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Abstract

Green purchasing is a critical factor in sustainable enterprise development, and it 

often affects a company’s business performance and environmental protection practices. 

An enterprise must have an appropriate assessment model to address the complexities 

of green purchasing. Most green purchasing studies have focused on the use of green 

criteria in the selection of suppliers to develop sustainable operations. By contrast, there 

have been few articles on green supply chain management discussing both green 

supplier evaluation and order allocation. This study proposes a novel model that 

integrates the best–worst method, modified fuzzy technique for order preference by 

similarity to ideal solution (TOPSIS), and fuzzy multi-objective linear programming to 

solve problems in green supplier selection and order allocation. We demonstrated the 

proposed method using actual data provided by an electronics company. The results 

indicate that this model can effectively evaluate the performance of green suppliers and 

can also optimize order allocation for qualified suppliers.
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allocation, procurement strategy.

1. Introduction

The goal of green supply chain management (GSCM) is a thorough integration of 

logistical and financial information to increase the competitiveness of supply chain 

units’ products or services, resulting in sustainable enterprise development and 

improved environmental protection (Wan et al., 2017; Sarkar et al., 2017). The leading 

global enterprises have recognized the urgency of the need to take measures for 

environmental protection and have begun to change their own policies and practices to 

conform to these goals. Thus, the procurement of raw materials in compliance with 

environmental regulations has already become a basis for the evaluation of green 

partners (Lu et al., 2007). Many in the manufacturing industry have adjusted their 

production concepts and fostered the introduction of environmental awareness into their 

organizations. Some have also, established environmental standards for the 

management of scrap products and take into consideration the recyclability of the raw 

materials obtained from their suppliers (Chen et al., 2012). Manufacturing firms 

typically spend approximately 60% of their total income on purchasing raw materials 

and components. For high-tech manufacturers, this amount can be as high as 80% 

(Kokangul and Susuz, 2009; Lee and Drake, 2010) meaning that purchasing strategies 

are very critical in GSCM. Selecting suitable firms as suppliers of products or services 

requires the consideration of numerous complex factors and thus qualifies as a multi-

criteria decision-making (MCDM) problem (Kumar et al., 2017).

Given the current background of rising environmental protection consciousness, 

enterprises must pay attention to saving energy, waste elimination, parts 

interchangeability, ease of disassembly, and recyclability. Thus, green supplier 
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management and purchasing are becoming increasingly critical (Lin et al., 2011). 

Manufacturers typically purchase the same raw materials or components from several 

suppliers, especially when a single supplier is unable to satisfy the demand due to 

capacity and risk-sharing limitations. This requires a compromise solution based on the 

manufacturer’s enterprise sustainability policy and environmental purchasing 

objectives (Govindan and Sivakumar, 2016). A few studies have discussed the 

integration of green supplier selection and order allocation. Most of these studies have 

applied MCDM models. In general, the MCDM process is categorized as multiple 

attribute decision-making (MADM) or multiple objective decision-making (MODM) 

on the basis of the problem’s solution space (i.e., whether the solution space is 

continuous or discrete) (Liou and Tzeng, 2012). MADM is a qualitative approach that 

utilizes several criteria and a small sample of expert questionnaires to establish a 

supplier evaluation model that can integrate the comprehensive performance of each 

supplier, identify qualified partners, and assist suppliers to develop strategies for 

improvement (Karsak and Dursun, 2016). The MADM approach of supplier evaluation 

can be explored using several methods, including the analytic hierarchy process (AHP) 

(Kumar et al., 2017), the analytic network process (ANP) (Wan et al., 2017), the best–

worst method (BWM) (Rezaei et al., 2015), the decision-making trial and evaluation 

laboratory (DEMATEL) (Govindan et al., 2015), the technique for order preference by 

similarity to ideal solution (TOPSIS) (Chen, 2016), visekriterijumska optimizacija i 

kompromisno resenje (VIKOR) (Luthra et al., 2017; Sarkar et al., 2017), preference 

ranking organization method for enrichment evaluation (PROMETHEE) (Behzadian et 

al., 2010; Govindan et al., 2017; Marttunen et al., 2017) and elimination and choice 

translating reality (ELECTRE) (Govindan and Jepsen, 2016; Marttunen et al., 2017; 

Wan et al., 2017). At present, several MADM models are widely used in various 
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industries for supplier performance management (Rajesh and Ravi, 2015; Gupta and 

Barua, 2017). By contrast, MODM considers several objectives and restrictions to 

establish a purchasing order allocation model (Osiro et al., 2014). Common MODM 

methods include linear programming (LP) (Soto et al., 2017), integer linear 

programming (Kaur et al., 2016), mixed integer linear programming (Ghaniabadi and 

Mazinani, 2017), goal programming (Hu and Vincent, 2016), fuzzy goal programming 

(Tsai and Hung, 2009), and fuzzy multi-objective linear programming (FMOLP) (Su 

and Lin, 2015; Zhou et al., 2016). In recent years, several studies have applied artificial 

intelligence methods to execute this analysis, for example, the neural network method 

(Özkan and İnal, 2014), case-based reasoning (Sarkar and Mohapatra, 2006), and 

heuristic algorithms (Wu et al., 2017). These methods have been employed specifically 

for analyzing green supplier selection and procurement strategy issues and have 

established an excellent basis for further research.

A review of the literature review shows that many MCDM methods have been 

applied to the problems of supplier evaluation or order allocation. However, there have 

been only a few green purchasing studies that have applied integrated MADM and 

MODM models to discuss GSCM problems. Integrating the experience and expertise 

of researchers to establish a performance evaluation model and using this assessment 

method to develop supplier purchase strategies can increase the reliability of supplier 

order allocation. Therefore, this study proposes a novel integrated model to study the 

selection of green suppliers and order allocation. First, according to a review of the 

relevant literature and the requirements of the subject firm, we construct a green 

evaluation system and derive criteria weights using the BWM. The BWM is used in 

this model because it is a useful way to determine the weights of the criteria. The BWM 

questionnaires are not only easy to answer but also have a higher degree of consistency 
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than the popular AHP method. Second, a modified fuzzy TOPSIS is applied to select 

and rank the green suppliers. In addition, combining the weights obtained from the 

BWM and modified fuzzy TOPSIS method, as in done in this study, allows us to 

integrate supplier performance into a ranking index, which is a more reliable strategy, 

with consideration of information uncertainty. Finally, based on the supplier ranking 

index from the modified fuzzy TOPSIS and the goals of the company policy, we use 

FMOLP to establish an order allocation model. FMOLP makes it easy to obtain a 

compromise solution while considering several different goals. The obtained order 

allocation results take into consideration supplier performance and several goals, for 

the provision of an optimal purchasing strategy.

This study establishes a novel hybrid model that is suitable for use in an 

environment of dynamic cooperation, as well as a purchasing strategy that can be 

adjusted to account for internal and external changes. The results of each stage of the 

analysis can be included in a firm’s internal knowledge management system for 

improved GSCM. In summary, the proposed model has four key features: (i) the model 

obtains green criteria weights using BWM, which requires relatively fewer pairwise 

comparisons and can achieve consistent results more easily than AHP; (ii) the model 

employs modified fuzzy TOPSIS and FMOLP assessments to address information 

uncertainty; (iii) the model uses an augmented max–min model, which more effectively 

determines total utility values than the traditional max–min model in FMOLP; (iv) the 

augmented max–min model can obtain a compromise solution without complex coding 

to generate a set of Pareto solutions.

The remainder of this paper is organized as follows. Section 2 introduces a review 

of the literature on GSCM, green supplier selection, and order allocation planning. 

Section 3 describes the methodology of the proposed hybrid model. Section 4 presents 
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a real-world application to demonstrate the feasibility and usefulness of the proposed 

model. Section 5 summarizes the discussion and provides a conclusion.

2. Review of relevant literature 

Because of increased environmental regulation and environmental consciousness, 

GSCM has received considerable attention in academic and business circles. 

Companies must apply GSCM strategies to react to market pressures and exhibit 

responsiveness to social responsibility. Green supplier selection is critical in GSCM, 

which includes numerous qualitative and quantitative factors and is thus a MCDM 

problem. Green supplier selection has been discussed by several researchers (Zouggari 

and Benyoucef, 2012; Govindan et al., 2015; Parkouhi and Ghadikolaei, 2017). In 

addition to supplier selection, order allocation is also a critical decision-making process 

in GSCM (Hamdan and Jarndal, 2017).

Whereas most prior studies have addressed supplier selection or order allocation 

problems individually, we identify some relevant studies that directly or indirectly 

discuss both green supplier selection and order allocation problems. Lin et al. (2011) 

integrated the ANP and LP methods to address green purchasing plans in the electronics 

industry. Their model has been used by printed circuit board firms as a green supplier 

selection and purchasing plan tool to support their purchasing departments’ efforts to 

determine order quantity rapidly and to allocate orders more effectively. Yeh and 

Chuang (2011) developed a model with four objectives (minimum cost and total time; 

maximum product quality and green appraisal scores) and nine constraints. They 

applied a multi-objective genetic algorithm to seek near-optimum solutions for green 

supplier selection and product volume transportation problems. Mafakheri et al. (2011) 

developed a two-stage evaluation model for order allocation decision-making that 
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considers the independence of green supplier criteria. Their model’s 21 selected criteria 

were derived from the literature (Humphreys et al., 2003; Kokangul and Susuz, 2009). 

Their model applies AHP to determine criteria weights and dynamic programming to 

solve the allocation problem. Shaw et al. (2012) employed fuzzy AHP to determine 

green criteria weights and used MOLP to formulate supplier purchasing plans for 

garment manufacturing companies. The objective function and constraint formula used 

in this study considered carbon emissions. Zouggari and Benyoucef (2012) further 

developed this green supplier evaluation and order allocation model by applying a four-

stage knowledge simulation approach. Their approach integrates supplier selection with 

order allocation and efficiently uses GSCM decision-makers’ expertise through a 

knowledge-based system for order plan enhancement in dynamic supply chains. 

Recently, researchers have proposed hybrid MCDM models that can strengthen 

the reliability of green purchasing. For example, Govindan and Sivakumar (2016) 

demonstrated that a proposed order allocation model based on green supplier evaluation 

is more effective than conventional models. Their model applies fuzzy TOPSIS and 

MOLP to assign purchase orders for four paper manufacturing suppliers. They employ 

four objectives to minimize cost, late delivery, material rejection, and CO2 emissions 

in the production process. A similar model developed by Hamdan and Cheaitou (2017a) 

considers all unit quantity discounts for real-world order allocation situations. Their 

results demonstrated that an integrated model can provide decision-makers with more 

practical reference information. Moreover, Hamdan and Cheaitou (2017b) developed 

an information ambiguity model that applies weighted comprehensive criteria and a 

branch-and-cut algorithm under fuzzy sets to assess the purchasing quantity of suppliers. 

They applied the model to the real-world case of a facilities management company to 

illustrate its accuracy, effectiveness, and flexibility. Kannan et al. (2013) determined 
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five indicators for evaluating green suppliers, including cost, quality, delivery, 

technology capability and environmental competency. The supplier performance 

values were obtained by using fuzzy AHP and fuzzy TOPSIS. Govindan et al. (2013) 

explored sustainable supply chain initiatives and examined the issue of identifying an 

effective model based on the Triple Bottom Line (TBL) method for supplier selection 

in GSCM.

In addition, the latest research for GSCM, Gören (2018) presented a GSCM 

decision framework for online retailer company. The study applied DEMATEL to 

determine the weights of the dependent criteria, and Taguchi Loss Functions was used 

to calculate the performance value of each supplier. The ranking of suppliers was 

different from the common MCDM methods (e.g. VIKOR, TOPSIS, PROMETHEE, 

or ELECTRE). Park et al. (2018) used multi-attribute utility theory and multi-objective 

integer linear programming to discuss multiple sourcing and multiple product design 

problems. Their study considered total cost, carbon footprint, order defect, and delivery 

delay as multi-objectives to be minimized respectively. In same year, a hybrid SWOT-

QFD combined bi-objective two-stage mixed possibilistic-stochastic systematic 

framework for solving sustainable issues was proposed by Vahidi et al. (2018). This 

method obtained several efficient (Pareto-optimal) solutions, which the most preferred 

one could be selected according to the top decision maker's preferences. The preceding 

studies have demonstrated that order allocation models that are based on green supplier 

evaluation and consider the relative weights of green criteria, information uncertainty, 

and the aggregating mode are effective in determining purchasing plans. 

We summarize the GSCM models that have integrated green supplier evaluation 

and order allocation in Table 1. 
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/Please insert Table 1 here/

As shown in the literature review, criteria weights have most often been calculated 

by AHP or ANP, both requiring time-consuming pairwise comparisons and thus it is 

not easy to obtain consistent results. The above shortcomings can be remedied by using 

BWM to calculate the criteria weights. The original TOPSIS method only considers the 

positive and negative ideal solutions, which might not be the most appropriate way to 

obtain rankings in some situations (Opricovic and Tzeng, 2004). Our modified TOPSIS 

method considers all alternatives as reference points, making it more reliable than the 

original TOPSIS method (Kuo, 2017). The traditional MODM generates a set of Pareto 

solutions, but decision maker still needs to select a solution from this set of solutions. 

Furthermore, a complex algorithm and coding process are needed to obtain the Pareto 

solutions. Our augmented max–min FMOLP model can obtain a compromise solution 

without the need for complex coding processes (Arikan, 2013).

3. Proposed approach: a novel hybrid combining BWM, modified 

fuzzy TOPSIS, and FMOLP

This section introduces a novel hybrid green purchasing model that combines 

MADM and MODM. The model uses MADM to evaluate green supplier performance, 

BWM to derive criteria weights, and modified fuzzy TOPSIS to calculate supplier 

rankings that companies can use to select the most suitable suppliers. Next, the model 

applies fuzzy MODM to determine order allocations for each qualified supplier. Fig. 1 

illustrates the basic concepts of BWM, modified fuzzy TOPSIS and FMOLP. Appendix 

A presents the details of the mathematical formulas.
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/Please insert Fig. 1 here/

4. Case illustration

In this section, we describe the application of the proposed integrated model to a 

real-world case to illustrate its usefulness. The subject company set up an evaluation 

team to provide actual supplier data and production requirements, which we used to 

build a novel model that combines BWM, modified fuzzy TOPSIS, and FMOLP to help 

the company select suppliers and determine a procurement plan. 

4.1 Problem description and identification of criteria

Various MCDM methods have been developed to study green supplier evaluation 

and order allocation planning. However, these subjects have usually been studied 

separately; only a few studies have discussed them together. Thus, our study is divided 

into two stages: supplier selection and order allocation. If qualified suppliers can meet 

a company’s needs though proper order allocation, the company will achieve increased 

profit and efficiency. The subject company is an electronics manufacturing firm in 

Taiwan. The company’s products consist of motherboards, display cards, computer 

peripherals, personal computers, notebook computers, and network server products. 

Due to a high level of competitiveness in the global electronics industry and cost-

reduction pressure from customers, the subject company outsources production of its 

noncore products and components. Selecting qualified suppliers and allocating orders 

to them are thus critical challenges for the company’s managers and have a substantial 

bearing on its continued market competitiveness. 

Currently, the case company is facing several problems due to market competition 
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and regulatory requirements. First, their current supplier evaluation system does not 

fully take into account environmental factors and they have no systematic way to 

evaluate their green suppliers. Second, the weights of their evaluation criteria are 

determined subjectively by department managers, and different managers assign 

different weights for prioritizing the factors used in decision-making. Third, their 

purchasing plans are not based on the results of supplier evaluation. Purchasing 

department managers tend to allocate orders based on their own subjective experience. 

Although the case company does have a supply chain management system, the system 

is neither complete nor integrated. The case company urgently needs a system for order 

allocation capable of integrating the results of supplier audits with consideration of 

uncertain managerial judgements. 

The model proposed in this study is demonstrated by using it to evaluate the case 

firm’s outsourced computer purchasing practices. To undertake a comprehensive 

assessment, eight managers from the firm’s purchasing, production management, 

quality control, and R&D departments were invited to form a decision-making group. 

The duties of these eight managers entail a very high degree of connectivity with 

suppliers, including procurement bargaining, inspection and control of materials, 

changes in component designs, etc. Each of these managers has had more than 10 years 

of work experience at the subject company. Furthermore, although from different 

departments and with different job responsibilities, supplier assessments made from 

different perspectives, are considered equal in importance.

The criteria for  green supplier selection criteria were obtained by reviewing the 

relevant literature (Kuo et al., 2010; Kuo and Lin, 2011; Chen et al., 2012; Govindan et 

al., 2015; Rajesh and Ravi, 2015; Rezaei et al., 2016; Çebi and Otay, 2016; Uygun and 

Dede, 2016) and engaging in a series of discussions with the subject company’s 
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managers. In addition to the supplier evaluation criteria obtained from the literature 

review, the decision group considered other factors based on the case company’s 

products, culture, background, competitive market advantage, and current strategies, to 

decide on the most suitable evaluation criteria. The evaluation comprised three 

dimensions, 10 criteria, and six potential alternative suppliers (suppliers S1 to S6). The 

three dimensions were supplier performance (D1), environmental protection (D2) and 

supplier risk (D3); each dimension comprised three to four criteria (see Fig. 2). We then 

distributed BWM and performance surveys to the eight managers to make pairwise 

comparisons among the 10 criteria and to evaluate the performance of the six suppliers 

with respect to the 10 criteria. The criteria and their descriptions are listed in Table 2.

Some studies have considered cost as a performance factor at the supplier selection 

stage but also have used cost as an objective function at the order allocation stage. This 

double counting exaggerates the importance of cost. Therefore, our study did not 

consider cost in the supplier performance criteria, but employed a minimum cost 

objective function at the order allocation stage.  

/Please insert Fig. 2 here/

/Please insert Table 2 here/

4.2 Determination of criteria weights 

We applied BWM to obtain criteria weights, as outlined in Appendix A.1. The 

managers were asked to compare their identified best dimension with each of the other 

dimensions and formulate their preferences on a scale of 1-9 (the larger the number on 

the scale, the more important the ranking). For example, manager 1 considered D2 to 

be the best dimension, twice as important as D1. The BO vectors are presented in Table 

3. Similarly, the respondents were asked to rate the other dimensions over the worst 
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dimensions. The OW vectors are shown in Table 4. A set of weights is obtained for 

each manager based on BO and OW vectors. By solving Eq. (A2), we can determine 

the weight of each dimension. All criteria weights were derived by following the same 

procedures. Because each manager had a different background and level of experience, 

the weights calculated for the various questionnaires were not identical. We calculated 

the optimal weights by arithmetical means (Rezaei et al., 2016). 

The consistency ratio (CR) is a measure of the reliability of the BWM 

questionnaire. Table 5 presents the average of the eight managers’ results. All CR 

values are less than 0.1. The CR of each questionnaire was less than 0.05, and the 

average CR was 0.0295, indicating that the questionnaires were highly consistent 

(Rezaei, 2015). Table 6 illustrates the integrated results of the eight manager 

questionnaires. The top five criteria rankings were product quality (C11), innovation 

capability (C22), service flexibility (C13), green manufacturing (C12), and environmental 

performance (C21). Apart from product quality, the managers deemed development 

capability and environmental protection to be crucial criteria due to the company’s 

pursuit of sustainable development and innovation. Next, we applied modified fuzzy 

TOPSIS to consolidate the performance data and the criteria weights for supplier 

selection.

/Please insert Table 3 here/

/Please insert Table 4 here/

/Please insert Table 5 here/
/Please insert Table 6 here/

4.3 Supplier performance evaluation and supplier selection

The green supplier selection process is complicated and difficult. MADM is an 

effective solution to this problem because it simplifies the analytical process and 
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provides results that can meet manager expectations and suggest relevant improvement 

strategies. This study used TOPSIS technology and fuzzy theory to strengthen the 

analytical model given the uncertainty of managerial opinion. The modified TOPSIS 

was used because it does not need a series of pairwise comparisons as other MADM 

models (e.g., PROMETHEE). Also, the model is more straightforward for managers 

evaluating the alternatives and saving the survey time.

Step 1. Integrating managers’ opinions to calculate trapezoidal fuzzy numbers

Translating managers’ subjective opinions into numerical values is difficult. The 

trapezoidal fuzzy number is a useful solution for converting qualitative terms into fuzzy 

numbers. Table 7 summarizes the seven classifications that we used in our 

questionnaires, which were very poor (VP), poor (P), medium-poor (MP), fair (F), 

medium-good (MG), good (G), and very good (VG). Table 8 summarizes the evaluation 

of the first supplier (S1) by the eight managers. For example, the first manager expressed 

that the performance of S1 based on C11 was G. Table 9 illustrates the integrated initial 

fuzzy performance matrix for the six potential suppliers.

/Please insert Table 7 here/

Step 2. Converting initial fuzzy matrix to normalized fuzzy matrix

The ten criteria used in this study are all benefit based criteria. We converted the 

initial fuzzy matrix to a normalized fuzzy matrix  by using Eq. (A5) (Table 10). R

Step 3. Integrating normalized fuzzy matrix into weights

Using Eq. (A6), we calculated a weighted normalized fuzzy matrix  (Table 11). V

In this step, the criteria weights are crucial as they can substantially affect the final 

results of the analysis.
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Step 4. Calculating distance from positive ideal solution and negative ideal solution 

for each supplier

According Eqs. (A7) and (A8), we obtained the fuzzy positive ideal solution 

(FPIS) ( ) and fuzzy negative ideal solution (FNIS) ( ) as follows:*A A

= [ ]*A 0.294, 0.109, 0.121, 0.084, 0.161, 0.073, 0.01, 0.073, 0.036, 0.039

= [ ]A 0,0, 0, 0, 0, 0, 0, 0, 0, 0

The separation of a supplier Si from the FPIS ( ) and FINS ( ) was calculated by *d d 

using Eqs. (A9) and (A10).

Step 5. Calculating RCi and supplier priority order 

The closeness coefficient (CCi) is obtained through TOPSIS. We obtained CCi by 

using Eq. (A11). To keep CCi in a range of 0 to 1, we derived a supplier sequence 

evaluation index (RCi) (Table 12) for executing subsequent FMOLP operations by 

using Eq. (A12).

/Please insert Table 8 here/

/Please insert Table 9 here/

/Please insert Table 10 here/

/Please insert Table 11 here/

As indicated in Table 12, the ranking of suppliers was S4 S1 S2 S3 S6 S5.     

Excellent suppliers normally have RCi values of greater than 0.5 as their evaluation 

results are much closer to the desired values. By contrast, suppliers that have RCi values 

of less than 0.5 might consider developing relevant improvement strategies. The 

managers selected as partners the top four suppliers by rank, namely S4, S1, S2, and S3. 

/Please insert Table 12 here/
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4.4 Multi-objective order allocation model

This study further investigated the optimal order allocations for the selected 

qualified suppliers by using a multi-objective order allocation model. The allocation 

model factored in a discount for each qualified supplier when procurement exceeded a 

certain quantity. This resulted in two price levels (j = 1, 2), under which production lead 

time differed. Detailed supplier information is listed in Table 13. We used total product 

demand and average lead time to calculate triangular fuzzy numbers. The acceptable 

level was 0 when total product demand was lowest (25,500 units) and highest (27,000 

units); that is, total demand had to be between 25,500 and 27,000 units. Satisfaction 

was highest when the average production lead time was 6 days.

/Please insert Table 13 here/

Because allocating supplier orders is a MOLP problem, this study considered 

various factors in the procurement process, including procurement lead time, defect rate, 

quantity discounts, and capacity limitations. Our proposed order allocation model was 

developed with reference to Arikan (2013), Çebi and Otay (2016), and Kumar et al. 

(2017). Instructions for building the model and its solution process are provided as 

follows:

Step 1. Building the order allocation model 

First, we defined the parameters of the MOLP model, as illustrated in Table 14.

/Please insert Table 14 here/

After discussions with the subject company’s managers, we defined four objective 

functions: cost, delivery performance, product quality, and total utility. The cost 

objective function considered total cost in the period between sending orders and 
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receiving finished products (Eq. (A28)). We evaluated delivery performance by using 

the delay ratio, which is a risk management factor (Eq. (A29)). We measured product 

quality by the number of defective products, which is termed the defect rate (Eq. (A30)). 

The utility goal is to maximize the organizational utility using the results obtained from 

MADM (Eq. (A31)). 

(1)1
1 1 1

min  
I J K

ijk ijk
i i k

Z c x
  

 

(2)2
1 1 1

min  
I J K

ijk ijk
i i k

Z l x
  

 

(3)3
1 1 1

min  
I J K

ijk ijk
i i k

Z d x
  

 

(4)4
1 1 1

max  
I J K

ijk ijk
i i k

Z w x
  

 

The constraints are listed in Eqs. (A32)-(A39) and include average production lead time, 

fuzzy demand, capacity limitation, quantity discount level, nonnegativity, and 0-1 

constraints. Table 13 and Table 14 list the input data and parameters.

(5)
1 1 1 1

,  1,  2,..., 
J K J K

k ijk ijk i
j k j k

L x x L i I
   

  

(6)
1 1

,  1,  2,..., 
J K

ijk i
j k

x D i I
 

  

(7)
1

,  1,  2,..., ;  1,  2,..., 
J

ijk ik
j

x c i I k K


  

(8) 1 ,  1,  2,..., ;  1,  2,..., ;  1,  2,..., ijk ijk ijkx V y i I j J k K    

(9),  1,  2,..., ;  1,  2,..., ;  1,  2,..., ijk ijk ijkV y x i I j J k K   

(10),  1,  2,..., ;  1,  2,..., ;  1,  2,..., ijk i ijkx D y i I j J k K   

(11)
1

1,  1,  2,..., ;  1,  2,..., ;  1,  2,..., 
J

ijk
j

y i I j J k K


   

(12)0;  =0, 1, 1,  2,..., ;  1,  2,..., ;  1,  2,..., ijk ijkx y i I j J k K   
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Step 2. Determining optimal upper and lower bounds 

We obtained optimal upper and lower bounds of the four objective functions by 

using Eqs. (A13)-(A14), as illustrated in Table 15. 

/Please insert Table 15 here/

Step 3. Determining membership functions 

For minimization objectives (Z1 to Z3), membership functions were established 

using Eq. (A18); for the maximization objective (Z4), Eq. (A19) was used to formulate 

the membership function. We applied Eq. (A20) to establish the membership functions 

for constraints.

Step 4. Transforming the FMOLP problem into a linear model

Based on the proposed FMOLP model (Appendix A.3) and membership functions 

established in Step 3, we transformed the MOLP problem into a linear programming 

model expressed as Eq. (13).

 1 2 3 4max / 6d l              

s. t. 

1 2 3 4,  ,  ,  ,  ,   d l      

31 2 4
1 2 3 4

613 ( )766143 ( ) 815 ( ) ( ) 12420.5, , ,
677750 165.5 103.5 1357

z xz x z x z x     
   

2 4 2 4

1 1 1 1
25500 / 500 , 27000 /1000d jk d jk

j k j k
X X 

   

      
                  

 

       11 22 13 23 14 11 22 13 23 142 2 5 /1 , 7 2 2 /1l lx x x x x x x x x x            

11 21 12 22 13 23 14 248500,  9000,  9500,  10000x x x x x x x x       
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11 11 21 21 21 214999 ,  5000 ,  8500x y y x x y  

12 12 22 22 22 225499 ,  5500 ,  9000x y y x x y  

13 13 23 23 23 235799 ,  5800 ,  9500x y y x x y  

14 14 24 24 24 246499 ,  6500 ,  10000x y y x x y  

11 21 12 22 13 23 14 241,  1,  1,  1y y y y y y y y       

0,  1;  0;  1,  2;  1,  2,  3,  4jk jky x j k   

(13)jkx interger 

Step 5. Obtaining order allocation results

Table 16 illustrates the results of Eq. (13) with six utility variables and 16 decision 

variables. Consider the first objective as an example: The minimum purchase cost 

utility value was 0.692, and the objective value was $705,018. The demand utility and 

average lead time utility values were 1, meaning that the results achieved the company’s 

desired values. The final order allocations and unit prices for the four suppliers were as 

follows: S1 received an order for 8,500 units at a unit price of $26.5; S2 received an 

order for 5500 units at a unit price of $27.5; S3 received an order for 2753 units at a unit 

price of $32; and S4 received an order for 9247 units at a unit price of $26. The quantity 

required to receive a discount was not reached only for supplier S3.

/Please insert Table 16 here/

5. Discussion and conclusions

Supplier selection and order allocation are critical problems in GSCM. Few prior 

studies have considered both problems simultaneously. The indicators or criteria for 

green supplier performance evaluation can be divided into qualitative and quantitative 

types. The indicator values obtained through measurement produce quantitative data, 
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such as the defective rate, stock-out rate and price. Some indicators entail subjective 

assessment, for example, of environmental performance, service quality, reputation, 

information security, etc. Combining both types of indicators to measure supplier 

performance is a complex problem. In addition, the different viewpoints of the various 

department managers in the case company make the process of linking supplier 

performance with order allocation more difficult. For example, the purchasing 

department considers cost to be most important, while quality assurance deems quality 

to be the most essential factor. Therefore, this study combined MADM and MODM 

models to establish an integrated model to help companies select the most qualified 

suppliers and allocate orders to them. Our proposed model improved on the model 

proposed by Kannan et al. (2013) in several aspects. First, we obtained the criteria 

weights from BWM, which is an efficient and effective method of deriving the criteria 

weight vectors in the analyzed MADM problems because it requires fewer pairwise 

comparisons and easily obtains consistent results. Second, ranking indices in our model 

were calculated using modified TOPSIS, as proposed by Kuo (2017). Ranking indices 

determined using modified TOPSIS are superior to those attained using traditional 

TOPSIS when there are more than two alternatives, because modified TOPSIS 

considers the relative gaps of all alternatives and the weights of the distances from the 

PIS and NIS. Third, this study considered several objective functions (i.e., cost, delivery 

performance, product quality, and total utility) in constructing the MOLP model. We 

also included other critical factors such as real-world discounts, delivery risk, and 

product quality levels to increase the effectiveness of procurement planning. We also 

resolved the problem of counting cost twice in the MADM and MOLP models. Fourth, 

we applied an augmented max–min model in FMOLP to determine order quantity for 

each supplier. We transformed the fuzzy multi-objective model into a concise single-
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objective model by using an augmented max–min model, which achieved a superior 

utility value for each objective than the traditional max–min model.

According to the MADM results (Table 12), S4 and S1 achieved higher ranking 

indices (Table 12) in the evaluation. The final order allocations indicated that S4 and S1 

also received higher procurement amounts, which demonstrated a high level of 

consistency. These results were confirmed by the subject firm’s managers, who 

indicated that S4 and S1 have reputations for superior quality in the electronics industry. 

By contrast, S2 achieved only the minimum procurement amount and did not achieve 

the minimum quantity required for a discount, resulting in a higher purchasing cost for 

the subject company. This supplier achieved a lower ranking than S4 and S1 due to its 

poor performance, despite having a higher unit price. In practice, the subject company 

might consider disqualifying S2 as a supplier and transferring the procurement 

allocation to other suppliers. Therefore, S2 should improve its evaluation performance 

to remain competitive in the market. The results demonstrate that the integrated model 

provides an effective reference for managers for selecting qualified suppliers and 

allocating orders to them.

We also compared the differences between the single order allocation model (only 

MODM model) and the proposed two-stage model (MADM and MODM model) (Table 

17). The single order allocation model produces a higher utility value to each objective 

function than is the case with the two-stage evaluation model. However, the actual 

performance of the suppliers is not considered in the single order allocation model. For 

example, although the performance of supplier S3 is worse than that of S2, with the 

single allocation model it receives more procurements than S2, which does not reflect 

company policy. In the proposed the model, S3 procurement would be the lowest and 

would not exceed the discounted amount. Clearly, the proposed two-stage model is 
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more practical and reliable, making the order allocation process more logical and 

reflective of supplier evaluation results.

/Please insert Table 17 here/

Sensitivity analysis is carried out in order to examine the robustness of the model, 

as proposed by Prakash and Barua (2015) and Gupta and Barua (2017). We explore 

whether the criteria weight changes will affect supplier prioritization. When the highest 

criteria weight (product quality, C11) changes from 0.1 to 0.9, the other criteria weights 

are adjusted in proportion. Following the modified fuzzy TOPSIS method to integrate 

supplier performance, we can observe the differences in supplier ranking. Table 18 

shows the criteria weights for different values, with values of C11 ranging from 0.1 

(lowest) to 0.9 (highest). The results of the sensitivity analysis are shown in Fig. 3. It 

can be seen that there is not much change in the ranking of the suppliers. Therefore, the 

robustness of the model is not significantly affected by changing the weight of a 

criterion. However, it is worth noting that when the weight of C11 is greater than 0.5, 

the rankings of S2 and S3 are exchanged.

/Please insert Table 18 here/

/Please insert Fig. 3 here/

In summary, the proposed integrated model provides a systematic approach for 

companies to select suppliers and decide on procurement plans in GSCM. Green 

purchasing is an issue of perception, and this efficient planning tool can reduce the 

subjectivity of managerial decision-making. The proposed model in academics has not 
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been applied in GSCM. Our model integrates several state-of-the-art methods and 

considers various real-world factors, including the information uncertainty of industry 

decision-makers. Our study demonstrates the usefulness and effectiveness of the 

proposed model. It should bring several benefits to the case company: (i) determine the 

most suitable criteria for green supplier evaluation; (ii) reliable and effective evaluation 

of supplier performance; (iii) help procurement staff systematize the order allocation 

process. The cost of implementing the proposed model will include employee education, 

system integration and some changes to operational procedures. The biggest benefit 

will be the provision of a procurement decision support system which can reduce 

decision-making errors and management costs long-term.

In the future, researchers can expand on our research by using different MADM 

tools (e.g., VIKOR, PROMETHEE, ELECTRE, or grey relational analysis) to select 

suppliers or applying heuristic methods (e.g., nondominated sorting genetic algorithm 

II, the particle swarm optimization algorithm, or the ant colony optimization algorithm) 

to solve MOLP problems, and to compare the difference and applicability with current 

model. In addition, the group multiple criteria decision-making approach can be used 

to aggregate the opinions of experts from various backgrounds. If the company chooses 

to pursue different goals, the objective function can also be adjusted to make the model 

more practical to fulfill their changing needs.

Appendix A

This section introduces the BWM, modified fuzzy TOPSIS, and FMOLP methods, 

which we used in order allocation planning.
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A.1. BWM

BWM derived the criteria weights from a pairwise comparison of the best and 

worst criteria, along with other criteria. The method by which BWM derived the criteria 

weights can be summarized as follows: 

Step 1. Determining a set of dimensions and criteria for evaluating suppliers.

The experts identified n criteria that we used to calculate the weights.

Step 2. Determining best and worst criteria. 

The experts selected the best (i.e., most appropriate, most preferred, or most 

crucial) criterion and worst (i.e., least acceptable, least preferred, or least crucial) 

criterion from those identified in Step 1.

Step 3. Obtaining best-to-others (BO) and others-to-worst (OW) vectors.

The experts assigned preference rankings of the best criterion over the other 

criteria on a scale of 1 to 9, with the more crucial criteria receiving a higher ranking 

and the less crucial criteria receiving a lower ranking. Similarly, the experts ranked the 

relative importance of the other criteria over the worst criteria. The resulting BO and 

OW vectors are expressed as follows:

 1 2, , ,b b b bnV v v v 

 1 2, , , T
w w w nwV v v v 

where  is the preference of the best criterion b over criterion j, and  is the bjv jwv

preference of criterion j over the worst criterion w. Clearly, .,  1bb wwv v 

Step 4. Determining criteria weights:  * * *
1 2, , , nw w w

The optimal weights were obtained using a linear programming model based on 

the BO and OW vectors. Minimized maximum absolute differences between 
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 and  indicated a minimized error distance; this principle was b bj jw v w j jw ww v w

integrated into the following min–max model:

 min max ,b bj j j jw wj
w v w w v w 

s. t.

1j
j

w 

, for all j (A1)0jw 

Eq. (A1) is a min–max objective function that can be converted into the following linear 

programming formulation: 

min  

s. t.

, for all jb bj jw v w  

, for all jj jw ww v w  

1j
j

w 

, for all j  (A2)0jw 

Accordingly, Eq. (A2) generated the optimal weights  and optimal  * * *
1 2, , , nw w w

values of  ( ); this equation is linear and has a unique solution. The model ensured  *

high quality of the questionnaires by evaluating their consistency, and  is a critical *

parameter of the consistency test.

A.2. Modified fuzzy TOPSIS

The decision group consisted of p experts, each of whom had a fuzzy evaluation 
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value that can be expressed as , i = 1, 2,..., m; j = 1, 2,..., n; k  ,  ,  ,  ijk ijk ijk ijk ijkx a b c d

= 1, 2,..., p. Each expert k evaluated the performance of supplier i in j criteria. The 

method for integrating all expert fuzzy numbers  follows: ijx

(A3) ,  ,  ,  ij ij ij ij ijx a b c d

where    
1 1

1 1min ;  ;  ;  max
p p

ij ijk ij ijk ij ijk ij ijkk kk k
a a b b c c d d

p p 

    

We obtained the initial fuzzy matrix ( ) from Eq. (A3):D

(A4)

11 12 1

21 22 2

1 2

n

n

m m mn

x x x
x x x

D

x x x

 
 
 
 
 
 

  

  
   

  

The criteria can be divided into sets of benefit attributes (the larger the evaluation 

value, the better) and cost attributes (the smaller the evaluation value, the better). We 

normalized these data to maintain scale consistency of criteria, which the normalized 

fuzzy matrix ( ) accomplished as follows:R

(A5)

11 12 1

21 22 2

1 2

n

n

m m mn

r r r
r r r

R

r r r

 
 
 
 
 
 

  

  
   

  

* * * *,  ,  ,  ,  ij ij ij ij
ij

j j j j

a b c d
r j B

d d d d
 

   
 



,  ,  ,  ,  j j j j
ij

ij ij ij ij

a a a a
r j C

a b c d

    
   

 


* max  ,  j iji
d d j B 

min  ,  j iji
a a j C  

The benefit and cost attribute sets are denoted as B and C, respectively. The 

weighted normalized fuzzy matrix ( ) was calculated as the product of the normalized V
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fuzzy matrix ( ) and criteria weights ( ), as follows:R jw

(A6)

11 12 1

21 22 2

1 2

n

n

m m mn

v v v
v v v

V

v v v

 
 
 
 
 
 

  

  
   

  

 ij ij jv r w  

The weighted normalized fuzzy number is denoted as , and the FPIS (,  ,  ijv i j

) and FNIS ( ) are defined as:*A A

(A7) * * * *
1 2,  ,..., nA v v v   

(A8) 1 2,  ,..., nA v v v      

where 
 
 

* max ,
 1,  2,...,  ;  1,  2,...,  

min ,

j ijki

j ijki

v v
i m j n

v v

   






Through fuzzy TOPSIS, the suppliers were ranked on the basis of distance, with 

the PIS distance for suppliers referred to as  and NIS distance referred to as . The *d d 

calculation is as follows:

(A9) * *

1
,  

n

i v ij j
j

d d v v


   

(A10) 
1

,  
n

i v ij j
j

d d v v 



   

Kuo (2017) proposed a modified TOPSIS ranking index that considers the NIS 

and PIS distance among all suppliers and remedies the shortcomings of traditional 

TOPSIS. The closeness coefficient (CCi) is a reliable value that defines the standard for 

ranking suppliers (i.e., when the supplier performance is better, CCi is greater). The 

formula is given by Eq. (A11):
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(A11)

* *

1 1
/ / ,  

1 1
0 1 ,  1,  2,...,  
0 1

m m

i i i i i
i i

i

CC w d d w d d

CC
w i m
w

   

 





       
   

  
   
  

 

In some situations, decision-makers have different preferences for NIS and PIS. 

Where w+ and w- represent the importance levels of NIS and PIS, . 1w w  

According to Eq. (A11), when , then . By contrast, if , then *
iA A  1iCC  iA A 

. In other words, when  is close to 1, the performance of supplier Ai is 1iCC   iCC

much closer to the FPIS and thus the supplier is highly ranked. However, if the value 

of  is between -1 and 1,  can be used for allocating orders but cannot be iCC iCC

integrated into a multi-objective order allocation model. The fourth goal of FMOLP is 

to maximize the utility goal. The utility value should not be negative. Therefore, to 

standardize  so that its value would range from 0 to 1, we applied Eq. (A12):iCC

(A12)1+ ,  0 1,  1,  2,...,
2

i
i i

CCRC RC i m   

We applied modified fuzzy TOPSIS evaluation values for each supplier ( ) to iRC

determine its ranking for order priority and to provide suggestions for improvement to 

poorly performing suppliers. Finally, we integrated the results into the multi-iRC

objective order allocation model to assist in executing subsequent purchasing plans.

A.3. FMOLP

This study applied FMOLP to establish an order allocation model. The process 

involved converting Eqs. (A13)-(A17) into a single-objective linear model, as follows: 

(A13)0

1
,  1,  2,..., 

C

c ci i c
c

Z c x Z c C


   
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(A14)0

1
,  1,...,  

P

p pi i p
p

Z c x Z p C P


    

s. t.

(A15)
1

( ) ,  1,  2,..., 
n

r ri i r
i

g x a x b r R


   

(A16)
1

,  1,...,  
n

mi i m
i

a x b m R M


  

(A17)0,  1,  2,..., ix i n 

Eqs. (A13) and (A14) are minimum and maximum objective functions, referred to 

as  and . In Eqs. (A15)-(A17), refers to fuzzy restriction. We obtained the cZ pZ ( )rg x

positive optimal solution  and negative optimal solution  1 2, z , , zp PZ z    

 for each objective. The result of each optimal solution was  1 2, z , , zp PZ z    

distinguished as an upper bound (positive optimal solution, ) or lower bound pZ 

(negative optimal solution, ), as illustrated in the payoff table (Table A1).pZ 

/Please insert Table A1 here/

(A18)  

 
   

 

1,                   for 

,  ,  1,  2, ,  

0,                  for 

c c

c c
c c c c c

c c

c c

Z x Z

Z Z x
Z x Z Z x Z c C

Z Z
Z x Z






 

 



 


    
 



(A19)  

 
   

 

1,                   for 

,  , 1,  2, ,  

0,                  for 

p p

p p
p p p p p

p p

p p

Z x Z

Z x Z
Z x Z Z x Z p C P

Z Z

Z x Z






 

 



 



     

 


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(A20) 

1

1

1

1

1

1

0,                for 

-
,  

1, 2, ,
 ,

1, 2, ,
-

,  +

0,                 for +

n

ri i r r
i

n

r ri i n
i

r r ri i r
ir

gr n

ri i r n
i

r ri i r r
ir

n

ri i r r
i

a x b l

b a x
b l a x b

l r R
x

n N
a x b

b a x b u
u

a x b u















  



   


   


 





















Eq. (A18) gives the membership function of minimization objectives, namely cost, 

delivery delay rate, defect ratio, and lead time. By contrast, Eq. (A19) is the 

membership function of maximization objectives, such as profit, benefit, service, and 

turnover rate. Eq. (A20) gives the linear membership function of the constraint formula. 

This study applied an augmented max–min model proposed by Arikan (2013) that 

converts multiple objectives to a single objective, as given by Eq. (A21). The other 

constraints are given by Eqs. (A22)-(A27).

(A21)     
1 1

max 
S R

q q r r
q r

c x a x S R  
 

 
   

 
 

s. t.

(A22)  , 1,  2, ,  q qc x q S   

(A23)  , 1,  2, ,  r ra x r R   

(A24)  ,  1,  2, ,  q q qc x q S   

(A25)  ,  1,  2, ,  r r ra x r R   

(A26)
1

,  1,...,  
n

mi i m
i

a x b m R M


  

(A27) ;  ,  ,  0,  1q rx X    
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Fig. 1 Analytical procedure of this study
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Fig. 2 Structure of green supplier evaluation
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 This study integrates several state-of-the-art methods for solving problems in 

green supplier selection and order allocation. 

 The integrated model combines the best–worst method, fuzzy TOPSIS, and 

fuzzy multi-objective linear programming.

 We demonstrated the proposed method using actual data provided by an 

electronics company.
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Tables

Table 1 Summary of literature on integrating MADM and MODM for GSCM

Authors / year Supplier selection method Order allocation method

Lin et al. (2011) ANP Linear programming (LP)

Yeh and Chuang (2011) － Multi-objective genetic algorithm 

(MOGA)

Mafakheri et al. (2011) AHP Dynamic programming

Shaw et al. (2012) Fuzzy AHP Fuzzy multi-objective linear programming 

(FMOLP)

Zouggari and Benyoucef 

(2012)

Fuzzy AHP Fuzzy TOPSIS

Kannan et al. (2013) Fuzzy AHP and Fuzzy 

TOPSIS

Multi-objective linear programming 

(MOLP)

Govindan and Sivakumar 

(2016)

Fuzzy TOPSIS Multi-objective linear programming 

(MOLP)

Hamdan and Jarndal (2017) AHP Multi-objective genetic algorithm 

(MOGA)

Hamdan and Cheaitou (2017a) Fuzzy TOPSIS AHP and multi-objective integer linear 

programming (MOILP)

Hamdan and Cheaitou (2017b) Fuzzy TOPSIS and AHP Weighted comprehensive criterion method 

and the branch-and-cut algorithm

Gören (2018) DEMATEL and Taguchi loss 

functions

Bi-objective nixed integer programming

Park et al. (2018) Multi-attribute utility theory 

(MAUT)

Multi-objective integer linear 

programming (MOILP)

Vahidi et al. (2018) SWOT-QFD Bi-objective programming and 

possibilistic-stochastic programming

Our proposed model BWM and fuzzy TOPSIS Fuzzy multi-objective linear programming 

(FMOLP) base on augmented max-min 

model
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Table 2 Evaluation criteria for supplier selection 

Dimension (Di) Criterion (Cij) Definition References

Product quality 

(C11)

Confirm product quality and provide 

relevant quality certificates, such as ISO 

9000, QS9000, etc.

Kuo et al. (2010); Çebi 

and Otay (2016)

Green 

manufacturing 

(C12)

Focus on clean and environmentally 

friendly production, and emphasize 

material recyclability.

Uygun and Dede (2016); 

Kuo and Lin (2011)

Supplier 

performance 

(D1)

Service 

flexibility (C13)

Level of service needed to meet customer 

demand, and when orders change can 

ensure fast delivery.

Kuo et al. (2010); Çebi 

and Otay (2016)

Environmental 

performance 

(C21)

Observe environmental regulations for 

products and reduce waste as much as 

possible. Supplier takes a pro-active 

approach to protecting the environment.

Uygun and Dede (2016); 

Kuo et al. (2010); 

Innovation 

capability (C22)

Innovative product design to ensure the 

product's disassembly, recyclability and 

sustainability.

Chen et al. (2012);

Environmental 

protection (D2)

Green logistic 

(C23)

Improve transport and logistics planning to 

effectively reduce pollution during 

transportation.

Uygun and Dede (2016); 

Çebi and Otay (2016)

Labor intensive 

(C31)

Supplier dependence on labor in 

production activities, considering staff 

productivity and turnover rate.

Rezaei et al. (2015); 

Govindan et al. (2015)

Financial 

stability (C32)

Supplier's financial position and financial 

stability.

Kuo and Lin (2011)

Supplier 

reputation (C33)

Supplier’s reputation in the industry, and 

past cooperation experience. 

Govindan et al. (2015)

Supplier risk 

(D3)

Information 

safety (C34)

Supplier's information and communication 

capabilities in relation GSCM, 

confidentiality of confidence.

Chen et al. (2012); 

Govindan et al. (2015)
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Table 3 BO vectors

Manager no. Best D1 D2 D3

1 D2 2 1 4

2 D1 1 2 3

3 D1 1 5 3

4 D1 1 3 5

5 D1 1 2 3

6 D2 3 1 7

7 D1 1 2 5

8 D1 1 7 3
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Table 4 OW vectors

Manager No. 1 2 3 4 5 6 7 8

Worst D3 D3 D2 D3 D3 D3 D3 D2

D1 3 3 5 5 3 5 5 7

D2 4 2 1 3 2 7 3 1

D3 1 1 3 1 1 1 1 5
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Table 5 Dimension weights

Manager No.

Dimensions 1 2 3 4 5 6 7 8 Average

D1 0.313 0.542 0.644 0.644 0.542 0.262 0.583 0.662 0.524

D2 0.563 0.292 0.111 0.244 0.292 0.662 0.306 0.077 0.318

D3 0.125 0.167 0.244 0.111 0.167 0.077 0.111 0.262 0.158

CR 0.038 0.042 0.039 0.039 0.042 0.033 0.012 0.033 0.035
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Table 6 Criteria weights based on input from the eight experts

Dimension Weight Criteria Local weight Global weight Rank

C11 0.562 0.294 1

C12 0.207 0.109 4

D1 0.524

C13 0.231 0.121 3

C21 0.263 0.084 5

C22 0.507 0.161 2

D2 0.318

C23 0.230 0.073 6

C31 0.064 0.010 10

C32 0.463 0.073 7

C33 0.229 0.036 9

D3 0.158

C34 0.244 0.039 8
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Table 7 Linguistic terms and fuzzy numbers for supplier evaluation (Chen et al., 2006)

Linguistic terms Codes Fuzzy number

Very poor VP (0, 0, 1, 2)

Poor P (1, 2, 2, 3)

Medium poor MP (2, 3, 4, 5)

Fair F (4, 5, 5, 6)

Medium good MG (5, 6, 7, 8)

Good G (7, 8, 8, 9)

Very good VG (8, 9, 10, 10)
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Table 8 Evaluation value for supplier 1 (S1) from eight managers

Manager no.
Criteria

1 2 3 4 5 6 7 8

C11 G MG G MG MG VG G F

C12 G MG G MG MG F F MG

C13 F MG G MG MP MG MG MG

C21 G MG G MG MG G G MG

C22 G MG G MG G G G G

C23 G MG G VG G G F MG

C31 MG F F MP MP MG P MP

C32 P MP MP VP MP F F MP

C33 MP VP G MG MG G MG MG

C34 MP VP G MG G G G MG
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Table 9 Initial fuzzy performance matrix ( )D

S1 S2 S3 S4 S5 S6

C11 (4, 7,

7.5, 10)

(0, 2.63,

2.88, 6)

(2, 4.38,

5.25, 8)

(5, 8.5,

9.38, 10)

(0, 2.63,

2.88, 6)

(2, 4.38,

5.25, 8)

C12 (4, 6.25,

6.75, 9)

(0, 3.13,

3.5, 8)

(2, 5.13,

5.63, 10)

(5, 8.5,

9.38, 10)

(0, 3.13,

3.5, 8)

(0, 3.13,

3.5, 8)

C13 (2, 5.75,

6.5, 9)

(2, 4.75,

5.25, 1)

(0, 4,

4.5, 9)

(2, 8,

8.75,1)

(0, 4,

4.5, 9)

(2, 5.75,

6.5, 9)

C21 (5, 7,

7.5, 9)

(7, 8.88,

9.75, 1)

(0, 2.38,

2.75, 6)

(2, 4.38,

5.25, 8)

(2, 4.38,

5.25, 8)

(0, 2.38,

2.75, 6)

C22 (5, 7.5,

7.75, 9)

(7, 8.88,

9.75, 1)

(0, 3.13,

3.5, 6)

(2, 5.13,

6, 8)

(0, 3.13,

3.5, 6)

(0, 3.13,

3.5, 6)

C23 (4, 7.25,

7.63, 10)

(0, 2.25,

2.88, 6)

(2, 4.38,

5.25, 8)

(5, 8.13,

9, 1)

(0, 2.25,

2.88, 6)

(2, 4.38,

5.25, 8)

C31 (1, 4.13,

4.75, 8)

(4, 8.25,

8.88, 1)

(0, 2.25,

2.88, 6)

(2, 6.38,

7, 9)

(0, 2.25,

2.88, 6)

(2, 6.38,

7, 9)

C32 (0, 3,

3.63, 6)

(2, 5.13,

5.63, 8)

(5, 7,

7.5, 9)

(7, 8.75,

9.5, 1)

(2, 5.13,

5.63, 8)

(0, 3,

3.63, 6)

C33 (2, 6.13,

6.88, 9)

(0, 2.38,

3.13, 6)

(2, 5,

5.38, 8)

(7, 8.75,

9.5, 1)

(0, 2.38,

3.13, 6)

(2, 6.13,

6.88, 9)

C34 (2, 6.63,

7.13, 9)

(0, 2,

2.75, 5)

(2, 5,

5.38, 8)

(7, 8.88,

9.75, 1)

(0, 2,

2.75, 5)

(2, 5,

5.38, 8)
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Table 10 Normalized fuzzy matrix ( )R

S1 S2 S3 S4 S5 S6

C11 (0.4, 0.7, 

0.75, 1)

(0, 0.26, 

0.29, 0.6)

(0.2, 0.44, 

0.53, 0.8)

(0.5, 0.85, 

0.94, 1)

(0, 0.26, 

0.29, 0.6)

(0.2, 0.44, 

0.53, 0.8)

C12 (0.4, 0.63, 

0.68, 0.9)

(0, 0.31, 

0.35, 0.8)

(0.2, 0.51, 

0.56, 1)

(0.5, 0.85, 

0.94, 1)

(0, 0.31, 

0.35, 0.8)

(0, 0.31, 

0.35, 0.8)

C13 (0.2, 0.58, 

0.65, 0.9)

(0.2, 0.48, 

0.53, 1)

(0, 0.4, 

0.45, 0.9)

(0.2, 0.8, 

0.88,1)

(0, 0.4, 

0.45, 0.9)

(0.2, 0.58, 

0.65, 0.9)

C21 (0.5, 0.7, 

0.75, 0.9)

(0.7, 0.89, 

0.98, 1)

(0, 0.24, 

0.28, 0.6)

(0.2, 0.44, 

0.53, 0.8)

(0.2, 0.44, 

0.53, 0.8)

(0, 0.24, 

0.28, 0.6)

C22 (0.5, 0.75, 

0.78, 0.9)

(0.7, 0.89, 

0.98, 1)

(0, 0.31, 

0.35, 0.6)

(0.2, 0.51, 

0.6, 0.8)

(0, 0.31, 

0.35, 0.6)

(0, 0.31, 

0.35, 0.6)

C23 (0.4, 0.73, 

0.76, 1)

(0, 0.23, 

0.29, 0.6)

(0.2, 0.44, 

0.53, 0.8)

(0.5, 0.81, 

0.9, 1)

(0, 0.23, 

0.29, 0.6)

(0.2, 0.44, 

0.53, 0.8)

C31 (0.1, 0.41, 

0.48, 0.8)

(0.4, 0.83, 

0.89, 1)

(0, 0.23, 

0.29, 0.6)

(0.2, 0.64, 

0.7, 0.9)

(0, 0.23, 

0.29, 0.6)

(0.2, 0.64, 

0.7, 0.9)

C32 (0, 0.3, 

0.36, 0.6)

(0.2, 0.51, 

0.56, 0.8)

(0.5, 0.7, 

0.75, 0.9)

(0.7, 0.88, 

0.95, 1)

(0.2, 0.51, 

0.56, 0.8)

(0, 0.3, 

0.36, 0.6)

C33 (0.2, 0.61, 

0.69, 0.9)

(0, 0.24, 

0.31, 0.6)

(0.2, 0.5, 

0.54, 0.8)

(0.7, 0.88, 

0.95, 1)

(0, 0.24, 

0.31, 0.6)

(0.2, 0.61, 

0.69, 0.9)

C34 (0.2, 0.66, 

0.71, 0.9)

(0, 0.2, 

0.28, 0.5)

(0.2, 0.5, 

0.54, 0.8)

(0.7, 0.89, 

0.98, 1)

(0, 0.2, 

0.28, 0.5)

(0.2, 0.5, 

0.54, 0.8)
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Table 11 Weighted normalized fuzzy matrix ( )V

S1 S2 S3 S4 S5 S6

C11 (0.12, 0.21, 

0.22 ,0.29)

(0, 0.08, 

0.09, 0.18)

(0.06, 0.13, 

0.16, 0.24)

(0.15, 0.25, 

0.28, 0.29)

(0, 0.08, 

0.09, 0.18)

(0.06, 0.13, 

0.16, 0.24)

C12 (0.04, 0.07, 

0.07, 0.1)

(0, 0.03, 

0.04, 0.09)

(0.02, 0.06, 

0.06, 0.11)

(0.05, 0.09, 

0.10, 0.11)

(0, 0.03, 

0.04, 0.09)

(0, 0.03, 

0.04, 0.09)

C13 (0.02, 0.07, 

0.08, 0.11)

(0.02, 0.06, 

0.06, 0.12)

(0, 0.05, 

0.05, 0.11)

(0.02, 0.1, 

0.11, 0.12)

(0, 0.05, 

0.05, 0.11)

(0.02, 0.07, 

0.08, 0.11)

C21 (0.04, 0.06, 

0.06, 0.08)

(0.06, 0.07, 

0.08, 0.08)

(0, 0.02, 

0.02, 0.05)

(0.02, 0.04, 

0.04, 0.07)

(0.02, 0.04, 

0.04, 0.07)

(0, 0.02, 

0.02, 0.05)

C22 (0.08, 0.12, 

0.13, 0.15)

(0.11, 0.14, 

0.16, 0.16)

(0, 0.05, 

0.06, 0.1)

(0.03, 0.08, 

0.1, 0.13)

(0, 0.05, 

0.06, 0.1)

(0, 0.05, 

0.06, 0.1)

C23 (0.03, 0.05, 

0.06, 0.07)

(0, 0.02, 

0.02, 0.04)

(0.02, 0.03, 

0.04, 0.06)

(0.04, 0.06, 

0.07, 0.07)

(0, 0.02, 

0.02, 0.04)

(0.02, 0.03, 

0.04, 0.06)

C31 (0, 0, 0.01, 

0.01)

(0, 0.01, 

0.01, 0.01)

(0, 0, 

0, 0.01)

(0, 0.01, 

0.01, 0.01)

(0, 0, 

0, 0.01)

(0, 0.01, 

0.01, 0.01)

C32 (0, 0.02, 

0.03, 0.04)

(0.02, 0.04, 

0.04, 0.06)

(0.04, 0.05, 

0.06, 0.07)

(0.05, 0.06, 

0.07, 0.07)

(0.02, 0.04, 

0.04, 0.06)

(0, 0.02, 

0.03, 0.04)

C33 (0.01, 0.02, 

0.03, 0.03)

(0, 0.01, 

0.01, 0.02)

(0.01, 0.02, 

0.02, 0.03)

(0.03, 0.03, 

0.03, 0.04)

(0, 0.01, 

0.01, 0.02)

(0.01, 0.02, 

0.02, 0.03)

C34 (0.01, 0.03, 

0.03, 0.04)

(0, 0.01, 

0.01, 0.02)

(0.01, 0.02, 

0.02, 0.03)

(0.03, 0.03, 

0.04, 0.04)

(0, 0.01, 

0.01, 0.02)

(0.01, 0.02, 

0.02, 0.03)
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Table 12 Fuzzy TOPSIS calculation results and ranking

di* di
- CCi RCi Rank

S1 0.402 0.687 0.037 0.518 2

S2 0.552 0.550 -0.007 0.497 3

S3 0.587 0.520 -0.017 0.492 4

S4 0.335 0.770 0.059 0.530 1

S5 0.693 0.422 -0.048 0.476 6

S6 0.611 0.494 -0.024 0.488 5
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Table 13 Supplier production data

S1 S2 S3 S4

RCi 0.514 0.481 0.473 0.532

Capacity limit 8500 9000 9500 10000

Defect rate 2.3% 2% 2.5% 1.8%

Delay delivery rate 2.2% 3.5% 2.5% 3%

Quantity discount Q  5000 Q  5500 Q  5800 Q  6500

Unit cost (dollar) 28.5 (26.5) 30 (27.5) 32 (28) 28 (26)

Production lead time (day) 4 (6) 6 (7) 4 (5) 5 (6)

*Demand limit of company

Total demand of product =  = (25500, 26000, 27000)26000

Average number of lead days =  = (5, 6, 7)6
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Table 14 Notation and definition of parameters

Indices

i Index of product i, i=1, 2, …, I

j Price level of product j, j=1, 2, …, J

k Supplier k, k=1, 2, …, K

Variables

xijk A mount of product i purchased from supplier k at price level j

yijk = 1, if supplier k is selected for product i at price level j (xijk > 0); = 0, otherwise (xijk = 0)

Parameters

Di Demand of product i

iL Product i average lead time

Lk Lead time of supplier k

cijk The price of product i offered by supplier k at price level

lk Delay delivery rate of supplier k 

dk Defect rate of supplier k

wk Overall RCi of supplier k obtained by fuzzy TOPSIS

Cik Supplier k maximum capacity limit for product i

Vik Quantity discount minimum order quantity of product i from Supplier k
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Table 15 Payoff table for multi-objective functions 

Z1 Z2 Z3 Z4

Z  677750 649.5 509.5 13777.5

Z  766143 815.0 613.0 12420.5

 Z Z  -88393 -165.5 -103.5 1357
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Table 16 Results of order allocation model 

Decision variables

S1 y11 = 0, [x11 = 0]; y21 = 1, [x21 = 8500]

S2 y12 = 0, [x12 = 0]; y22 = 1, [x22 = 5500]

S3 y13 = 1, [x13 = 2753]; y23 = 0, [x23 = 0]

S4 y14 = 0, [x14 = 0]; y24 = 1, [x24 = 9247]

Utility of objective function and constraints

1 0.692

2 0.539

3 0.698

4 0.601

d 1

l 1

Objective compromise solution

Z1 705018

Z2 725.735

Z3 540.771

Z4 13236.073
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Table 17 Results of order allocation model

Our proposed order allocation model
The order allocation without considering 

supplier evaluation results

Decision variables

S1 y11 = 0, [x11 = 0]; y21 = 1, [x21 = 8500] y11 = 0, [x11 = 0]; y21 = 1, [x21 = 7088]

S2 y12 = 0, [x12 = 0]; y22 = 1, [x22 = 5500] y12 = 0, [x12 = 0]; y22 = 1, [x22 = 5794]

S3 y13 = 1, [x13 = 2753]; y23 = 0, [x23 = 0] y13 = 0, [x13 = 0]; y23 = 1, [x23 = 5800]

S4 y14 = 0, [x14 = 0]; y24 = 1, [x24 = 9247] y14 = 0, [x14 = 0]; y24 = 1, [x24 = 7318]

Utility of objective function and constraints

1 0.692 0.75

2 0.539 0.698

3 0.698 0.906

4 0.601 -

d 1 1

l 1 1

Objective compromise solution

Z1 705018 699835

Z2 725.735 723.266

Z3 540.771 555.628

Z4 13236.073 -
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Table 18 All the criteria weights change according to C11

Criteria BWM weight 1 2 3 4 5 6 7 8 9

C11 0.294 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C12 0.109 0.138 0.123 0.108 0.092 0.077 0.062 0.046 0.031 0.015

C13 0.121 0.154 0.137 0.120 0.103 0.086 0.069 0.051 0.034 0.017

C21 0.084 0.107 0.095 0.083 0.071 0.059 0.047 0.036 0.024 0.012

C22 0.161 0.206 0.183 0.160 0.137 0.114 0.091 0.069 0.046 0.023

C23 0.073 0.093 0.083 0.073 0.062 0.052 0.042 0.031 0.021 0.010

C31 0.010 0.013 0.011 0.010 0.009 0.007 0.006 0.004 0.003 0.001

C32 0.073 0.093 0.083 0.073 0.062 0.052 0.041 0.031 0.021 0.010

C33 0.036 0.046 0.041 0.036 0.031 0.026 0.021 0.015 0.010 0.005

C34 0.038 0.049 0.044 0.038 0.033 0.027 0.022 0.016 0.011 0.005

Total 1 1 1 1 1 1 1 1 1 1
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Table A1 Payoff table for multi-objective decision-making

f1 (maximize) f2 (minimize) fp (maximize)

Z  max f1 (x) min f2 (x)  max fp (x)

Z  min f1 (x) max f2 (x)  min fp (x)


