Accepted Manuscript

Animals as sources of food-borne pathogens: A review

Norma Heredia, Santos García

PII: S2405-6545(18)30030-1

DOI: 10.1016/j.aninu.2018.04.006

Reference: ANINU 228

To appear in: Animal Nutrition Journal

Received Date: 15 March 2018

Revised Date: 19 April 2018

Accepted Date: 23 April 2018

Please cite this article as: Heredia N, García S, Animals as sources of food-borne pathogens: A review, *Animal Nutrition Journal* (2018), doi: 10.1016/j.aninu.2018.04.006.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Norma Heredia, Santos García*
Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas,
Universidad Autónoma de Nuevo León, Apdo. Postal 124-F, Ciudad Universitaria, San
Nicolás de los Garza, Nuevo León 66455, Mexico
*Corresponding author.
E-mail address: santos@microbiosymas.com (S. García)
CERTIN CERTIFICATION OF THE

13 Abstract

14	Food-producing animals are the major reservoirs for many foodborne pathogens
15	such as Campylobacter species, non-Typhi serotypes of Salmonella enterica, Shiga toxin-
16	producing strains of Escherichia coli, and Listeria monocytogenes. The zoonotic potential
17	of foodborne pathogens and their ability to produce toxins causing diseases or even death
18	are sufficient to recognize the seriousness of the situation. This manuscript reviews the
19	evidence that links animals as vehicles of the foodborne pathogens Salmonella,
20	Campylobacter, Shiga toxigenic E. coli, and L. monocytogenes, their impact, and their
21	current status. We conclude that these pathogenic bacteria will continue causing outbreaks
22	and deaths throughout the world, because no effective interventions have eliminated them
23	from animals and food.

24

25 Keywords: Animal food; Foodborne pathogens; Zoonosis; Enteropathogens

27 1. Introduction

Food-producing animals (e.g., cattle, chickens, pigs, and turkeys) are the major 28 reservoirs for many foodborne pathogens such as *Campylobacter* species, non-Typhi 29 serotypes of Salmonella enterica, Shiga toxin-producing strains of Escherichia coli, and 30 Listeria monocytogenes. The zoonotic potential of foodborne pathogens and their ability to 31 32 produce toxins causing diseases or even death are sufficient to recognize the seriousness of the situation. Foodborne pathogens cause millions of cases of sporadic illness and chronic 33 complications, as well as large and challenging outbreaks in many countries and between 34 countries. The magnitude of this problem is demonstrated by the significant proportion of 35 the 1.5 billion annual diarrheal episodes in children less than 3 years of age that are caused 36 by enteropathogenic microorganisms, which results in more than 3 million deaths per year 37 38 (EFSA-ECDC, 2016). Surveys estimate that in the United States alone, bacterial enteric pathogens cause 9.4 million episodes of foodborne illness in humans, 55,961 39 hospitalizations, and 1,351 deaths each year (Scallan et al., 2011). However, it is estimated 40 that the reported incidence of food-borne disease represents less than 1% to 10% of the real 41 incidence (Scallan et al., 2011). The importance of food-producing animals as carriers of 42 pathogenic bacteria is real; for example, beef is reported to be the vector of 7% of the 1.7 43 44 million cases of foodborne disease that was recorded during 1996 to 2000 in England and Wales (Anderson et al., 2009). 45

The increase of human population and urbanization, the per capita income, the globalization, the changes on consumer trends (more protein in the diet) have increased the consumption of animal products (Dhama et al., 2013). Estimations suggest that consumption of these products will rise to 376 million tons by 2030 (Dhama et al., 2013).

50	This high demand of animal products provokes intensive animal production and processing
51	of products, with an increased movement of foods globally. This situation could conduce to
52	defective processing practices and an augment of the risk of contamination by foodborne
53	pathogens at any point of the farm to fork chain.
54	Animal and animal products contamination is a serious concern because it is
55	difficult to control. Many factors could be involved in contamination, including these from
56	the environment (associated fauna, water from different sources, and animal manure
57	disposal, etc.), and human related animal handling (slaughtering and processing practices,
58	and storage procedures, etc.) (Sofos, 2008).
59	Microbial pathogens can cause disease by consumption of the animal products
60	contaminated with microorganisms or their toxins. This paper reviews the evidence that
61	links animals as vehicles of the foodborne pathogens Salmonella, Campylobacter, Shiga
62	toxigenic E. coli, and L. monocytogenes, their impact, and their current status.
63	2. Salmonella
64	Salmonella is found naturally in the environment and in both domestic and wild
65	animals including cats, dogs, amphibians, reptiles, and rodents. It is commonly found in the
66	entrails of poultry, where in some cases could affect the health of the bird (McMullin,
67	2004; Park et al., 2017). Bacteria are acquired through parents or from the environment
68	(Park et al., 2017). This bacterium causes salmonellosis and other diseases.
69	Salmonellosis is one of the most common foodborne diseases worldwide,
70	accounting around 93.8 million foodborne illnesses and 155,000 deaths per year worldwide
71	(Eng et al., 2015). Reports in the United States account for more than one million people

72 sickened by Salmonella each year, and in approximately 20% of these cases, poultry was 73 the pathogenic vehicle (Hoffmann et al., 2015). Data from 2000 to 2008 give an estimated average cost in health care of this foodborne illness of \$55.5 to \$93.2 billion, in the United 74 75 States (Scharff, 2015). Reports from the EU in 2015 showed 94,625 confirmed cases of salmonellosis in humans and 126 deaths (EFSA-ECDC, 2016). The picture is obscure 76 because of the emergence of multi-drug-resistant Salmonella serotypes, having a large 77 impact on the efficacy of antibiotic treatment, and an increase in the prevalence of these 78 79 resistant strains may lead to an increase in mortality caused by *Salmonella* infections (Eng 80 et al., 2015).

The genera Salmonella is a member of Enterobacteriaceae family, and it includes 81 Gram-negative, flagellated, non-sporulating, and facultative bacteria that grow well 82 83 between 35 and 37 °C (Ricke et al., 2013). Members of Salmonella are commonly classified in 2,579 serotypes according to the Kauffman-White scheme, considering 84 differences in flagellar (H), capsular (k), and somatic (O) antigens (Lamas et al., 2018). 85 Additionally, Salmonella serotypes can be subdivided by molecular subtyping methods or 86 by phage typing (Ricke et al., 2013). This bacterium has the ability to induce localized 87 gastroenteritis in humans and some animals, but the range of infections in the host varies 88 89 depending on the bacterial virulence factors and the immunity and host-resistant capability. The signs and symptoms could evolve from nausea, vomiting, and diarrhea to septicemia or 90 bacteremia, and reactive arthritis as a post-infection sequela that has been reported (Ricke 91 et al., 2013). 92

93 There are 2 major species of *Salmonella: S. enterica* and *Salmonella bongori*. *S.*94 *bongori* comprises 22 serotypes that are mainly associated with cold-blooded animals, and

95 human infections are uncommon (Lamas, et al 2018). S. enterica is divided into 6 subspecies (enterica, salamae, arizonae, diarizonae, houtenae, and indica) because of the 96 differences in biochemical characteristics (Grimont and Weill, 2007). The subspecies 97 enterica is responsible for more than 99% of human salmonellosis, and it includes 1,531 98 serotypes among which are Salmonella Typhimurium and Salmonella Enteritidis (Lamas et 99 al, 2018). Humans are the only reservoir of typhoid Salmonella, produced by Salmonella 100 Typhi and Salmonella Paratyphi. The rest of Salmonella serovars are known as non-101 102 typhoid, where the animals are the major reservoir (Eng et al, 2015). S. enterica, subsp. 103 enterica serotypes, are principally related to warm-blooded animals whereas the other non-104 enterica subspecies are more related to cold-blooded animals, although some exceptions have been found (Lamas et al., 2018). The incidence of diseases caused by non-typhoid 105 Salmonella varies between countries; for example, it is estimated to cause 690 cases per 106 100,000 population in Europe, while in Israel, non-typhoid Salmonella infection is around 107 100 cases per 100,000 annually (Eng et al., 2015). 108 S. Typhimurium is the most dominant serovar around the world, and it is associated 109 with foodborne outbreaks in both developing and high-income countries (Mohammed, 110 111 2017). Salmonella serovar Newport is mainly isolated in Latin American, North American, 112 and European countries; Salmonella Infantis is found globally; Salmonella Virchow is found more frequently in Asian, European, and Oceanic countries; Salmonella Hadar is 113 found in European countries; and Salmonella Agona is found in Latin American, North 114 American, and European countries (Hendriksen et al., 2011). Although there are differences 115 116 in the most commonly isolated serovars among regions, the differences are not significant

117 between countries within the same region (Hendriksen et al., 2011).

118	The transmission of non-typhoid Salmonella infection to humans can occur through
119	the ingestion of food or water contaminated with waste of infected animals, by direct
120	contact with infected animals or by consumption of food from infected animals (Eng et al.,
121	2015). This bacterium has been isolated from a wide range of animals: poultry, ovines,
122	porcines, fish, and seafood and their food products, and also from some other cold blooded
123	animals (Nguyen et al., 2016; Flockhart et al., 2017, Zajac et al., 2013). Traditionally
124	poultry, meat products, and eggs are the food sources most commonly identified as
125	responsible for outbreaks of salmonellosis (Sanchez et al., 2002), although the
126	microorganism has also been found in other foodstuffs. In the United States, outbreaks with
127	a known vehicle that was associated with beef peaked at 30% in 1981, dropped to 4% in
128	1982, and after that it has been rising gradually. The proportion of Salmonella outbreaks
129	caused by chicken and eggs also increased from 1973 to 1987 (Beat and Griffin, 1990).
130	Salmonella Thyphimurium has been linked mainly to consumption of undercooked
131	meat or ground beef and dairy products, and especially raw eggs. Outbreaks by Salmonella
132	Enteritidis and Salmonella Heidelberg have been mainly associated with consumption of
133	raw eggs, whereas outbreaks caused by Salmonella Newport have been linked to uncooked
134	ground beef, runny scrambled eggs, or omelets (DuPont, 2007). One important
135	characteristic of Salmonella Enteritidis is its ability to contaminate the contents of intact
136	egg shells (DuPont, 2007).

137 *3. Campylobacter*

138 The *Campylobacter* genus was established in 1963, but it was not until 1972 that it was 139 shown to be related to febrile hemorrhagic enteritis (Garcia and Heredia, 2013). The illness 140 caused by these bacteria is named campylobacteriosis, which is characterized by acute

141	onset of diarrhea, abdominal pain, and fever, and it is usually self-limiting (Kaakoush et al.,
142	2015). However, a range of other serious conditions within the gastrointestinal tract has
143	been reported, including intestinal bloody diarrhea, esophageal diseases, periodontitis,
144	functional gastrointestinal disorders, celiac disease, cholecystitis, and colon cancer.
145	Approximately 3 out of 10,000 cases of campylobacteriosis will develop Guillain-Barré
146	syndrome (severe demyelinating neuropathy, Sharp et al., 2016). It is estimated that each
147	case of campylobacteriosis costs \$920, mainly because of medical expenses and lost
148	productivity (Silva et al., 2011).
149	The problem is getting worse because the number of cases of campylobacteriosis
150	has dramatically increased in North America, Europe, and Australia, and data from some
151	African, Asian, and Middle East countries indicate that the disease is endemic, especially in
152	children (Kaakoush et al 2015). It is estimated that Campylobacter is responsible for 400 to
153	500 million cases of infection each year worldwide (García and Heredia, 2013), and
154	together with Salmonella, it is the most frequently isolated foodborne pathogen.
155	Campylobacter is a member of the family Campylobacteriaceae, which also
156	includes the genera Arcobacter, and the species Bacteroides ureolyticus. The genus
157	Campylobacter consists of 26 species, 2 provisional species, and 9 subspecies (Kaakoush et
158	al., 2015). They can be divided into more than 600 penner serotypes (heat-stable antigens)
159	and more of 100 Lior serotypes (heat-labile antigens), and only the thermotolerant species
160	have clinical importance (García and Heredia, 2013).
161	The members of genus Campylobacter are small, curved or spiral-shaped Gram-
162	negative bacilli that exhibit rapid and corkscrew-like motion via a polar flagellum, and
163	grow optimally between 37 to 42 °C. For in vitro growth, these bacteria need partial oxygen

tension (2% to 10%), but generally, *Campylobacter* spp. can be found in diverse
environmental conditions because of their high genetic, metabolic, and phenotypic diversity
in their population (Garcia and Heredia, 2013). Although several *Campylobacter* species
(*C. jejuni, C. coli, C. upsaliensis, C. lari, C. concisus, C. fetus, C. hyointestinalis, C. helveticus, C. insulaenigrae, C. mucosalis, C. rectus, C. sputorum, and C. ureolyticus*) and *Arcobacter butzleri* have been reported to cause gastroenteritis (Butzler, 2004; Kaakush et

al., 2015), C. jejuni was the species that was most frequently isolated from man and retail

poultry, and *C. coli* was generally the second most frequently isolated species. However,

the ratio of *C. coli* to *C. jejuni* was considerably different in different countries such as

173 Thailand and South Africa, where *C. coli* was the dominant species isolated from retail

174 poultry (Suzuki and Yamamoto, 2009).

175 Analysis showed that international travel was the most important risk factor for campylobacteriosis, followed by consumption of undercooked chicken, environmental 176 exposure, and direct contact with farm animals (Kakkus, 2015). It is well documented that 177 poultry products, unpasteurized milk, and water are the main vehicles for C. jejuni and C. 178 coli infection (Butzer, 2004). Poultry is recognized as the primary source of food-related 179 Campylobacter species transmission to humans (Kaakus et al., 2015), probably because of 180 181 their higher body temperature. Handling, preparation, and consumption of broiler meat may account for 20% to 30% of human campylobacteriosis cases, while 50% to 80% may be 182 attributed to the chicken reservoir as a whole (EFSA, 2010). However, bacterial prevalence 183 in poultry and the contamination level of poultry products varies greatly among countries. 184 For example, an average of 58.8% of retail poultry meats and 60.3% of poultry by-185 products, were contaminated with Campylobacter spp. in Japan (Suzuki and Yamamoto, 186

187	2009) whereas 77.3% and 70.7% of poultry at retail was contaminated in the United
188	Kingdom and the United States, respectively (Kramer et al., 2000, Zhao et al., 2001).
189	Several risk factors such as flock size, age of birds, environmental water supplies,
190	insects and air quality can be linked to colonization and transmission of Campylobacter
191	spp. in broiler flocks (Horrocks et al., 2009). Once colonization occurs, the intestinal tract
192	of the chicken (cecum and colon) can harbor large amounts of Campylobacter and can
193	contaminate the skin of the carcass during slaughtering if an intestinal leak or rupture
194	occurs (Silva et al., 2011).
195	Cattle have also been associated with cases of campylobacteriosis. Bacteria
196	prevalence varies greatly from 6% to nearly 90% (Kaakush et al., 2015). The species
197	detected in cattle include C. jejuni, C. coli, C. lari, and C. lanienae, which show higher
198	levels in feedlots (64% to 68%) compared to adult pastured cattle (6.3% to 7.3%; Horrocks
199	et al., 2009). Campylobacter species are also prevalent in pigs and piglets (from 32.8% to
200	85.0% depending the age of the animal). Bacteria can colonize piglets 24 h after birth,
201	because of exposure to contaminated feces (Kaakush et al., 2015).
202	Sheep and goats have also been reported to carry Campylobacter species, with a
203	prevalence from 6.8% to 17.5% (Kaakush et al., 2015). In addition to all the risks
204	described, contact with domestic pets also presents another exposure pathway for human
205	infection (Silva et al., 2011). Up to 58% of healthy dogs and 97% of diarrheic dogs have
206	been determined to be positive for Campylobacter species (Kaakush et al., 2015).

207 4. Shiga-toxigenic E. coli (STEC)

208	E. coli is the predominant nonpathogenic flora of the human intestine with the
209	exception of anaerobic bacteria, and it helps in the production of vitamins, and competes
210	with and suppresses pathogenic bacterial growth (Feng, 2013). However, some strains have
211	developed the ability to cause disease in the gastrointestinal, urinary, or central nervous
212	system by the acquisition of virulence factors that have allowed them to adapt to new
213	niches (Farrokh et al., 2013).
214	E. coli is a Gram-negative, facultative anaerobe, non-sporulating rod within the
215	family Enterobacteriaceae. It has the ability to ferment different sugars, but lactose
216	fermentation (with production of acid and gas) is a characteristic of the species (Feng,
217	2013).
218	The species E. coli is divided into serogroups and serotypes according to its
219	antigenic composition, based on the Kauffman classification scheme (somatic or O antigens
220	for serogroups and flagellar or H antigens for serotypes) (Feng, 2013). There are 174 E. coli
221	O and 53 E. coli H antigens that have been recognized (Croxen et al., 2013).
222	Most E. coli strains are commensal in the intestine, but a small group harbor
223	virulence factors known as E. coli pathotypes, or pathogenic, diarrheagenic, or
224	enterovirulent E. coli. These include enteropathogenic E. coli (EPEC), Shiga toxin-

producing E. coli (STEC), enteroinvasive E. coli (EIEC), enteroaggregative E. coli

226 (EAEC), diffusely adherent *E. coli* (DAEC), and enterotoxigenic *E. coli* (ETEC), as well as

- a new pathotype, adherent invasive *E. coli* (AIEC) (Croxen et al., 2013).
- 228 Enterohemorrhagic E. coli (EHEC) is a subset of pathogenic STEC strains (Feng, 2013).

229	The presence of the gene encoding Shiga toxins (stx 1 or stx 2), generally acquired
230	via a lambdoid bacteriophage, classifies the strain as Shiga toxin-producing E. coli (STEC)
231	or verocytotoxin-producing E. coli (VTEC, Croxen et al., 2013). Shiga toxin-producing E.
232	coli (STEC), including O157 and many non-O157 serogroups, are important causes of
233	foodborne diseases. Although many outbreaks throughout the world have been attributed to
234	O157:H7, approximately 400 STEC serotypes are considered to be implicated in the
235	disease (Karmali et al., 2010).
236	The most common STEC serogroup implicated in severe illness in humans is O157,
237	but serogroups O26, O45, O103, O111, O121, and O145 (also known as the Big 6), are the
238	most commonly found non-O157 STEC strains (Croxen et al., 2013). Prevalence of STEC
239	serogroups differs geographically; for example in Australia, non-O157 STEC strains
240	corresponded to 42% of all STEC isolates, where O111 and O26 were the most commonly
241	found serogroups (Croxen et al., 2013), whereas in the EU, O157, O26, O111, O103, and
242	O145 are the serogroups of major concern, but not O45 and O121 (Feng, 2013).
243	Additionally, the importance of serogroup O182 is increasing, showing a larger increment
244	between 2011 and 2013 in EU (EFSA, 2013).
245	Shiga-toxigenic E. coli typically causes severe hemorrhagic colitis in humans,
246	which is accompanied by acute abdominal cramping and vomiting (Anderson et al., 2009).
247	However, several STEC strains are of serious public health concern because their
248	association with large outbreaks and hemolytic uremic syndrome (HUS), which is a sequela
249	in 3% to 7% cases overall, and is the leading cause of acute renal failure in children (Feng,
250	2013). Reports have estimated that STEC causes 2,801,000 acute illnesses annually
251	worldwide and leads to 3,890 cases of HUS, 270 cases of end-stage renal disease, and 230

deaths in the United States, costing more than \$1 billion each year in direct and indirect
costs (Majowicz et al., 2014).

The modes by which STEC infection is transmitted in human populations include foodborne transmission, environmental transmission from contaminated animals or water, and transmission through person-to-person contact (Du Pont 2007). It is estimated that animal contact constitutes 8% of non-O157 and 6% of O157:H7 STEC illnesses in the United States (Croxen et al., 2013). In 2013, a total of 73 outbreaks caused by STEC were reported in the EU, of which the main food vehicle was bovine meat and its products (EFSA, 2015).

Cattle and other ruminants are considered to be the major reservoirs for STEC; 261 however, isolation of this bacterium from other animals has been reported (Terajima et al., 262 2017). The frequency of STEC in animals is variable. For example, reports from Germany 263 indicated that STEC strains were isolated from 28.9% of sampled animals, most frequently 264 265 from sheep (66.6%), goats (56.1%), and cattle (21.1%), and in a lower proportion from pigs (7.5%), cats (13.8%), and dogs (4.8%), but STEC strains were not found in chickens 266 (Beutin et al., 1993). However, a study in Belgium reported viable O157 isolates in 37.8% 267 of the farms analyzed (Farrokh et al., 2013). In the United States, E. coli O157 has been 268 reported in 10% to 28% of cattle (Karmali et al., 2010). A lower incidence of STEC O157 269 270 was reported in Japan, with 6.4% of beef cattle in 28% of beef farms analyzed, and this serogroup was not detected in any dairy cows tested (Terajima et al., 2017). 271

The farm environment plays an important role in STEC colonization and recirculation. However, it is known that most range-fed beef calves are exposed to bacteria by the time of weaning; however, after colonization and survival in the gut, cattle can

275	eliminate bacteria over several months via fecal elimination (Karmali et al., 2010).
276	However, some cows and sheep may be high shedders or super shedders, discharging more
277	than 10^4 colony forming units per gram of feces, and increasing the risk of widespread
278	transmission and contamination. Specific reasons why some animals are in the special
279	shedder stage remain unknown (Callaway et al., 2013; Baker et al., 2016).
280	5. Listeria
281	Members of the Listeria genera belong to the Firmicutes division, and are currently
282	classified into 17 species: L. monocytogenes, L. seeligeri, L. ivanovii, L. welshimeri, L.
283	marthii, L. innocua, L. grayi, L. fleischmannii, L. floridensis, L. aquatica, L. newyorkensis,
284	L. cornellensis, L. rocourtiae, L. weihenstephanensis, L. grandensis, L. riparia, and L.
285	booriae. Only 2 of these species, L. monocytogenes and L. ivanovii, are considered to be
286	pathogenic (Orsi and Wiedmann, 2016).
287	The species in the Listeria genera are divided in 2 groups based on the relatedness
288	of species to L. monocytogenes: 1) Listeria sensu strictu, which includes L. monocytogenes,
289	L. seeligeri, L. marthii, L. ivanovii, L. welshimeri, and L. innocua; and 2) Listeria sensu
290	lato, a group that includes the other Listeria species (Orsi and Wiedmann, 2016).
291	L. monocytogenes is the most important and representative species of the genera. It
292	is a small, a Gram-positive rod-shaped, facultatively anaerobic, flagellated, ubiquitous, and
293	intracellular pathogen that grows between -0.4 and 50 °C (Donelly and Diez-Gonzalez,
294	2013). This bacterium is the causative organism of several outbreaks of foodborne disease.
295	Although L. monocytogenes is responsible for sporadic cases, its importance lies as a
296	leading cause of death related to foodborne illness (up to 24%) (Farber and Peterkin, 1991),
297	which causes a considerable economic impact for society and the food industry.

298	L. monocytogenes infection can be non-invasive or invasive (Orsi and Wiedmann,
299	2016). The invasive illness is characterized by severe symptoms such as meningitis,
300	septicemia, primary bacteremia, endocarditis, non-meningitic central nervous system
301	infection, conjunctivitis, and flu-like illness (Donelly and Diez-Gonzalez, 2013). The non-
302	invasive form of listeriosis is characterized by febrile gastroenteritis. The
303	immunocompromised stage and presence of chronic disorders determine the intensity of the
304	Listeria infection (Buchanan et al., 2017).

L. monocytogenes is widely present in plant, soil, and surface water samples, and it has also been found in silage, sewage, slaughterhouse waste, milk from normal cows and cows with mastitis, and in human and animal feces (Donelly and Diez-Gonzalez, 2013). Thus, it is virtually impossible to permanently eradicate *L. monocytogenes* from food environments (Buchanan et al., 2017).

L. monocytogenes had caused episodes of human listeriosis throughout the world 310 311 and has been found on all the continents, with isolates reported in North and South America, Europe, Africa, Asia, and Oceania (Orsi and Wiedmann, 2016). Although control 312 measures have been implemented, there has been no change or even an increase in the trend 313 of listeriosis cases over time. For example, the EU reported a 8.6% increase in listeriosis in 314 2013 compared with 2012 (Buchanan, 2017). The United States exhibited no change in the 315 316 number of outbreaks caused by consumption of dairy products, but foods considered to be of moderate or low risk (vegetables or ice cream) have been implicated in several listeriosis 317 outbreaks. An increase of the frequency of L. monocytogenes in fishery products at 318 processing plants (mainly smoked fish) has been reported in the United States and the EU 319 (EFSA, 2015). 320

321	Food vehicles for L. monocytogenes include crustaceans, shellfish, mollusks and
322	related products, cheese, meat and meat products, pig meat and related products,
323	vegetables, juices and related products, such as mixed salads (Buchanan et al., 2017). Soft
324	cheeses made from pasteurized milk were reported to be vehicles in 5 of 12 listeriosis
325	outbreaks between 2009 and 2011 in the United States (CDC, 2013).
326	Sporadic cases of listeriosis have been reported in workers in contact with diseased
327	animals (Farber and Peterkin, 1991). L. monocytogenes has been isolated from cattle,
328	sheep, goats, and poultry, mainly on their surface, but various reports also showed that this
329	bacterium was present inside muscle, although at low proportions (Buchanan, 2017). In
330	beef and dairy calves, evidence shows a low prevalence of this bacterium in very young
331	calves (<2 months), but its presence increases in the next few months of life, and declines
332	after weaning (Rhoades et al., 2009).
333	The fecal prevalence of L. monocytogenes on United States farms was found to be
334	of 29.4%; 82% of feed samples harbored Listeria spp. and 62% had L. monocytogenes.
335	Listeria spp. was detected in 67% and L. monocytogenes in 28% of minced beef samples
336	processed at a farm. The prevalence in fecal poultry samples was 33% for Listeria spp. and
337	33% for L. monocytogenes (Skovgaard and Morgen, 1988).
338	Although the presence of L. monocytogenes has been demonstrated in animals,
339	Listeria contamination of processed foods is most likely a function of post-processing

340 recontamination.

341 6. Prevention and control measures

342	Although it is not easy, it is possible to prevent and get control of enteropathogens carried
343	by animals. Some basic measures are known to be effective to reduce the risk of
344	contamination (Bean, 1990; Dhama et al., 2013; DuPond, 2007; EFSA, 2013; Sofos, 2008);
345	and it is imperative that these are applied in farms and processing plants: 1) reduction of the
346	infection burden in farms by increasing the hygiene and separating the sick animals from
347	healthy ones, 2) since most enteropathogens are killed by chilling, it is necessary to
348	increase the monitoring of this condition after slaughter, 3) avoid the cross-contamination,
349	4) take precautionary measures to check for pathogen spread in the farm and processing
350	environments 5) judicious use of antibiotics for treating animal diseases, 6) application of
351	sublethal multiple hurdles in the food processing and preservation, 7) proper cooking of the
352	food products, and 8) avoid the consumption of raw/uncooked animal products.

353 7. Conclusion

We conclude that the pathogenic bacteria described here will continue causing outbreaks and deaths throughout the world, because no effective interventions have eliminated them from animals and food. Further research is imperative to develop effective strategies against these bacteria, and these strategies can be a combination of practices and technologies that already exist or that are being developed.

359

360 **References**

Anderson RC, Ricke SC, Lungu B, Johnson MG, Oliver C, Horrocks SM, et al. Food safety
issues and the microbiology of beef. In: Heredia N, Wesley I, Garcia S, editors.

- 363 Microbiologically Safe Foods. Hoboken, New Jersey: John Wiley & Sons, Inc; 2009. P.
 364 115-146.
- 365 Baker CA, Rubinelli PM, Park SH, Carbonero F. Shiga toxin-producing *Escherichia coli* in
- food: Incidence, ecology, and detection strategies. Food Control 2016; 59: 407-419.
- Bean NH, Griffin PM. Food-borne disease outbreaks in the United States, 1973-1987:

pathogens, vehicles and trends. J Food Prot 1990; 53: 804-817.

- 369 Beutin L, Geier D, Steinrück H, Zimmermann S, Scheutz F. Prevalence and some
- 370 properties of verotoxin (Shiga-like toxin)-producing *Escherichia coli* in seven different
- 371 species of healthy domestic animals. J Clin Microbiol 1993; 1: 2483-2488.
- 372 Buchanan RL, Gorris LGM, Hayman MM, Jackson TC, Whiting R.C. A review of Listeria
- 373 *monocytogenes*: An update on outbreaks, virulence, dose-response, ecology, and risk

374 assessments. Food Control 2017; 75: 1-13.

- Butzler, J-P. *Campylobacter*, from obscurity to celebrity. Clin Microbiol Infect 2004; 10:
 868–876
- 377 Callaway, TR, Edrington TS, Loneragan GH, Carr MA, Nisbet DJ. Shiga toxin-producing
- *Escherichia coli* (STEC) ecology in cattle and management based options for reducing
 fecal shedding. Agr Food Anal Bacteriol 2013; 3: 39-69.
- 380 CDC. Vital signs: *Listeria* illnesses, deaths, and outbreaks--United States, 2009-2011.
- 381 MMWR 2013; 62: 448-452.
- 382 Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay B.B. Recent advances
- in understanding enteric pathogenic *Escherichia coli*. Clin Microbiol Rev 2013; 26:
- **384 822-880**.

- 385 Dhama K, Rajagunalan S, Chakraborty S, Verma AK, Kumar A, Tiwari R, et al. Food-
- borne pathogens of animal origin- diagnosis, prevention, control and their zoonotic
- 387 significance: a review. Pak J Biol Sci 2013; 16: 1076-1085.
- 388 Donelly CW, Diez-Gonzalez F. Listeria monocytogenes. In: Labbé RG, García S. editors.
- 389 Guide to Foodborne Pathogens. Second Ed. Hoboken, NJ: Wiley Blackwell; 2013. p.
- 390 45-74.
- 391 DuPont HL. The growing threat of foodborne bacterial enteropathogens of animal origin.
 392 Food Safety 2007; 45: 1353-1361.
- 393 EFSA. Scientific opinion on quantification of the risk posed by broiler meat to human
- campylobacteriosis in the EU. EFSA J 2010; 8: 1437-1526.
- EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic
 agents and food-borne outbreaks in 2013. EFSA J 2015; 13: 3991.
- 397 EFSA-ECDC, European Food Safety Authority and European Centre for Disease
- 398 Prevention and Control. The European Union summary report on trends and sources of
- zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J 2016; 14.
- 400 Ellis EM. Salmonella reservoirs in animals and feeds. J Am Oil Chem Soc 1968; 46: 227-9.
- 401 Eng SK, Pusparajah P, Mutalib N.-SA, Ser H, Chan K, Lee L-H. Salmonella: A review on
- 402 pathogenesis, epidemiology and antibiotic resistance. Front Life Sci 2015; 8: 284-93.
- 403 Farber JM, Peterkin PI. Listeria monocytogenes, a food-borne pathogen. Microbiol Mol
- 404 Biol Rev 1991; 55: 476-511.

- 405 Farrokh C, Jordan K, Auvray F, Glass K, Oppegaars H, RaynaudS, et al. Review of Shiga-
- 406 toxin-producing *Escherichia coli* (STEC) and their significance in dairy production. Int
- 407 J Food Microbiol 2013; 162: 190-212.
- 408 Feng P. *Escherichia coli*. In: Labbé RG, García S. editors. Guide to Foodborne Pathogens.
- 409 Second Ed. Hoboken, NJ: Wiley Blackwell; 2013. p. 222-40.
- 410 Flockhart L, Pintar K, Cook A, McEwen S, Friendship R, Kelton D, et al. Distribution of
- 411 *Salmonella* in humans, production animal operations and a watershed in a FoodNet
- 412 Canada sentinel site. Zoonoses Public Health 2017; 64, 41–52.
- 413 García S, Heredia N. Campylobacter. In: Labbé RG, García S. editors. Guide to Foodborne
- 414 Pathogens. Second Ed. Hoboken, NJ: Wiley Blackwell; 2013. p. 188-96.
- 415 Gonzalez Garcia EA. Animal health and foodborne pathogens: enterohaemorrhagic
- 416 O157:H7 strains and other pathogenic *Escherichia coli* virotypes (EPEC, ETEC, EIEC,
- 417 EHEC). Pol J Vet Sci 2002; 5:103-15.
- 418 Grimont PAD, Weill FX. Antigenic formulae of the Salmonella serovars. WHO
- 419 Collaborating Centre for Reference and Research on Salmonella. 2007.
- 420 <u>http://www.scacm.org/free/Antigenic%20Formulae%20of%20the%20Salmonella%20S</u>
- 421 <u>erovars%202007%209th%20edition.pdf</u> [accessed 27Feb 2018].
- 422 Hendriksen RS, Vieira AR, Karlsmose S, Wong DMALF, Jensen AB, Wegener H, et al.
- 423 Global monitoring of *Salmonella* serovar distribution from the world health
- 424 organization global foodborne infections network country data bank: results of quality
- 425 assured laboratories from 2001 to 2007. Foodborne Path Dis 2011; 8: 887-90.

426	Hoffmann S,	Maculloch B	, Batz M.	Economic	Burden	of Major	Foodborne	Illnesses
-----	-------------	-------------	-----------	----------	--------	----------	-----------	-----------

- 427 Acquired in the United States. Current Politics and Economics of the United States,
- 428 Canada and Mexico 2015; 17: 543-616.
- 429 Horrocks SM, Anderson R.C., Nisbeta DJ, Rickeb SC. Incidence and ecology of
- 430 *Campylobacter jejuni* and *coli* in animals. Food Microbiol 2009; 15: 18-25.
- Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Mana SM. Global Epidemiology of *Campylobacter* Infection. Clin Microbiol Rev 2015; 28: 687-720.
- 433 Karmali A, Gannon V, Sargeant JM. Verocytotoxin-producing *Escherichia coli* (VTEC).
- 434 Vet Microbiol 2010; 140: 360-70.
- 435 Kramer JM, Frost JA, Bolton FJ, Wareing DRA. Campylobacter contamination of raw
- 436 meat and poultry at retail sale: identification of multiple types and comparison with437 isolates from human infection. J Food Prot 2000; 63: 1654-9.
- 438 Lamas A, Miranda JM, Regal P, Vázquez B, Franco CM, Cepeda A. A comprehensive
- 439 review of non-enterica subspecies of *Salmonella enterica*. Microbiol Res 2018; 206:
- 440 60–73.
- 441 Majowicz SE, Scallan E, Jones-Bitton A, Sargeant JM, Stapleton J, Angulo FJ, et al. Global
- 442 incidence of human Shiga toxin–producing *Escherichia coli* infections and deaths: A
- systematic review and knowledge synthesis. Foodborne Path Dis 2014; 6: 447-455.
- 444 McMullen P. Salmonellosis, S. Enteritidis and S.Typhimurium. The Poultry Site. 2004.
- 445 http://www.thepoultrysite.com/diseaseinfo/133/salmonellosis-s-enteritidis-and-s-
- 446 typhimurium-infections/[accessed 12 April 2018].

- 447 Mohammed M. Phage typing or CRISPR typing for epidemiological surveillance
- 448 of *Salmonella* Typhimurium?. BMC Res Notes 2017; 10: 578.
- 449 Nguyen DTA, Kanki M, Nguyen PD, Le HT, Ngo PT, Tran DNM, et al. Prevalence,
- 450 antibiotic resistance, and extended spectrum and AmpC B-lactamase productivity of
- 451 *Salmonella* isolates from raw meat and seafood samples in Ho Chi Minh City, Vietnam.
- 452 Int J Food Microbiol 2016; 236: 115–22.
- 453 Orsi RH, Wiedmann M. Characteristics and distribution of *Listeria* spp., including *Listeria*
- 454 species newly described since 2009. Appl Microbiol Biotechnol 2016; 12: 5273–87.
- 455 Park B, Seo Y, Eady M, Yoon SC, Hinton A Jr, et al. Classification of Salmonella
- 456 serotypes with hyperspectral microscope imagery. Ann Clin Pathol 2017; 5: 1108.
- 457 Rhoades JR, Duffy G, Koutsoumanis K. Prevalence and concentration of verocytotoxigenic
- 458 Escherichia coli, Salmonella enterica and Listeria monocytogenes in the beef
- 459 production chain: A review. Food Microbiol 2009; 26: 357-76.
- 460 Ricke SC, Koo OK, Foley S, Nayak R. Salmonella. In: Labbé RG, García S. editors. Guide
- to Foodborne Pathogens. Second Ed. Hoboken, NJ: Wiley Blackwell; 2013. p. 112-37.
- 462 Sanchez S, Hofacre CL, Lee MD, Maurer JJ, Doyle M. Animal sources of salmonellosis in
 463 humans. JAVMA 2002; 221: 492-7.
- 464 Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A, Roy SL, et al.
- 465 Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis.
- 466 2011; 17: 1-15.
- 467 Scharff RL. State estimates for the annual cost of foodborne illness. J Food Prot 2015; 78:
 468 1064-71.

- 469 Skarp CPA, Hänninen M-L, Rautelin HIK. Campylobacteriosis: the role of poultry meat.
- 470 Clin Microbiol Infect 2016; 22: 103–9.
- 471 Silva J, Leite D, Fernandes M, Mena C, Gibb PA, Teixeira P. Campylobacter spp. as a
- 472 foodborne pathogen: a review. Front Microbiol. 2011; 2: 1-12.
- 473 Skovgaard N, Morgen C-A. Detection of *Listeria* spp. in faeces from animals, in feeds, and
- in raw foods of animal origin. Int J Food Microbiol 1988; 6: 229-42.
- 475 Sofos JN. Challenges to meat safety in the 21st century. Meat Sci 2008; 78: 3-13.
- 476 Suzuki H, Yamamoto S. Campylobacter contamination in retail poultry meats and by-
- 477 products in the world: A literature survey. J Vet Med 2009; 71: 255-61.
- 478 Terajima J, Izumiya H, Hara-Kudo Y, Ohnishi M. Shiga Toxin (Verotoxin)-producing
- 479 *Escherichia coli* and foodborne disease: A review. Food Safety 2017; 5: 35-53.
- 480 Zajac M, Wasyl D, Rózycki M, Bilska-Zajac E, Fafinski Z, Iwaniak W, et al. Free-living
- 481 snakes as a source and possible vector of *Salmonella* spp. and parasites. Eur J Wildl Res
- 482 2016; 62: 161–6.
- 483 Zhao C, Ge B, De Villena J, Sudler R, Yeh E, Zhao S, et al. Prevalence of *Campylobacter*
- 484 spp., *Escherichia coli*, and *Salmonella* serovars in retail chicken, turkey, pork, and beef
- from the Greater Washington, D.C., Area. Appl Environ Microbiol 2001; 67: 5431-6.

Bacteria	Principal species involved	Reservoir animal	Food vehicle	Transmission mode	Disease in humans	Principal signs and symptoms in humans
Salmonella spp.	<i>Salmonella</i> Typhimurium	Poultry, bovines, ovines, porcines, fish, and seafood, and some other cold blooded animals	Poultry meat products, and eggs, undercooked meat or ground beef, and dairy products	Ingestion of food or contaminated water, direct contact with infected animals or consumption of food from infected animals	Localized gastroenteritis in humans and some animals	Nausea, vomiting, diarrhea, septicemia or bacteremia, and reactive arthritis as a post-infection sequela
<i>Campylobacter</i> spp.	C. jejuni C. coli	Poultry, cattle, pigs and piglets, domestic pets	Poultry products, unpasteurized milk, and water	Ingestion of contaminated food or water, direct contact with infected animals or consumption of food from infected animals	Campylobacteriosis	Acute diarrhea, abdominal pain, fever, intestinal bloody diarrhea, esophageal diseases, periodontitis, functional gastrointestinal disorders, celiac disease, cholecystitis, and colon cancer
Shiga toxigenic <i>E. coli</i>	Serogroup O157 is most common, but O26, O45, O103, O111, O121, and O145 are also important	Cattle, sheep, goats, and in a lower proportion pigs, cats, and dogs, and other ruminants	Undercooked ground meat, raw milk, raw vegetables, fruits, water, cheese, curd, and juice	Ingestion of contaminated food or water, direct contact with infected animals or consumption of food from infected animals and person-to-person	Severe hemorrhagic colitis in humans	Hemorrhagic diarrhea, acute abdominal cramping and vomiting, and hemolytic uremic syndrome (HUS), as a sequela

Table 1. Characteristics of four foodborne bacteria frequently carried by animals or animal products.

				contact		
<i>Listeria</i> spp.	L. monocytogenes	Cattle, sheep, goats, and poultry	Crustaceans, shellfish, mollusks, cheese, beef, pork, vegetables and juices, and milk products	Ingestion of food or water contaminated, direct contact with infected animals or consumption of food from infected animals and person-to-person contact	Listeriosis	 Invasive illness: meningitis, septicemia, primary bacteremia, endocarditis, non- meningitic central nervous system infection, conjunctivitis, and flu- like illness Non-invasive: febrile gastroenteritis
			vegetables and juices, and milk products	consumption of food from infected animals and person-to-person contact		nervous system infection, conjunctivitis, and flu- like illness 2) Non-invasive: febri gastroenteritis
				A Contraction of the second se		gastroenteritis
			A			
		Å				
		K				
		Y.				