solve for information choices.258

Note that in expected utility (15), the choice variables Ki,j,t enter only through the259

posterior variance Σ̂j,t and through Vj,t[Êj,t[ft] − ptrt] = Vj,t[f − ptrt] − Σ̂j,t. Since there260

is a continuum of investors, and since Vj,t[f − ptrt] and Ej,t[Êj,t[ft] − ptrt] depend only on261

parameters and on aggregate information choices, each investor takes them as given.262

Since Σ̂−1
j,t and Vj,t[Êj,t[ft]− ptrt] are both diagonal matrices and Ej,t[Êj,t[ft]− ptrt] is a263

vector, the last two terms of (15) are weighted sums of the diagonal elements of Σ̂−1
j,t . Thus,264

(15) can be rewritten as Uj,t = rtWt +
∑

i λi,tΣ̂
−1
j,t (i, i) − n/2, for positive coefficients λi,t.265

Since rtWt is a constant (in each period t) and Σ̂−1
j,t (i, i) = Σ−1(i, i) + Σ−1

p,t (i, i) +Ki,j,t, the266
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information choice problem is:267

max
K1,j,t,...,Kn,j,t≥0

n∑

i=1

λi,tKi,j,t + constant, (16)

268

s.t.
n∑

i=1

Ki,j,t ≤ Kt, (17)

269

Ki,j,t ≤ α exp (βxi,t−1) ∀i , ∀j, (18)
270

where λi,t = σ̄i,t[1 + (ρ2σx + K̄i,t)σ̄i,t] + ρ2x̄2
i,tσ̄

2
i,t, (19)

where λi,t is the marginal value of information σ̄−1
i,t =

´

Σ̂−1
j,t (i, i)dj is the average precision271

of posterior beliefs about firm i. The latter’s inverse, average variance σ̄i,t, is decreasing in272

K̄i,t. Equation (19) is derived in the Appendix.273

This is not a concave objective, so a first-order approach will not find an optimal data274

choice. To maximize a weighted sum (16) subject to an unweighted sum (17), the investor op-275

timally assigns all available data, as per (18), to the asset(s) with the highest weight. If there276

is a unique i∗t = argmaxi λi,t, then the solution is to set Ki∗t ,j,t = min(Kt, α exp (βxi,t−1)).277

In many cases, after all data processing capacity is allocated, there will be multiple assets278

with identical λi,t weights. That is because λi,t is decreasing in the average investor’s signal279

precision. When there exist asset factor risks i, l s.t. λi,t = λl,t, then investors are indifferent280

about which assets’ data to process. The next result shows that this indifference is not a281

knife-edge case. It arises whenever the aggregate amount of data processing capacity is282

sufficiently high.283

Lemma 2. If x̄i,t is sufficiently large ∀i and
∑

i

∑
jKi,j,t ≥ K, then there exist risks l and284

l′ such that λl,t = λl′,t.285

This is the big data analog to Grossman and Stiglitz (1980)’s strategic substitutability in286

information acquisition. The more other investors know about an asset, the more informative287
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prices are and the less valuable it is for other investors to process data about the same asset.288

If one asset has the highest marginal utility for signal precision, but capacity is high, then289

many investors will learn about that asset, causing its marginal utility to fall and equalize290

with the next most valuable asset data. With more capacity, the highest two λi,t’s will be291

driven down until they equate with the next λi,t, and so forth. This type of equilibrium is292

called a “waterfilling” solution (see, Cover and Thomas (1991)). The equilibrium uniquely293

pins down which assets are being learned about in equilibrium, and how much is learned294

about them, but not which investor learns about which asset.295

Step 5: Solve for firm equity issuance. How a firm chooses x̄t depends on how issuance296

affects the asset price. Supply x̄t enters the asset price in only one place in the equilibrium297

pricing formula, through At. From Appendix equation (33), we see that298

At = µ− ρΣ̄tx̄t. (20)

x̄t has a direct effect on the second term. But also an indirect effect through information299

choices that show up in Σ̄t.300

The firm’s choice of x̄t satisfies its first order condition:301

E[pt|It−1]− x̄t
(
ρΣ̄t − ρx̄t

∂Σ̄t

∂x̄t

)
− φ̃′1(x̄t, x̄t−1) = 0. (21)

The first term is the benefit of more issuance. When a firm issues an additional share,302

it gets expected revenue E[pt|It−1] for that share. The second term tells us that issuance303

has a positive and negative effect on the share price. The negative effect on the price is that304

more issuance raises the equity premium ( ρΣ̄t term). The positive price effect is that more305

issuance makes data on the firm more valuable to investors. When investors process more306

data on the firm, it lowers their investment risk, and on average, raises the price they are307

willing to pay ( ∂Σ̄t/∂x̄t term). This is the part of the firm investment decision that the rise308
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of big data will affect.309

The third term, the capital adjustment cost ( φ̃′1(x̄t, x̄t−1)), reveals why firms grow in size310

over time. Firms have to pay to adjust relative to their intial size. Since firms’ starting size311

is small they want to grow, but rapid growth is costly. So, they grow gradually. Each time312

a firm starts larger, choosing a higher x̄t becomes less costly because the size of the change,313

and thus the adjustment cost is smaller.314

Note that in our static model adjustment costs perform a slightly different function315

compared to a dynamic model. In the static model, the main role of adjustment costs is to316

link the initial and final size together, in order to generate cross-sectional differences in the317

marginal value of information. Larger firms can afford to choose a larger final scale. The318

larger the final scale, the higher the marginal value of information.319

2 Parameter Choice320

In order to quantify the potential effect of big data on firm size, we need to perform a quan-321

titative exercise. What changes exogenously at each date is the total information capacity322

Kt. We normalize Kt = 1 in 1980 and then grow Kt continuously, at the rate of 36.8% per323

year: Kt+1 = Kte
0.368. This rate of growth corresponds to the average rate of growth of CPU324

speed, as illustrated in Figure 2. We simulate the model in this fashion from 1980-2030. As325

Kt increases over time, constraint (9) becomes looser, allowing for a larger overall sum of326

signal precisions.327

Figure 2 about here.328

We also need to choose values for the model parameters. For µ, σ, σx, r, we use the same329

values as in the numerical example in the supplementary appendix to Kacperczyk et al.330

(2016). The next parameter to pick is risk aversion. Risk aversion clearly matters for the331
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level of the risky asset price. But it is tough to identify. The reason for the difficulty is that if332

we change risk aversion and then re-calibrate the mean, persistence and variance parameters333

to match price coefficients and variance at the new risk aversion level, the predictions of334

the model are remarkably stable. Roughly, doubling variance and halving risk aversion335

mostly just redefines units of risk. We set ρ = 0.1. For firm investment costs, we use336

parameter estimates from Hennessy and Whited (2007). Using annual data from 1988-2001,337

they estimate the cost of external investment funding as Λ(x) = φ0 + φ1x̃ + φ2x̃
2, where x̃338

are the proceeds raised from equity flotation. This amount raised corresponds to the change339

in issuance ∆x̄t in our model. Their parameter estimates for φ0, φ1, and φ2 are reported340

in Table 1. The data availability parameters α and β are chosen to give our mechanism341

a shot at meaningful results. We choose parameters so that the constraint (18) binds for342

small firms only, for about the first decade. This pins both parameters to a narrow range.343

If this constraint did not bind, there would be little difference between small and large firm344

outcomes. If the availability constraint was binding for all firms, then there would be no345

effect of big data growth because there would be insufficient data to process with the growing346

processing power.347

Table 1 about here.348

3 Quantitative Results349

Our main results use the simulated model to understand how the growth of big data affects350

the evolution of large and small firms and how large that effect might be. We start by351

exploring how the rise in big data availability changes how data is allocated. Then, we352

explore how changes in data the investors observe affect the firm’s cost of capital. Finally,353

we turn to the question of how much the change in data and the cost of capital affect the354

evolution of firms that start out small and firms that start out large.355
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In presenting our results, we try to balance realism with simplicity, which illuminates the356

mechanism. If we put in a large number of firms, it is, of course, more realistic. But this357

would also make it harder to see what the trade-offs are. Instead, we characterize the firm358

distribution with one representative large firm and one representative small firm. The two359

firms are identical, except that the large firm starts off with a larger size x̄0 = 10, 000. The360

small firm starts off with x̄0 = 2, 000. Starting in 1980, we simulate our economy with the361

parameters listed in Table 1 with one period per year until 2030.362

3.1 Data Allocation Choices363

The reason that data choice is related to firm size in the model is that small firms are364

equivalent to young firms. Young firms do not have a long history of data that can be365

processed.7 They cannot offer investors the data they need to accurately assess risk and366

return. Data comes from having an observable body of economic transactions. A long367

history with a large amount of economic activity generates this data. In the simulation,368

small firms are those that have more recently entered.369

Figure 3 about here.370

But the question is, how does the rise of investors’ ability to process big data interact371

with this size effect? Since investors are constrained in how much data they can process372

about young, small firms, the increase in data processing ability results in more data being373

processed about the large firm. We can see this in Figure 3 where the share of data processed374

on the large firm rises and the share devoted to the small firm falls (left panel). In the right375

panel, we see that investors are not processing fewer bits of data about the small firm. In376

fact, as the firm grows, little by little, more data is available. As more data is available,377

more small firm data is processed and data precision rises.378

7In the data, small firms are typically younger firms.
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Eventually, the small firm gets large enough and produces a long enough data history379

that it outgrows its data availability constraint. The availability constraint was pushing data380

choices for the two firms apart, creating the visual bump in Figure 3. As the constraint re-381

laxes, the bump gives way to a slow, steady convergence. But, even once the data availability382

constraint stops binding, investors still process more data on the larger firm. A secondary383

effect of firm size is that data has more value when it is applied to a larger fraction of an384

investor’s portfolio. An investor can use a data set to guide his investment of one percent of385

the value of his portfolio. But he gains a lot more when he uses that data to guide investment386

of fifty percent of his portfolio. Big assets constitute more of the value share of the average387

investor’s portfolio. Therefore, information about big assets is more valuable.388

Mathematically, we can see firm size x̄i,t enter in the marginal value of information λi,t389

in (19). Of course, this firm size is the firm’s final size that period. But the final size is linked390

to the firm’s initial size through the adjustment cost (2). Firms that are initially larger will391

have a larger final size because size adjustment is costly. This larger final size is what makes392

λi,t, the marginal value of data, higher.393

In the limit, the small firm keeps growing faster than the large firm and eventually catches394

up. When the two firms approach the same size, the data processing on both converges to395

an equal, but growing amount of data processing.396

3.2 Capital costs397

The main effect of data is to systematically reduce a firm’s average cost of capital. Recall that398

the capital cost is the expected payoff minus the expected price of the asset (Definition 1).399

Data does not change the firm’s payoff, but it does change how a share of the firm is priced.400

The systematic difference between expected price and payoff is the investor’s compensation401

for risk. Investors are compensated for the fact that firm payoffs are unknown, and therefore402

buying a share requires bearing risk. The role of data is to help the investor predict that firm403

18



ACCEPTED MANUSCRIPT

payoff. In doing so, data reduces the compensation for risk. Just like a larger data set lowers404

the variance of an econometric estimate, more data in the model reduces the conditional405

variance of estimated firm payoffs. An investor who has a more accurate estimate is less406

uncertain and bears less risk from holding the asset. The representative investor is willing407

to pay more, on average, for a firm that they have good data on. Of course, the data might408

reveal problems at the firm that lower the investor’s valuation of it. But on average, more409

data is neither to reveal positive nor negative news. What data does on average improve is410

the precision and resolution of risk. Resolving the investors’ risk reduces the compensation411

the firm needs to pay the investor for bearing that risk, which reduces the firm’s cost of412

capital.413

Figure 4 about here.414

Figure 4 shows how the large firm, with its more abundant data, has a lower cost of415

capital. With definition 1 in mind, we can think of the cost of capital as the value per share416

delivered to investors. The value per share mechanically depends on the expected payout417

per share, which may vary across firm size. In order to compare the cost of capital across418

firms of different sizes, we normalize firms’ cost of capital with their expected payout per419

share.420

More abundant data does not reduce the cost of capital evenly and proportionately.421

There is a second force at play here. The second force is that firm size matters. Because a422

firm is large, it represents a larger share of the investor’s portfolio. In CAPM-speak, large423

firms have a higher beta, and therefore need to offer investors a higher risk compensation.424

To induce investors to hold lots of a risk, the compensation per unit of risk must rise. To425

induce investors to hold a small amount of a risk is cheap, because small risks wash out in a426

large portfolio. Thus, because large firms have more equity outstanding and are more highly427

correlated with market risk, a large firm with the same volatility and conditional variance428
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as a small firm, would face a higher cost of capital.429

As firm size and data evolve together, initially, data dominates. The cost of capital for430

the large firm falls, from around 50% of earnings per share to close to 1%, because more431

processing power is reducing the risk of investing in that firm. The small firm cannot initially432

benefit much from higher processing power because it is a young firm and has little data433

available to process. As the small firm grows older, the data availability constraint loosens,434

investors can learn from the firm’s track record, risk falls and the cost of capital comes back435

down. Where the two lines merge is where the small firm finally out-grows its data availability436

constraint. From this point on, the only constraint on processing data on either firm is the437

total data processing power K. Large and small firms evolve similarly. The only difference438

between the two firms, after the inflection point where the data availability constraint ceases439

to bind, is that the small firm continues to have a slightly smaller accumulated stock of440

capital. Because the small firm continues to be slightly smaller, it has slightly less equity441

outstanding, and a slightly lower cost of capital due to the second force described above.442

Once data is abundant, small and large firms converge gradually over time.443

3.3 The Evolution of Firms’ Size444

In order to understand how big data has changed the size of firms, it is useful to look at how445

a large firm and a small firm evolve in this economy. Then, we turn off various mechanisms446

in the model to understand what role is played by each of our key assumptions. Once the447

various mechanisms are clear, we contrast firm evolution in the 1980’s to the evolution of448

firms in the post-2000 period.449

Recall that firms have to pay to adjust, relative to their previous size. Since firms’450

starting size is small, but rapid growth is costly, firms grow gradually. Figure 5 shows that451

both the large and small firms grow. However, the rates at which they grow differ. One452

reason growth rates differ is that small firms are further from their optimal size. If this were453
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the only force at work, small firms would grow by more each period and that growth rate454

would gradually decline for both firms, as they approach their optimal size.455

Figure 5 about here.456

Instead, Figure 5 reveals that small firms sometimes grow faster and sometimes slower457

than their large firm counterparts. For much of the start of their life, the small firms grow458

more slowly than the large firms do. These variations in growth rates are due to investors’459

data processing decisions. This is the force that can contribute to the change in the size of460

firms.461

The level of the size can be interpreted as market capitalization, divided by the expected462

price. Since the average price ranges from 7 to 15 in this model, these are firms with zero463

to 12 million dollars of market value outstanding. In other words, these are not very large464

firms.465

The Role of Growing Big Data Plotting firm outcomes over time as in Figure 5 conflates466

three forces, all changing over time. The first thing changing over time is that firms are467

accumulating capital and growing bigger. The second change is that firms are accumulating468

longer data histories, which makes more data for processing available. The third change is469

that technology enables investors to process more and more of that data over time. We want470

to understand how each of these contributes to our main results. Therefore, we turn off471

features of the model one-by-one, and compare the new results to the main results, in order472

to understand what role each of these ingredients plays.473

Figure 6 about here.474

To understand the role that improvements in data processing play, we turn off the growth475

of big data and compare results. We fix Kt = 5 ∀t. Data processing capacity is frozen at476
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its 1985 level. Firms still have limited data histories and still accumulate capital. Figure 6477

shows that this small change in the model has substantial consequences for firm dynamics.478

Comparing Figures 5 and 6, we can see the role big data plays. In the world with fixed479

data processing, instead of starting with rapid growth and growing faster as data processing480

improves, the large firm growth rate starts at the same level as before, but then steadily481

declines as the firm approaches is stationary optimal size. We learn that improvements in482

data processing are the sources of firm growth in the model and are central to the continued483

rapid growth of large firms.484

The Role of Limited Data History One might wonder, if large firms attract more data485

processing, is that alone producing larger big firms? Is the assumption that small firms have486

a limited data history really important for the results? To answer this question, we now turn487

off the assumption of limited data history. We maintain the growing data capacity and firm488

capital accumulation from the original model.489

Figure 7 about here.490

Figure 7 reports results for the model with unlimited firm data histories, but limited491

processing power, to the full model. Comparing Figures 5 and 7, we can see the difference492

that data availability makes. In the world where firms have unlimited data histories, small493

firms quickly catch up to large firms. There is no persistent difference in size. Small firms are494

far below their optimal size. So they invest rapidly. Investment makes them larger, which495

increases data processing immediately. Quickly, the initially small and large firms become496

indistinguishable. Adjustment costs are a friction preventing immediate convergence. But it497

is really the presence of the data availability constraint that creates the persistant difference498

between firms with different initial size.499
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Small and Large Firms in the New Millennium So far, the experiment has been500

to drop a small firm and a large firm in the economy in 1980 and watch how they evolve.501

While this is useful to explaining the model’s main mechanism, it does not really answer the502

question of why small firms today struggle more than in the past and why large firms today503

are larger than the large firms of the past. To answer these questions, we really want to504

compare small and large firms that enter the economy today to small and large firms that505

entered in 1980.506

To do this small vs. large, today vs. 1980 experiment, we use the same parameters as in507

Table 1 and use the same starting size for firms. The only difference is that we start with508

more available processing power. Instead of starting Kt at 1, we start it at the 2000 value,509

which is about 527.510

Figure 8 about here.511

Each panel of figure 8 shows the growth rate of a large firm, minus the growth rate of a512

small firm. In the left panel, both firms start in 1980, when data processing capacity was513

quite limited. In the right panel, both firms enter in the year 2000, when data is abundant.514

In both cases, the difference is positive for most of the first decade, meaning that large firms515

grow faster than small ones. But in 2000, the difference is much more positive. Relative516

to small firms, large firms grow much more quickly. The difference in 2000 growth rates517

is nearly twice as large. In both cases, a surviving small firm eventually outgrows its data518

availability problem, grows quickly, and then converges to the growth rate of the large firm519

(differences converge to 0).520

In a model with random shocks and exit, many small firms would not survive. Of course,521

for some firms, the possibility of future growth would induce them to hang on, preventing522

exit. In a world where large firms gain market share much more rapidly, firms would either523

exit, unable to compete, or strive to quickly grow large. This illustrates how data pro-524
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cessing advances may contribute to the puzzle of missing small firms, by disproportionately525

benefiting large firms.526

For comparison, we examine the growth rates of large and small firms in the U.S. pre-527

1980 and in the period 1980-2007. We end in 2007 so as to avoid measuring real effects of528

the financial crisis. For each industry sector and year, we select the top 25% largest firms in529

Compustat and call those large firms and select the bottom half of the firm size distribution530

to be our small firms. Within these two sets of firms, we compute the growth rates of various531

measures of firm size and average them, with an equal weight given to each firm. Then, just532

as in the model, we subtract the growth rate of large firms from that of small firms. For533

most measures, small firms grow more slowly, and that difference grows later in the sample.534

Table 2 about here.535

At times, the magnitudes of the model’s growth rates are quite large, compared to the536

data. Of course, the data is averaged over many years and many firms at different points in537

their life cycle. This smoothes out some of the extremes in the data. If we average the firm538

growth in our model from 1980-1985, for firms that enter in 1980, we get 39.5% for large539

firms and 7.3% for small firms, a difference of 32.2%. If we average firm growth in our model540

from 2000-2005, for firms that enter in 2000, we get 59.9% for large firms and 7.3% for small541

firms, a difference of 52.6%.542

While it is not unheard of for a small firm to double in size, some of this magnitude543

undoubtedly reflects some imprecision of our current numerical example vis-à-vis the data.544

A larger adjustment cost, or a labor hiring delay, would help to moderate the extremes of firm545

size growth. The results also miss many aspects of the firm environment that have changed546

in the last four decades. The type of firms entering in the last few years are quite different547

than firms of prior years. They have different sources of revenue and assets that might be548

harder to value. Firm financing has changed, with a shift toward internal financing. Venture549
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capital funding has become more prevalent and displaced equity funding for many firms,550

early in their life cycle. All of these forces would moderate the large effect we document551

here.552

Our results only show that big data is a force with some potential. There is a logical way553

in which the growth of big data and the growth of large firms is connected. This channel554

has the potential to be quantitatively powerful. The role of big data in firms is thus a topic555

ripe for further exploration.556

4 Discussion557

In this model, there is a one-to-one correspondence between projects and firms. Investors558

gather information about the firm and smaller firms have smaller amounts of information.559

This then feeds back into real investments of each firm in its single project, and determines560

the firm/project size distribution. As such, information processing and big data helps a561

small firm less, even if it is investing in a well known technology (for instance, the nth firm562

to drill an oil well). We think this is a reasonable assumptions for publicly listed firms, since563

information about the firm is both about its track record as well as the quality of its project.564

The investors have a harder time accessing the survival probability of a firm with no track565

record relative to a well established firm in a highly competitive industry, which is why we566

find our information assumption relevant even in such settings.567

We should note that our model is not best suited to speak to firm entry. For instance, a568

new class of online firms have emerged who use big data to facilitate capital markets’ access569

to an under-served segment of population, such as personal loans to people with very low570

credit scores. Such firms are often small, but they have only emerged as a by product of big571

data availability. This trend is fascinating in its own right, yet is outside the scope of our572

paper.573

25



ACCEPTED MANUSCRIPT

In the context of the model, firms are equity financed. This implies that their real574

investment and thus their cash flow is determined by firms’ cost of accessing external capital575

markets. Financing is costly for firms since investors require an equity premium to hold576

firms’ risky shares. However, since more data is available about large firms, big data reduces577

the asymmetric information friction relatively more for big firms compared to small firms.578

Cheaper access to external capital markets reduces large firms’ cost of capital and accelerates579

their growth. On the other hand, small firms growth is initially stagnant. However, once580

they become sufficiently large, their access to capital markets improve as well, and their581

growth rate picks up. This is consistent with information asymmetries being a short-horizon582

notion.583

5 Conclusion584

Big data is transforming the modern economy. While many economists have used big data,585

fewer think about how the use of data by others affects market outcomes. This paper starts to586

explore the ways in which big data might be incorporated in modern economic and financial587

theory. One way that big data is used is to help financial market participants make more588

informed choices about the firms in which they invest. These investment choices affect the589

prices, cost of capital, and investment decisions of these firms. We set up a very simple590

model to show how such big data choices might be incorporated and one way in which the591

growth of big data might affect the real economy. But this is only a modest first step.592

One might also consider how firms themselves use data, to refine their products, to593

broaden their customer market, or to increase the efficiency of their operations. Such data,594

produced as a by-product of economic activity, might also favor the large firms whose abun-595

dant economic activity produces abundant data.596

Another step in a big-data agenda would be to consider the sale of data. In many597
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information models, we think of signals that are observed and then embedded in one’s598

knowledge, not easily or credibly transferable. However data is an asset that can be bought,599

sold and priced on a market. How do markets for data change firms choices, investments,600

evolution and their valuations as firms? It is true that data intermediaries like Foursquare601

or Amazon help small businesses benefit from each others’ data. At the same time, these602

intermediaries retain control of the data and extract rents from firms that use it. A firm603

that has its own customer data clearly has a real advantage. Whether an intermediary can604

find a way for small firms to collectively leverage their data, in a way that mimics a large605

firm advantage, remains to be seen.606

Finally, if data is a storable, sellable, priced asset, then investment in data should be607

valued just as if it were investment in a physical asset. Understanding how to price data as608

an asset might help us to better understand the valuations of new-economy firms and better609

measure aggregate economic activity.610
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A Proofs656

A.1 Useful notation, matrices and derivatives657

All the following matrices are diagonal with ii entry given by:658

1. Average signal precision: (Σ̄−1
η,t)ii = K̄i,t, where K̄i,t ≡

´

Ki,j,tdj.659

2. Precision of the information prices convey about shock i: (Σ−1
p,t )ii =

K̄2
i,t

ρ2σx
= σ−1

i,p,t660

3. Precision of posterior belief about shock i for an investor j is σ̂−1
i,j,t, which is equivalent to661

(Σ̂−1
j,t )ii = (Σ−1 + Σ−1

η,j,t + Σ−1
p,t )ii = σ−1

i +Ki,j,t +
K̄2
i,t

ρ2σx
= σ̂−1

i,j,t (22)

4. Average posterior precision of shock i: σ̄−1
i,t ≡ σ−1

i + K̄i,t +
K̄2

i,t

ρ2σx
. The average variance is therefore662

(Σ̄t)ii = [
(
σ−1
i + K̄i,t +

K̄2
i,t

ρ2σx

)
]−1 = σ̄i,t.663

5. Ex-ante mean and variance of returns: Using Lemma 1 and the coefficients given by (33), (34) and664

(35), we can write the return as:665

ft − ptrt = (I −Bt)(ft − µ)− Ctxt + ρΣ̄tx̄t

= Σ̄t

[
Σ−1(ft − µ) + ρ

(
I +

1

ρ2σx
Σ̄−1′
η,t

)
xt

]
+ ρΣ̄tx̄t.

This expression is a constant plus a linear combination of two normal variables, which is also a normal666

variable. Therefore, we can write667

ft − ptrt = V
1/2
t ut + wt, (23)

where ut is a standard normally distributed random variable ut ∼ N(0, I), and wt is a non-random668

vector measuring the ex-ante mean of excess returns669

wt ≡ ρΣ̄tx̄t. (24)

and Vt is the ex-ante variance matrix of excess returns:670

Vt ≡ Σ̄t

[
Σ−1 + ρ2σx

(
I +

1

ρ2σx
Σ̄−1′
η,t

)(
I +

1

ρ2σx
Σ̄−1′
η,t

)′]
Σ̄t

= Σ̄t

[
Σ−1 + ρ2σx

(
I +

1

ρ2σx
(Σ̄−1′

η,t + Σ̄−1
η,t) +

1

ρ4σ2
x

Σ̄−1′
η,t Σ̄−1

η,t

)]
Σ̄t

= Σ̄t

[
Σ−1 + ρ2σxI + (Σ̄−1′

η,t + Σ̄−1
η,t) +

1

ρ2σx
Σ̄−1′
η,t Σ̄−1

η,t

]
Σ̄t

= Σ̄t

[
ρ2σxI + Σ̄−1′

η,t + Σ−1 + Σ̄−1
η,t + Σ−1

p,t

]
Σ̄t

= Σ̄t

[
ρ2σxI + Σ̄−1′

η,t + Σ̄−1
t

]
Σ̄t.

The first line uses E[xtx
′
t] = σxI and E[(ft−µ)(ft−µ)′] = Σ, the fourth line uses (36) and the fifth671

line uses Σ̄−1
t = Σ−1 + Σ−1

p,t + Σ̄−1
η,t .672
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This variance matrix Vt is a diagonal matrix. Its diagonal elements are:673

(Vt)ii = (Σ̄t
[
ρ2σxI + Σ̄−1

η,t + Σ̄−1
t

]
Σ̄t)ii

= σ̄i,t[1 + (ρ2σx + K̄i,t)σ̄i,t]. (25)

A.2 Solving the Model674

Step 1: Portfolio Choices From the FOC, the optimal portfolio is chosen by investor j is675

q∗j,t =
1

ρ
Σ̂−1
j,t (Êj,t[ft]− ptrt). (26)

where Êj,t[ft] and Σ̂j,t depend on the skill of the investor.676

Next, we compute the portfolio of the average investor.677

q̄ ≡
ˆ

q∗j,tdj =
1

ρ

ˆ

Σ̂−1
j,t (Êj,t[ft]− ptrt)dj

=
1

ρ

(
ˆ

Σ−1
η,j,tηj,tdj + Σ−1

p,tηp,t + Σ̄−1
t (µ− ptrt)

)

=
1

ρ

(
Σ̄−1
η,tft + Σ−1

p,tηp,t + Σ̄−1
t (µ− ptrt)

)
, (27)

where the fourth equality uses the fact that average noise of private signals is zero.678

Step 2: Clearing the asset market and computing expected excess return Lemma679

1 describes the solution to the market-clearing problem and derives the coefficients At, Bt, and Ct in the680

pricing equation. The equilibrium price, along with the random signal realizations determines the interim681

expected return (Êj,t[ft] − ptrt). But at the start of the period, the equilibrium price and one’s realized682

signals are not known. To compute beginning-of-period utility, we need to know the ex-ante expectation and683

variance of this interim expected return.684

The interim expected excess return can be written as: Êj,t[ft] − ptrt = Êj,t[ft] − ft + ft − ptrt and685

therefore its variance is:686

Vt[Êj,t[ft]− ptrt] = Vt[Êj,t[ft]− ft] + Vt[ft − ptrt] + 2 Covt[Êj,t[ft]− ft, ft − ptrt]. (28)

Combining (12) with the definitions ηj,t = ft + εj,t and ηp,t = ft + εp,t, we can compute expectation errors:687

Êj,t[ft]− ft = Σ̂j,t
[
(Σ−1µ+ (Σ−1

η,j,t + Σ−1
p,t )ft + Σ−1

η,j,tεj,t + Σ−1
p,tεp,t

]
− ft

= Σ̂j,t
[
−Σ−1(ft − µ) + Σ−1

η,j,tεj,t + Σ−1
p,tεp,t

]

Computing the expectation, we obtain Et[Êj,t[ft]− ft] = Σ̂j,tΣ̂
−1
j,t µ− µ = 0 and its variance is Vt[Êj,t[ft]−688

ft] = Σ̂j,t
[
Σ−1 + Σ−1

η,j,t + Σ−1
p,t

]
Σ̂′j,t = Σ̂j,t.689

From (23) we know that Vt[ft − ptrt] = Vt. To compute the covariance term, we can rearrange the690

definition of ηp,t to get ptrt = Btηp,t +At −Btµ and ηp,t = ft + εp,t to write691

ft − ptrt = (I −Bt)ft −At −Btεp,t +Btµ (29)

= ρΣ̄tx̄t + Σ̄tΣ
−1(ft − µ)− (I − Σ̄tΣ

−1)εp,t (30)
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where the second line comes from substituting the coefficients At and Bt from Lemma 1. Since the constant692

ρΣ̄tx̄t does not affect the covariance, we can write693

Covt[Êj,t[ft]− ft, ft − ptrt] = Cov[−Σ̂j,tΣ
−1(ft − µ) + Σ̂j,tΣ

−1
p,tεp,t, Σ̄tΣ

−1(ft − µ)− (I − Σ̄tΣ
−1)εp,t]

= −Σ̂j,tΣ
−1ΣΣ−1Σ̄t − Σ̂j,tΣ

−1
p,tΣp,t(I − Σ−1Σ̄t)]

= −Σ̂j,tΣ
−1Σ̄t − Σ̂j,t(I − Σ−1Σ̄t) = −Σ̂j,t

Substituting the three variance and covariance terms into (28), we find that the variance of excess return
is Vt[Êj,t[ft] − ptrt] = Σ̂j,t + Vt − 2Σ̂j,t = Vt − Σ̂j,t. Note that this is a diagonal matrix. Substituting the

expressions (25) and (22) for the diagonal elements of Vt and Σ̂j,t we have

(Vt[Êj,t[ft]− ptrt])ii = (Vt − Σ̂j,t)ii = (σ̄i,t − σ̂i,j,t) + (ρ2σx + K̄i,t)σ̄
2
i,t

In summary, the excess return is normally distributed as Êj,t[ft]− ptrt ∼ N (wt, Vt − Σ̂j,t).694

Step 3: Compute ex-ante expected utility Ex-ante expected utility for investor j is Uj,t =695

Et

[
ρÊj,t[Ŵj,t]− ρ2

2 V̂j,t[Ŵj,t]
]
. In period 2, the investor has chosen his portfolio and the price is in his infor-696

mation set, therefore the only payoff-relevant, random variable is ft. We substitute the budget constraint in697

the optimal portfolio choice from (26) and take expectation and variance conditioning on Êj,t[ft] and Σ̂j,t698

to obtain Uj,t = ρrtWt + 1
2Et[(Êj,t[ft]− ptrt)′Σ̂−1

j,t (Êj,t[ft]− ptrt)].699

Define mt ≡ Σ̂
−1/2
j,t (Êj,t[ft] − ptrt) and note that mt ∼ N (Σ̂

−1/2
j,t wt, Σ̂

−1/2
j,t VtΣ̂

−1/2′

j,t − I). The second700

term in the Ui,t is equal to E[m′tmt], which is the mean of a non-central Chi-square. Using the formula, if701

mt ∼ N(E[mt], V ar[mt]), then E[m′tmt] = tr(V ar[mt]) + E[mt]
′E[mt], we get702

Uj,t = ρrtWt +
1

2
tr(Σ̂

−1/2
j,t V Σ̂

−1/2′

j,t − I) +
1

2
w′tΣ̂

−1
j,twt = ρrtWt +

1

2
tr(Σ̂−1

j,t V )− tr(I) +
1

2
w′tΣ̂

−1
j,twt.

Finally, we substitute the expressions for Σ̂−1
j,t and wt from (22) and (24):703

Uj,t = ρrtWt −
N

2
+

1

2

N∑

i=1

(
σ−1
i +Ki,j,t +

K̄2
i,t

ρ2σx

)
(Vt)ii +

ρ2

2

N∑

i=1

x̄2
i,tσ̄

2
i,t

(
σ−1
i +Ki,j,t +

K̄2
i,t

ρ2σx

)

=
1

2

N∑

i=1

Ki,j,t[(Vt)ii + ρ2x̄2
i,tσ̄

2
i,t] + ρrtWt −

N

2
+

1

2

N∑

i=1

(
σ−1
i +

K̄2
i,t

ρ2σx

)
[(Vt)ii + ρ2x̄2

i,tσ̄
2
i,t]

=
1

2

N∑

i=1

Ki,j,tλi,t + constant (31)

704

λi,t = σ̄i,t[1 + (ρ2σx + K̄i,t)σ̄i,t] + ρ2x̄2
i,tσ̄

2
i,t (32)

where the weights λi,t are given by the variance of expected excess return (Vt)ii from (25) plus a term that705

depends on the supply of the risk.706

Step 4: Information choices The attention allocation problem maximizes ex-ante utility in (31)707

subject to the information capacity, data availability and no-forgetting constraints (17), (18) and (11).708

Observe that λi,t depends only on parameters and on aggregate average precisions. Since each investor709

has zero mass within a continuum of investors, he takes λi,t as given. Since the constant is irrelevant,710

the optimal choice maximizes a weighted sum of attention allocations, where the weights are given by λi,t711
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(equation (19)), subject to a constraint on an un-weighted sum. This is not a concave objective, so a first-712

order approach will not deliver a solution. A simple variational argument reveals that allocating all capacity713

to the risk(s) with the highest λi,t achieves the maximum utility. For a formal proof of this result, see Van714

Nieuwerburgh and Veldkamp (2010). Thus, the solution is given by: Ki,j,t = Kt if λi,t = maxk λk,t, and715

Ki,j,t = 0, otherwise. There may be multiple risks i that achieve the same maximum value of λi,t. In that716

case, the manager is indifferent about how to allocate attention between those risks. We focus on symmetric717

equilibria.718

A.3 Proofs719

Proof of Lemma 1720

Proof. Following Admati (1985), we know that the equilibrium price takes the following form ptrt =721

At +Bt(ft − µ) + Ctxt where722

At = µ− ρΣ̄tx̄t (33)

Bt = I − Σ̄tΣ
−1 (34)

Ct = −ρΣ̄t

(
I +

1

ρ2σx
Σ̄−1′
η,t

)
(35)

and therefore the price is given by ptrt = µ+ Σ̄t

[
(Σ̄−1

t − Σ−1)(ft − µ)− ρ(x̄t + xt)− 1
ρσx

Σ̄−1′
η,t xt

]
. Further-723

more, the precision of the public signal is724

Σ−1
p,t ≡

(
σxB

−1
t CtC

′
tB
−1′
t

)−1

=
1

ρ2σx
Σ̄−1′
η,t Σ̄−1

η,t (36)

725

Proof of Lemma 2 See Kacperczyk et. al (2016).726

A.4 Firm Volatility Data727

The introduction of our paper claims that differential trends in the volatility of large and small firms’ earnings728

is not a plausible explanation for the different trends in the cost of capital. To support this claim, we explore729

whether the volatility of large and small firms has diverged. We find some fluctuations, but no consistent730

trend in the difference.731

Our volatility measure is based on the annual growth rate in earnings calculated at the firm level from732

quarterly CRSP/Computat data from 1960 - 2016. Earnings are constructed by multiplying basic earnings733

per share, excluding extraordinary items (EPS) by the number of shares used to calculate EPS. We measure734

the volatility of earnings growth as the rolling standard deviation over the past 20 quarters. The firms are735

split by size in a number of ways: firstly, the firms in the sample are split by whether or not they are (at that736

time) a member of the S&P500 index. Secondly, we split firms by whether or not they were in the top half737

of the earnings distribution in each quarter. Lastly, we consider only firms in the bottom and top quartiles738

of the earnings distribution. In the plots below, the dashed lines are the median volatility, whilst the solid739

line is the trend extracted from this series using a HP filter, with λ = 1600.740

Figure 9 about here.741

Figure 9 plots volatility for large and small firms, over time. Whether the firms are cut at the median,742

the top and bottom quartiles, or by membership in the S&P 500, in every case, there are fluctuations in743

33



ACCEPTED MANUSCRIPT

volatility, and there are long-run increases in volatility. But there is no consistent long-run trend in the gap744

between the different sized firms.745
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Figure 1: Large Firms Growing Relatively Larger. The left panel uses the Business
Dynamics Statistics data published by the Census Bureau (from Kozeniauskas, 2017). It contains
all firms with employees in the private non-farm sector in the United States. The right panel uses
Compustat/CRSP data. Top x% means the share of all firm revenue earned by the x% highest-revenue
firms.
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Figure 2: The evolution of processing performance over the period 1978–2007
Hennessy and Patterson (2011)
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Figure 3: Investors’ Data Choices The left panel shows the share of the total data processed
for each firm. The right panel shows the number of bits processed about each firm.
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Figure 4: Cost of Capital for a New Firm The solid line represents the cost of capital per
share, Et[fi,t]−Et[pi,t], normalized by average earnings per share, Et[fi,t], of the small firm (x̄0 = 2000).
The dashed line is the (normalized) cost of capital of the large firm (x̄0 = 10000). Simulations use
parameters listed in Table 1.
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Figure 5: The Evolution of Small and Large Firms (level and growth rate) These
figures plot firm size x̄t (left) and growth in firm size, (x̄t/x̄t−1− 1)× 100 (right), for a small firm, with
starting size 2000 and a large firm with starting size 10000. Simulation parameters are those listed in
Table 1.
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Figure 6: Without Improvements in Data Processing, Firm Size Converges These
results use the same simulation routine and parameters to plot the same quantities as in Figure 5. The
only difference is that these results hold data processing capacity fixed at Kt = 5 ∀t.
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Figure 7: With Unlimited Data Histories, Small and Large Firms Converge
Quickly. These results use the same simulation routine and parameters to plot the same quanti-
ties as in Figure 5. The only difference is that these results set the data availability parameters (α, β)
to be large enough such that the data availability constraint never binds.
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Figure 8: Large Firms Grow Faster in 2000 than in 1980. Both panels plot a difference
in the growth rate of size ( (x̄t/x̄t−1 − 1) × 100). The difference is the growth rate of a large firm (x̄t
starting at 10,000) minus the growth rate of a small firm (x̄t starting at 2000). Both are the result of
simulations using parameters in Table 1. The left panel shows the difference in firm growth for firms
that start in 1980, with K1980 = 1. The right panel shows the difference in firm growth for firms that
start in 2000, with K2000 ≈ 527.
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Figure 9: 20 month rolling standard deviation of growth in earnings: Large and
small firms. Left panel: Median volatility by whether a firm is a member of the S&P500
index. Middle panel: Median volatility by whether a firm has earnings above or below the
median each quarter. Right panel: Median volatility by whether a firm’s earnings are in the
top or bottom quartile each quarter
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Table 1: Parameters used in the numerical example

µ σ σx rt φ0 φ1 φ2 ρ α β
15 0.55 0.5 1.01 0.598 0.091 0.0004 0.1 0.249 0.0002
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Table 2: Large Firm Growth Minus Small Firm Growth from Compustat
For each industry sector and year, large firms are the top 25% largest firms in Compustat; small firms
are the bottom half of the firm size distribution. Growth rate is the annual log-difference. Reported
figures are equal-weighted averages of growth rates over firms and years.

prior to 1980 1980 - 2007

Assets 2.1% 8.2%
Investment 14.2% 16.0%
Assets with Intangibles 0.3% 1.1%
Capital Stock -0.9% 3.7%
Sales 1.4% 2.4%
Market Capitalization 1.1% 8.9%
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