
Vol.:(0123456789)1 3

J Ambient Intell Human Comput
DOI 10.1007/s12652-017-0488-2

ORIGINAL RESEARCH

Agile risk management using software agents

Edzreena Edza Odzaly1,2 · Des Greer1 · Darryl Stewart1

Received: 18 January 2017 / Accepted: 5 April 2017
© The Author(s) 2017. This article is an open access publication

1 Introduction

Risk management is recognized as a key process area in
software development. Most risk management literature
relates to heavyweight plan-driven processes and typi-
cally assumes that, for example, requirements have been
agreed and signed off in advance of development. On the
other hand, Agile Software Development uses an iterative
approach to software construction, aimed at reducing devel-
opment time, prioritising value, while improving software
quality and inherently reducing risk (Cockburn and High-
smith 2001). This paper intends to demonstrate the idea
of software agents to help manage risks in project devel-
opment. This is achieved by using software agents to carry
out risk identification, risk assessment and risk monitoring,
the agents making use of data collected from the project
environment. In the next section, we have highlighted the
issues identified in risk management for an agile environ-
ment which further will be used as an input to the tool. In
the approach used, the project manager has to define these
elements: project goals, problem scenarios, consequences,
risk indicators, project environment data as well as speci-
fying risk rules using a predefined ‘Rule template’. Next,
the proposed Agile risk tool (ART) model is discussed,
focusing on the development of the tool. This shows how
the risk management activities are decomposed into agents,
as well as how the interaction between agents is used to
ensure that risks are appropriately managed. The use of
a risk register is presented where a list of risks triggered
in the project is displayed at a dashboard. The big advan-
tage of the approach is that software agents can be used to
detect risk and react dynamically to changes in agile pro-
ject environment. To validate the approach some innovative
case studies using student projects are described. Evidence
is therefore provided for the feasibility and applicability of

Abstract Risk management is an important process in
Software Engineering. However, it can be perceived as
somewhat contrary to the more lightweight processes used
in Agile methods. Thus an appropriate and realistic risk
management model is required as well as tool support that
minimizes human effort. We propose the use of software
agents to carry out risk management tasks and make use of
the data collected from the project environment to detect
risks. This paper describes the underlying risk management
model in an Agile risk tool where software agents are used
to support identification, assessment and monitoring of
risk. It demonstrates the interaction between agents, agents’
compliance with designated rules and how agents can react
to changes in project environment data. The results, dem-
onstrated using case studies, show that agents are of use for
detecting risk and reacting dynamically to changes in pro-
ject environment thus, help to minimize the human effort in
managing risk.

Keywords Software risk management · Agile risks ·
Agile projects · Software agents

 * Edzreena Edza Odzaly
 eodzaly01@qub.ac.uk

 Des Greer
 des.greer@qub.ac.uk

 Darryl Stewart
 dw.stewart@qub.ac.uk

1 Queen’s University Belfast, University Road, Belfast, UK
2 Faculty of Computer and Mathematical Sciences, Universiti

Teknologi MARA, 77300, Merlimau, Melaka, Malaysia

http://orcid.org/0000-0003-0516-6686
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-017-0488-2&domain=pdf

 E. E. Odzaly et al.

1 3

the approach and finally some conclusions and discussion
is given.

2 Research problems

2.1 Traditional risk management

Risk management in research papers is always acknowl-
edged as being of utmost importance. To determine what
is needed we used existing work (Odzaly et al. 2009) on
an investigation of the barriers to risk management. The
results of that investigation concluded:

• That there is no standard or commonly adopted risk
management process and/or tool being used in software
development situations.

• That Risk Identification was the most effort intensive
process and additionally 30% agreed that risk monitor-
ing is most difficult and needs more effort.

• That the biggest barrier was that visible (and tangible)
development costs get more attention than intangibles
like loss of net profit and downstream liability.

• Despite the acceptance that risk management methods
enhance system development, nonetheless little sup-
port is to be found on the provision of these methods
(Ropponen and Lyytinen 1997). It has been argued that
the methods of managing risk in software development
are not comprehensive as they deal with specific types
of risk (Bandyopadhyay et al. 1999). Besides, despite
many well known risk management approaches having
been introduced, risk management was still reported as
not being well practiced (Ibbs and Kwak 2000; Pfleeger
2000). As reported in Bannerman (2008) the most com-
mon risk management approaches found in the literature
highlight practices such as checklists, analytical frame-
works, process models and risk response strategies.
Many researchers have conducted research in tailoring
risk management, providing various approaches. How-
ever, only a few studies have reported integration of risk
management with contemporary software development
(Nyfjord and Kajko-Mattsson 2008).

2.2 Risk issues in Agile software projects

It is clear that people issues are the most critical in agile
projects and that these must be addressed if agile is to be
implemented successfully (Boehm and Turner 2005).
Indeed, one of the most important success factors in an
agile project is individual competency (Cockburn and
Highsmith 2001). Additionally, estimation of effort is a
consistent challenge in agile development work, especially

when it is done for the first time (Deemer et al. 2010) and
there are issues with agile skills and personnel turnover, as
well as job dissatisfaction (Boehm and Turner 2003; Mel-
nik and Maurer 2006; Melo et at. 2011). In Scrum indi-
vidual motivation is very important and influences how
diligent team members are; for example in attending daily
scrum meetings (Hossain et al. 2009). Recognising non-
compliance with established practices can provide early
signs of risks e.g. low morale expressed during the daily
meeting or avoiding discussing problems when behind
schedule (Lindvall et al. 2002).

Due to the fact that agile methods depend a lot on the
credibility of the people involved in the projects (Cockburn
and Highsmith 2001; Nerur et al. 2005) as well as their
motivation in applying the agile practices (Layman et al.
2006; Conboy et al. 2010), most issues encountered relate
to the people and the practices involved. This echoes one
of the values in agile manifesto i.e. “individuals and inter-
actions over processes and tools” (Fowler and Highsmith
2001). This implies that not having the right people doing
the right process will be a source of risk.

Cho (2008) developed some research work on issues and
challenges of agile software development with Scrum. The
research work mainly aims to provide guidelines to assist
the companies to avoid and overcome barriers in adopting
the method. An in-depth study was conducted between two
different companies using various qualitative data collec-
tion methods. The study presented various common catego-
ries of issues and challenges in agile projects, among which
the following points are discussed in Table 1.

Chakradhar (2009) has outlined the common pitfalls
in agile projects in which, he proposed that it is vital for
the project manager to understand those pitfalls in order to
reduce risks. Among the important aspects discussed are:
failure to provide sufficient training in agile methodologies;
unfamiliarity of the project manager with agile methods;
poor involvement from the Product Owner; the team prac-
ticing ‘single expert’ with no knowledge sharing as well as
having passive team members.

Cockburn and Highsmith (2001) highlighted that one
of the most important success factors in a project is indi-
vidual competency. They emphasize the qualities of people
involved in the project, where good people will complete
the project while if team members do not have sufficient
skill, no process can compensate for their deficiency. This
is also supported by Boehm and Turner (2005) where peo-
ple issues are the most critical and it stated as very impor-
tant to address them before adopting and integrating agile
practices into a project. That paper presents a list of barri-
ers to using agile methods successfully and among the sig-
nificant issues highlighted with respect to people are their
roles, responsibilities and skills as well as their ability to
predict and be knowledgeable.

Agile risk management using software agents

1 3

Deemer and Benefield (2006), discuss common chal-
lenges in Scrum. One of the challenges put forward is the
ability of a team to provide estimation of effort in their
development work especially when it is done for the first
time. Most teams fail to deliver the tasks committed to due
to poor task analysis and estimation skills. When this hap-
pens, the team tends to extend the duration of the sprint
rather than learn to do the correct estimation. This can
cause problems in achieving a sustainable pace since the
team will not be able to work reasonably due to delay in
completing other tasks in the project.

Having a team member that is an agile sceptic, meaning,
they are opposed to agile methods, can have a huge impact
to the team as a whole. This is due to the fact that an agile
team relies heavily on trust and sharing of tacit knowledge
to support important practices like pair programming and
shared ownership (Boehm and Turner 2005). Melo et al.
(2011) presents an unusual result with regard to the rela-
tionship of pair programming to tasks and motivation. Sur-
prisingly, whether the tasks are too easy or too complex,
may influence the motivation to work in pairs.

Another important practice in agile process is the col-
lective code ownership. The study results discussed in Lay-
man et al. (2006) indicates that collective code ownership
provides benefits in terms of knowledge sharing within the
team. However, the disadvantage of this is that the team
will tend to choose the fastest solution ignoring its quality,
assuming that they are not the only one who is responsible
for the quality or otherwise of the code. By not assigning
task ownership for a piece of work, this could demotivate
the team in writing code that conforms to the standards
or required quality levels. Other problems discovered are
working at a sustainable pace and accuracy of estima-
tion. These problems are due to the situations like having

aggressive datelines, having to work overtime as well as
underestimation of completion of time.

Nelson et al. (2008) introduced a risk management tech-
nique that can be adopted in agile processes. The paper also
provides an argument in relation to agile being risk driven
in that it implicitly manages risk in the process. One of the
implicit techniques used is to prioritize tasks at the start of
iteration. However, simply placing higher priority to a high
risk task is not considered as managing risk. It does reduce
the risk to the project if the associated task is executed ear-
lier, but until the risk is resolved or no longer applicable,
the task needs to be monitored for the risk, and action taken
if necessary. When identifying the right risk for the task
and analysing it is not done properly, presenting an appro-
priate plan to mitigate the risk is difficult (Williams et al.
1997; Ahmed et al. 2007).

3 Solution approach

As a result of the issues identified, there is a strong
motivation to improve the management of risk in agile
projects without reducing agility in projects. In reality,
contemporary risk management should be able to be inte-
grated into the agile process to support decision making.
This includes taking into account human factors such as
developer skills and ability as well as their behavior in
performing tasks. Due to the fact that Agile relies heav-
ily on the competency of the people involved, therefore
we converted these issues to risk factors i.e. situations
or events that may cause a loss to occur and therefore
that we need to monitor in a project as shown in Fig. 1.
In order to establish the basis of the ART model in rela-
tion to risk management, a model called Goal-driven

Table 1 Categories of issues/challenges in agile projects (Cho 2008)

Categories Issues found

Human resource Formation of team, where team was being organized without considering their necessary skills and knowl-
edge

Multiple responsibilities where one team member is responsible for many tasks
Some developers are not aware of the benefits of applying agile methods, and so are reluctant to apply

agile practices
Lack of accountability where team members do not take responsibility for any delayed task coupled with a

lack of supervision
Collaboration between team members is difficult, especially when they are not located together

Structured development process Scrum meetings; daily scrum, sprint planning and sprint review meetings are sometimes inefficient where
they are being held too often, or taking up too much time or setting up the meeting is difficult

Difficulties in estimating project work on legacy code
Environmental Poor customer involvement and unclear product requirements

Individual contribution is not recognized and no guidelines exist in determining accurate measurement of
individual performance

Information systems and technology A lack of communication between team members that are co-located causes duplication in resolving
problems

Newly hired team members tend to create code errors due to unfamiliarity with the software

 E. E. Odzaly et al.

1 3

software development risk management model (GSRM)
proposed by Islam (2009) was reused. This model is
used to specify the input for the project, which consists
of the type of risks and the risk indicators as well as the
environment data which can be used to identify the risks
for the project. Thus the issues discussed earlier are
transformed into a set of sprint goals. These will later be
used to define the risks and their indicators thus allow-
ing risks to be monitored continuously.

The following section will discuss the development of
the ART model and how it is used in dynamically man-
aging risk.

3.1 The agile risk tool (ART) model

The development of the ART model started with the
establishment of a view of how risk management may
apply in an agile environment. Figure 2 below depicts an
overview of the resulting model.

3.1.1 Input

The model represents how risks are gathered and managed
throughout an agile project. During the Input stage, the
agile process begins with planning and requirements gath-
ering. At this stage, while preparing the project, at the same
time, the gathering of risk data can commence. Require-
ments in agile processes are most often represented as user
stories. These are textual descriptions that contain the cus-
tomer’s specification of needs for the required system. A
product backlog is a subset of these requirements that will
be selected from based on priority.

The environment data used contains:

• A project in this context is a set of user stories, the
membership of which is not fixed at any point of its life-
time. Each project relates the unique project name of the
project, a set of goals for the project, when it started and
when it ended.

• A team is a set of persons where each person consists
of a set of attributes describing the person. Each team
is working to achieve the goals of the project. For each
team member there is specific information, for example
on the type of skills that the team member possesses
and also their levels of expertise in defined skills, stated
as an integer;

• User stories are divided into tasks. A task refers to a tex-
tual description of the task associated with the estimated
hours of completion, the name of the person responsible
for the task and the progress for the task;

• Progress refers to additional information on the progress
of a specific task as reported by the person responsible
for the task. This includes information on attendance
of the team member in the daily scrum meeting and
whether progress or an impediment is reported for the
task;

• Risk data represents information on risk captured by the
tool. The information includes the name of the risk, its
severity, the owner of the risk, location of the risk as
well as the date the risk is triggered and resolved.

The risk indicators and rules refer to a set of predefined
risk factors brainstormed by the team at the early stage of
the project and encoded as rules (this will be further dis-
cussed in the next subsection). The risk indicators contain
a textual description indicating a threshold or state that will
trigger the risk. One example might be where a high prior-
ity task is selected in the sprint by a developer with too low
a predefined skill threshold. Rules contain a list of condi-
tions for an event encoded into IF/THEN statements. Later,
this information is stored in the rule engine. Input data
refers to a set of collected data from the environment and
translated into a set of templates readable by the tool.

Fig. 1 Agile risk tool (ART) GSRM Model

Fig. 2 Agile risk tool (ART) model describing the application of risk
management in Agile environment

Agile risk management using software agents

1 3

During the Process stage, the project proceeds as itera-
tions which include sprint backlogs, design and code, test-
ing and small releases of the product requirement. Itera-
tions contain are time-boxed into fixed length durations of
development. Risk agents (or ART agents) will manage the
risk based on the input data defined earlier. This risk pro-
cess is autonomous, where software agents; identify, assess
and monitor risk based on the input data from the environ-
ment. Once any risk is triggered, risk data will be displayed
in the Risk register. Any changes or updates to the envi-
ronment will affect the risk data (whether or not the risk is
flagged up).

At the Output stage, the final risk data can be obtained
after the delivery of the product and during a Sprint review
meeting. The risk register provides a view of all identified
risk data. At the end, the data displayed in the Risk Register
can be recorded and saved in the risk data repository where
this information can be used to plan future projects.

The model has been demonstrated further and used as
part of the work in (Odzaly et al. 2014). This is where the
ART architecture proposed was demonstrated in order to
explore the application of risk management in agile appli-
cations. This paper complements that in focusing on the
development of ART agents used at the Process Stage.

• The development of ART Agents

One way to move towards automation is to give software
agents responsibility to identify, assess and monitor risk.
These agents ideally should be able to autonomously react
to environmental changes, where the environment in this
case is the software development environment, including
the set of tools being used.

In order to reduce barriers in risk management applica-
tion, a lightweight risk management approach is needed.
The newly proposed approach includes three main steps
in risk management; risk identification, risk assessment
and risk monitoring. The rationale of doing so was twofold
(1) to develop a realistic and acceptable risk management
process that can fit into the agile methods (2) an empiri-
cal study (Odzaly et al. 2009) confirmed the most compli-
cated steps in managing risks were risk identification and
risk monitoring. In addition, prior to this section evidence
is established that contended that risk management was dif-
ficult mainly due to the required human effort. Given this,
the aim is to substitute some of the human involvement
with autonomous software agents with the goal that these
could manage risk and minimize the need for manual input.
Automated agents can therefore help ease the work load in
managing risk, specifically in identifying, assessing and
monitoring risk.

Decomposition of risks into activities is common-
place. One example discussed in (Kontio 1997) used

decomposition of risk into conceptual elements like risk
factor, risk event, risk outcome, risk reaction, risk effect
and utility loss. More recently a top down goal decomposi-
tion technique is described in Bresciani et al. (2002) and
Dardenne et al. (1993). Indeed Boehm’s tutorial on risk
(Boehm 1989) decomposes risk management into activi-
ties. In this work the category or type of agents used was
derived based on initial agent goal decomposition as shown
in Fig. 3, based on Boehm’s work.

The generic aim of this work is to find ways of lowering
the barriers to application of risk management. One of the
objectives is to use the agents since agent behaviour is more
adaptable and can act on behalf of the project manager of
the agile project. In this case, some of the effort of the pro-
ject manager is replaced by agent execution such that they
will react automatically according to their own goals. In
identifying goals for the agents, the top level goal is started
in order to apply risk management in software development
project, particularly in agile projects. This goal is further
decomposed into two intermediate sub goals; assessing risk
and controlling risk. These sub goals are then decomposed
into six smaller sub goals; identify, analyse, prioritize, plan,
resolve and monitor. As a result of the decomposition of the
goal, agents were assigned based on the smallest sub goals
which supported the top level goal. Since the most effort
intensive steps identified earlier were identification and
monitoring, for the meantime, both sub goals were selected
in addition to analyse and prioritize goals as highlighted
in Fig. 3. Note that here that only the bottom level goals
are engaged; the assumption being that top and intermedi-
ate level goals might have largely a controlling function but
nonetheless have their own goals on how lower level agents
should interact.

Further ART agents were developed for this work as four
agents; manager agent, identify agent, assess agent (com-
bines analyse and prioritize goals) and monitor agent. This
is depicted as in Fig. 4 that shows the interactions (com-
munications via passing message) between manager agent
and the identify, assess and monitor agents. Depending on

Fig. 3 Risk decomposition graph for the Agile risk tool (ART)
agents of four risk management activities

 E. E. Odzaly et al.

1 3

the data from the environment, the agents react to detect
risk dynamically through rules execution, where rules are
invoked from the rule engine. The ART agents’ communi-
cation is described further as below.

There are four ART agents and each of them has a desig-
nated goal assigned to them. The goal and purpose of each
of these is discussed below.

• Manager Agent acts as an intermediary between the
other three agents. It manages and executes rules, gets
data from the Environment and notifies Identify agent if
any risk is triggered.

• Identify agent is notified if any risk is triggered. It
requests from the Manager agent what risk has been
identified and notifies the Assess agent.

• Assess agent is invoked by the Identify agent and its
goal is to estimate the risk exposure (RE) of the identi-
fied risk where RE = probability (P) × impact (I). The
identified risk will then be ranked as high, medium or
low and the monitor agent is notified to take subsequent
action.

• Monitor agent is invoked by the assess agent with some
data: RE and rank of the identified risk. The monitor
agent will establish the location of the identified risk
along with the owner of the risk. This data is then dis-
played in the Risk Register which later can be recorded
and saved in the risk data repository.

3.1.2 Process

At the Process Stage, the ART agents will monitor the
risk by acknowledging any rules or risk indicators

triggered as informed by the ART template. The ART
agents will initiate communication between them. Mes-
sages are passed according to request and each agent will
notify another agent in prompting any further action to
be taken. An example of the ART agents’ communication
was introduced earlier in this chapter (Fig. 4).

Figure 5 show an interaction between the ART agents
starting when a risk is triggered. The figure shows the
agents passing message using the Sniffer agent in the
JADE platform. True to its name, sniffer agent is a purely
java application that tracks messages in the JADE envi-
ronment. It is useful when debugging the agent behav-
iours and for analysing message passing using in the
sniffer GUI (Bellifemine et al. 2007).

Rules and the environment data are dynamically edit-
able. In the event where changes need to be made, one
can modify the environment data (which has been trans-
lated into the ART template earlier) as well as the risk
rules and indicators using the provided main screen area.
On the other hand, when developing possible risks asso-
ciated with rules and risk indicators, one might find the
environment data used to be insufficient to detect certain
risks. In some cases, a small change in collection of the
environment data would allow defining or detecting more
risks. For example, adding the information on developer’s
skill will allow monitoring the developer’s programming
capability especially in completing high priority task.
An example of a rule syntax that can be used is, “IF the
developer skill level is ‘low’ AND the developer involved
with a ‘high’ priority task, THEN there is probability a
risk of the task cannot be completed on time because of
the developer’s poor programming skill”.

ART agents will react dynamically to input data, pro-
cess the input by assessing any risk triggered and produce
a risk result in the Risk Register.

Fig. 4 The communication between the ART agents and how they
interact within the environment data and rule engine

Fig. 5 Sniffer Agent

Agile risk management using software agents

1 3

3.1.3 Output

The idea of a Risk register has been defined by Wil-
lams (1994) who states that “the risk register has two
main roles. The first is that of a repository of a corpus of
knowledge… The second role of the risk register is to ini-
tiate the analysis and the plans that flow from it”. While
(Patterson and Neailey 2002) reported that very few
development and construction of risk registers although
it is commonly used in Risk Management. As such, risk
register developed in this work can represent as a risk
dashboard in which one can see a list of risks triggered
by the ART agents. The Fig. 6 shows an example of risk
register used as the visualization of output in this tool.
An overview of the main algorithm is described below:

Input

env_data = Environment_data items (project, team,
task, progress, risk) as sensed from tools used. Here
we will refer to a generic type env_data.
risk_indicator[] = sets of threshold values for each
type of environment data. There is a 1:N association
between each env_data type and risk_indicator. Each
risk indicator represents a measurement than can be
sensed in the environment for that environment data
item.
risk_rules[] = User defined ruleset defining for each
risk_indicator how to react when the value of env_
data meets/exceeds/falls below risk_indicator. There
is a 1:N association between risk_indicator and risk_
rule[i].

Output

risk_register[] = set of risks where risk is a textual
statement and a conceptual value (high, medium, low)
Dashboard = display of risks

Functions

env_data_onChange(): This function exists for each
env_data item and is triggered when the sensed value
has changed
checkRiskCondition(env_data) is a function that com-
pares the value of env_data with the appropriate indica-
tor and returns a set of applicable rules from the ruleset,
risk_rules[]
applyRule() calls any necessary actions (e.g. emails
alerts)
updateRegister() appends or updates risk in the risk_
register[]
updateDashboard() notifies the dashboard of new/mod-
ified/deleted risks.

Algorithm for each env_data:
env_data_onChange()

BEGIN
applicableRules :=

checkRiskCondition(env_data)
ForEach rule in applicableRules

BEGIN
applyRule()
updateRegister()
updateDashboard()

END
END

4 Case studies

In order to show that the suggested approach is feasible
case studies were conducted using student project artefacts.

4.1 Case study methodology

This work aims to answer the following Research Ques-
tions (RQs):

1. RQ1: Is it possible to support risk management in agile
projects using existing SE environment data to over-
come barriers in the application of risk management?

2. RQ2: Can data collection be conducted with minimal
intrusion and effort?

3. RQ3: Can software agents coupled with a rule engine
provide a means to automate risk management in agile
projects using data from the software development
environment?

Fig. 6 Agile risk tool—Risk Register

 E. E. Odzaly et al.

1 3

In order to address these, case studies were used using
the proposed solution approach and tool support. The
choice of case study was based on the fact that the devel-
opment of the approach was rather new and exploratory
involving a large number of variables; thus a flexible and
natural method was needed. Easterbrook et al. (2008)
declared exploratory case studies to be suitable for pre-
liminary investigations of some phenomena to develop new
hypotheses and build theories, and confirmatory case stud-
ies to assess the existing theories. Case studies can provide
a deeper understanding on the subjects under study and the
results obtained are valuable as well as contributing to the
body of knowledge (Kitchenham et al. 1995).

Easterbrook et al. (2008) promotes case study research
where it uses the purposive sampling, thus depending on
the nature of the research objectives. A case study is suita-
ble when research is required in order to gain deep insights
into chains of cause and effect. Furthermore, exploratory
investigations are appropriate where there is little control
over variables in the study. It started with the investigation
into issues and problems in risk management in agile pro-
jects in order to gain deeper understanding of the phenom-
ena followed by a proposed solution approach. Later, the
solution approach is validated using a developed prototype
tool using the case studies labelled CSA and CSB. The first
case study, Case Study Alpha (CSA) was considered neces-
sary to explore the problem domain and was preliminary
in nature, mainly intended to develop the Research Ques-
tions above. The second case study, Case Study Beta (CSB)
was conducted as a confirmatory case study and was used
to assess the existing theories and results developed from
CSA. However, both case studies aimed to provide vali-
dation of the solution approach and the tool support with
improvements being made in CSB, based on the lessons
learned from CSA. Mixed methods were used includ-
ing (1) an informal interview with the Product Owner to
validate results from the prototype tool and (2) artefact or
archive analysis was done to understand compliance with
agile practices in the team as well as to demonstrate the
outcomes generated from the prototype tool. The artefact
or archive analysis refers to the investigation of project data
which includes the Agile Project Management tool spread-
sheet they used to collect data, minutes of the meeting and
SVN repositories in order to identify patterns in the behav-
iour of the development team.

The case studies were carried out on groups of students
who were tasked with a software project and used their
data as an input to the proposed approach. Many practi-
tioners in agile projects claim that agile methods inherently
reduce risk (Boehm and Turner 2005; Cohn 2005) but to
the authors’ knowledge very little research has been done to
confirm this or in relating these two areas. However intro-
ducing something new in an organization is difficult and

likely to be costly. Menzies et al. (2009) use the term ‘data
drought’ to describe the situation where there is an unwill-
ingness from organizations to share their operational data
due to, among other factors, business sensitivity associated
with the data. Given the difficulties of obtaining industrial
data coupled with the ready availability of student project
data in a university setting, student group projects were
used in order to demonstrate and validate the approach. On
the other hand, the use of student project data has strength-
ened the approach due to the access to a unique data set
which is not be available in any other setting. This includes
the access to data for a set of parallel agile teams all carry-
ing out identical sets of user stories. This scenario would
be very difficult to find or engineer in a similar study else-
where, and virtually impossible in an industrial setting.

4.2 Case study design

The study used data from a final year undergraduate hon-
ours course in Agile Methods, taught at Queens University
Belfast in the years 2011 and 2012. In the theoretical part
of the course, students received lectures on general agile
development practices with an emphasis on Scrum. Dur-
ing the course, students were required to build a large soft-
ware artefact using Microsoft.NET technologies using an
industrial strength environment adopting both agile project
and software engineering practices. This includes applying
important Scrum project management practices such as Pair
Programming, Test Driven Development, Release and Itera-
tion Planning and Refactoring in their software project. The
first case study was developed in 2011 involving 38 under-
graduate students, assigned into six groups with six or seven
developers each. All groups were required to develop the
same product requirements. The first case study was devel-
oped in 2011 (CSA) with groups labelled Alpha1 to Alpha6
(Alp1–6). The second case study was developed in 2012
(CSB) and involved a total of 56 undergraduate students
with eight groups, Beta1 to Beta8 (Bet1–8) each group con-
sisting of five to eight developers. All groups were given the
same product requirements as in the first case study. How-
ever, due to some missing data from group Bet8 this group
was dropped from the study, leaving only 48 undergraduate
students involved in this study. The projects in both case
studies involved two sprints, SP1 and SP2 which respec-
tively had at least 10 to 15 working days. Before the start
of the project, the Product Owner, a role played by a mem-
ber of academic staff, introduced the Product backlog items
which consist of a list of prioritized user stories. Thereaf-
ter, it was each group’s responsibility to deliver these to the
satisfaction of the Product Owner. The Product Owner and
students were able to communicate regarding any arising
issues in both sprints; therefore the groups have been super-
vised throughout the development process.

Agile risk management using software agents

1 3

As described in Sect. 3.1, the case studies were used to
demonstrate the ART Process Flow (Fig. 2) which contains
essential stages in Input, Process and Output stage. The
most vital part of the process is to determine its environ-
ment data and risk rules for the project. This is further elab-
orated on in the following sections.

4.2.1 The environment data

At the beginning of this work, two agile project management
tools were studied; Extreme manager1 and Rally software2 in
order to define possible environment data that may be availa-
ble in a real-world scenario and could be used in this work.
The environment data were categorized as follows:

• Project data—contains information about the project i.e.
project name, start date and end date.

• Team data—contains information about the team mem-
bers i.e. skills and experience.

• Task data—contains information on the user stories and
breakdown of the tasks associated with the estimated
hours.

• Progress data—contains information about the team
reports on task progress.

After this information has been obtained from the stud-
ied tools, four categories of data described above were
focused. Upon starting up the first case study, the ART

1 Hindsa, Extreme Manager, http://www.hindsa.com, accessed 14
March 2014.
2 Rally, http://www.rallydev.com, accessed 14 March 2014.

template was set up for collecting data from these catego-
ries. The collected data from the student projects was as far
as possible, screened and matched in order to meet the gen-
eral cases from the studied tools. Even though the student
projects did not use any of the studied tools the same envi-
ronment data was available in their environment by other
means. The summary of the possible environment data that
can be collected is simplified in the following Table 2. Note
that there are two available data items that were not used
in this study; Total number of projects involved and also
Team skills since the students in the case studies were only
involved with one project at a time and all students fulfilled
the required skill in programming, which in this case was a
need for C# experience. It is envisaged that in an industrial
project this data would also be used to identify risks.

4.2.2 The risk rules

In previous studies, the research problems and issues in
agile projects were discussed and transformed into a set
of problem scenarios which was then presented in Fig. 1.
Each problem scenario represents a possible risk event that
is associated with a Sprint goal for the project. The Sprint
goal is important since it can be used to consider how envi-
ronment data values could be used as indicators of threats
to those goals i.e. triggers for the risks. Therefore, it is pro-
posed that risk rules can be formulated using the risk indi-
cators to identify events that cause loss (delay/extra cost/
loss of value) i.e. risks, leading to a situation where risk
identification can be automated.

Table 3 below show the sets of risk rules and risk indi-
cators for the problem of task ownership. This problem is

Table 2 The summary of
collected environment data from
the student projects in Case
Study Alpha (CSA) and Case
Study Beta (CSB)

No. Environment data Attributes Value Used Repository

1 Project ID Project unique number ✓ Project data
2 Project status Not started, in progress, completed ✓ Project data
3 Team name/ID Team member name or unique number ✓ Team data
4 Role ScrumMaster /developer ✓ Team data
5 Total No. of role assigned 1 or 2 roles ✓ Team data
6 Total No. of project involved 1 or more projects ✗ Team data
7 Team skills Programming (C#) ✗ Team data
8 Agile experience True/false ✓ Team data
9 Agile level Very good, good, average, poor, very poor ✓ Team data
10 Skill level 5 (highest skill) to 1 (lowest skill) ✓ Team data
11 Task Name/ID Task name or ID ✓ Task data
12 Task priority High, Medium, Low ✓ Task data
13 Paired by Paired or Not Paired [“ ”] ✓ Task data
14 Total owned 1, 2 or more developers ✓ Task data
15 Estimated hours No. of hours ✓ Task data
16 Daily meeting attended Yes/no ✓ Progress data
17 Progress details Yes/no ✓ Progress data

http://www.hindsa.com
http://www.rallydev.com

 E. E. Odzaly et al.

1 3

inferred from the risk issues related to people and using
the Rule template presented in Table 1. Earlier, the ART
GSRM model was developed that shows the relationship
between goal, risk-obstacle and assessment. Using this
model, the following rule template table (Table 3) show
one of the sets of goals, problem scenarios, rules and risk
indicators used in this work.

Table 3 indicates the set of rules and risk indicators
for goal G1 where when a sprint is started, an appropriate
number of developers should be assigned to the particular
tasks. The usage of indicators generally depends on how
the project manager wants to signify that the condition
appears to be at risk. Two indicators were selected for the
goal based on the risk issues highlighted earlier. Indicator
IN1.1 states that once the Project Status was [In Progress]
and the Task selected has no pair [“ ”], i.e. null or empty
string, then the Risk 0001—“Pair programming” is trig-
gered. IN1.2 states that once the Project Status is [In Pro-
gress] and the Task is owned by more than two developers
[>2] then the Risk 0002, “Task ownership”, is triggered.
These indicators are then translated into rules RL1.1 and
RL1.2 that contain object, attributes and value of the attrib-
utes that will be picked up by the agents. The repository
section shows where the environment data is involved for

the particular risks. As mentioned earlier, the set of indica-
tors and rules can be updated from time to time depending
how the project manager decides to identify risk. One such
case is the modification of the rule for pair programming
which took place between CSA and CSB.

4.3 The case studies

Given that the approach is novel and still at a research
stage, the chosen study was rather exploratory in nature,
where it relies on the collection of existing data used in the
project as opposed to ongoing data collection in an ideal
situation. Where possible, multiple sources of evidence
(triangulation) were used, meaning that archival artefacts
and informal interviews with the product owner were used
to confirm findings. For example, after each collection of
data an informal interview with the product owner was held
in order to verify the interpretation based on the collected
data. As mentioned earlier, students had no knowledge that
their project data was being be assessed for risk, removing
any possible bias in this respect. Rather they were moti-
vated in demonstrating that they had followed agile pro-
ject management practices e.g. pair programming as taught
in classes and producing high quality working software.
Based on the data collected in CSA, some issues were
found in adopting the approach. These were noted along
with conclusions of further discussions with the product
owner. The outcome from this investigation was recorded
in the investigation notes. Further, one modification was
made to one rule, R0001, to be used in the next case study.

The following section discusses in detail the ART pro-
cess flow (Fig. 2) as conducted in the two case studies.
Both case studies consisted of two sprints so that the pro-
cess flow was repeated iteratively in four instances.

Table 3 Rule template for task ownership

The remaining project goals; G2: Skills and Experience, G3: Resources and G4: Progress, are not discussed further in this paper. However, the
generated risk rules associated with goals described earlier in Fig. 2 were mapped to goals as follows (Table 4). In each case the risk represents a
threat to the goal success

Goal G1: In sprint X, task Y should be assigned to appropriate number of developers once Sprint X is started

Problem scenario PB1: during the sprints, the developer does not have any pair or has too many programming partners for the selected task
Consequences Avoiding ‘single expert’ or too many developers sharing code
Indicators IN1.1: Project is started and when a task is selected in the sprint, ‘task paired by’ is empty—indicates high risk

IN1.2: Project is started and the selected task owned by more than 2 developers—indicate low risk
Repository/data Project data

Task data
Rule(s) RL1.1: If Project.Project_Status = [In Progress]

AND If Task.Paired_By = [“”]
RL1.2: If Project.Project_Status = [In Progress]
AND If Task.Total_Owned > 2

Risk ID and Name RN1.1: R0001 pair programming
RN1.2: R0002 task ownership

Table 4 Mapping goals to associate Risk ID used in Case Study
Alpha (CSA) and Case Study Beta (CSB)

Goals Risk ID

G1: task ownership R0001, R0002
G2: skills and experience R0003, R0004,

R0009,
R0019

G3: resources R0005, R0006
G4: progress R0007, R0008

Agile risk management using software agents

1 3

4.3.1 Case study alpha (CSA)

As described earlier, the ART Process Flow consists of
three main stages; input, process and output. In this section
this process is described in detail.

The Input stage starts by gathering all necessary data
from the student project artefacts and translating the data
to match the ART Template. During the Input stage, there
were two inputs needed—definition of the list of environ-
ment data and definition of the risk rules used in this study.
In order to define the list of environment data, two steps
were performed.

1. Gathering data

For the purpose of defining the list of environment data,
archived artefacts derived from the student projects were
used. There were five main artefacts used in this study,
summarised as below.

• Hartmann-Orona Spreadsheet—a well known spread-
sheet mostly containing sprint backlog data, including
the breakdown of each user story into tasks, estimated
hours and owner of each task.

• Sprint Backlog Target—contains a list of user stories
and associated points and dependencies.

• Scrum Minutes of Meeting—contains information on
team attendance and updates on tasks.

• Code Repositories—a subversion (http://subver-
sion.tigris.org) source control system that was used
by students to manage their project. Each group was
required to log their activities and check in all docu-
ments and source code.

• Source Code—the students were required to use the
C# and VB.Net programming languages

Table 5 below shows the list of extracted data from the
archived artefacts of the environment data.

The archived artefacts available however, did not pro-
vide as much data as the studied commercial tools. Nev-
ertheless, the archived artefacts contained enough useful
information, particularly related to sprint backlog and
the user stories, breakdown of the tasks, details of the
developer responsible for a task and so on. In addition,
the goal of the study was to demonstrate the approach
and tool support, not applicability to every data item col-
lected in mainstream tools.

Table 5 The environment
data extracted from the student
project artifacts

No. File name Data available/collected

1 Hartmann-Orona Spreadsheet Sprint backlog information
Major task area/user stories
Task name
Task owner
Task status (completed/in progress/not started)
Estimated hours
Commits days and hours for each task
Team member information
Team member name and initials
Working days for this sprint
Working hours for this sprint
Start date
End date
No. of calendar days
Sprint team member daily activity
Team burndown chart
Team member burndown chart

2 Sprint backlog target List of user stories
Points for each user stories
Dependencies

3 Scrum minutes of meeting (Daily) Name of the scrum master for the day
Work progress for each team member
Work done since yesterday
Work planned today
Problems

4 TortoiseSVN repositories Directory and files versioning
Commit files/code
Track changes

5 Source code (C#) integrates with resharper Group project source code
Code quality analysis

http://subversion.tigris.org
http://subversion.tigris.org

 E. E. Odzaly et al.

1 3

One issue that had to be overcome was that of missing
data in the SVN repository. Although all student groups
were required to log their work into the repository, some
groups had not done this. For example, all groups were
required to record daily minutes of meetings yet some of
the minutes were missing from the repositories. Conse-
quently, the product owner had to trace this record through
other methods such as email archives to obtain the miss-
ing data. Similarly, there were some inconsistencies in
the format of the minutes of meetings. For example each
group should have specified the name of the Scrum Mas-
ter for each meeting. However, this information was miss-
ing in some of the groups. Again, the product owner had
to retrieve through email archives and provide this infor-
mation. All issues found were recorded and written in the
investigation notes so that the process could be improved in
the future.

2. ART data translation

Once all data had been defined and organized into its
categories, the next step was to translate this data manu-
ally to fit the ART template. Figure 7 shows an example
of the translation of the data from the archived artefacts to

the ART template. This includes transforming the raw data
obtained from the artefacts in the form of object oriented
concepts.

This is essential so that the ART agents will be able
to pick up the data and match this with the rules embed-
ded in the tool. Since this study was done after the project
had ended, the data obtained was comprehensive start-
ing from day one in sprint SP1 until day 15 in sprint SP2
and ready to be translated into the template. In the event
where the project is new or ‘fresh’, data can be keyed or
added directly through the user interface. Similarly, there
were also issues highlighted while doing this step. The
main issue identified was associated with the process of
translating the raw data into the template. Since this was
done manually, it involved tedious and highly effort inten-
sive tasks. In this case study, there were six student groups
with six different sets of archived data. Even though they
might have the same format or almost the same format of
the document, the interpretation and explanation of the data
was different. To overcome this it was often necessary to
carefully go through all the documents in the repositories
in order to understand how they implemented their project.
Additionally, the problem is compounded in the case of
tracking a task assigned to a team member. For example,
in the Hartmann-Orona spreadsheet, the team defined the
user stories and the breakdown of the tasks. The spread-
sheet itself did not provide a unique id for each of the tasks
although it did include the name of the person responsible
for the task. Whilst in the team minutes for each meet-
ing each team member provided updates on the task they
were assigned, this was only briefly described. In the event
where which team member committed to a specific task
had to be identified and were tallied with the spreadsheet,

Environment Data
HartmannOrona.xls
[TaskName, TeamName]
Minutes.doc
SprintBacklog.doc

ART Template
Object.Properties [Attribute]
Team.TeamName[Sarah,John]
Task.Progress [Yes,No]
…

Fig. 7 Translating environment data to ART template

Table 6 List of risk name along with its associated rules and probability and impact score

Risk ID Risk name Rules [Object.Attribute] = [Value] Prob score Imp score

R0001 Pair programming PROJECT.PROJECT_STATUS = Completed
TASK.PAIRED_BY = “”

3 5

R0002 Task ownership PROJECT.PROJECT_
STATUS = Completed
TASK.TOTAL_OWNED > 2

1 1

R0003 High priority task assigned to inappropriate team member
cannot be completed on time

TASK.PRIORITY = High
TEAM.SKILLLEVEL = 1

5 4

R0005 Overload tasks can cause difficulty in time management PROJECT.PROJECT_STATUS = Completed
TEAM.TOTAL_NO_ROLE > 1

5 1

R0007 Developer absent in meeting possible of employee turnover PROJECT.PROJECT_STATUS = Completed
PROGRESS.DAILY_MEETING = N

1 3

R0008 No progress report PROJECT.PROJECT_STATUS = Completed
PROGRESS.PROGRESS_DETAILS = N

1 3

R0009 Unable to understand agile process and meet the target PROJECT.PROJECT_STATUS = Completed
TEAM.AGILE = false

3 3

R0019 Unable to comply with the agile process TEAM.AGILE = true
TEAM.EXPERIENCE = Very Poor

1 1

Agile risk management using software agents

1 3

there is a need to go through the repositories and look at
the code commits by the team member. The time consumed
was 2–3 h for translation of one group’s data, excluding
time spent retrieving missing data.

Next, the risk rules for this case study were defined.
Table 6 below shows the list of risk name and rules as dis-
cussed at the beginning of this chapter as well as its prob-
ability and impact score as defined for each risk. Note that
the rules were embedded in the Rule engine during the
development of the ART prototype tool and at this stage
existing rules from the Rule engine database had only to
be selected. However, when needed, new rules were added
into the Rule engine or existing rules edited using the pro-
vided user interface. Similarly, when entering the probabil-
ity and impact the parameters could be adjusted later on.
For this case, the value of the probability and impact score
for each risk was cross checked with the Product Owner.
Since this was a student project, there was no actual impact
on cost involved for this project. Therefore, the impact fac-
tor was based on the consequences of the student not com-
pleting the project and not producing a quality end product
as required by the Product Owner. In the real world project,
the risk identified will be more project-specific, in other
words risks are assessed individually for a specific project
situation or environment. A significant project risk can be
the result of certain characteristics in the project environ-
ment. For example, a developer who is considered to have
very low skills but is assigned to a high priority task could
lead to a higher risk exposure compared to where that
developer is assigned to a lower priority task. In brief, the
project manager determines what risk is significant and
how severe the risk is.

The Process stage is the stage where the risk assess-
ment automatically took place. Based on the defined
inputs described previously, the ART agents communi-
cate between the ART template and the Rule engine. At
this stage, once the project is loaded into the ART proto-
type, changes can be made using the provided user inter-
face. Once the tool is ‘run’, the ART agents will react if
any of the rules are triggered and then notify an identified
risk. Any changes in the inputs will result in changes in the
outcome of the triggered risk as well. This is because the
identified risk can be observed in the Output stage and the
problem of ignoring a risk is avoided.

In the Output stage, once a risk is identified, the risk
result is displayed in the Risk Register. This should also
show an overview of all risks triggered. This includes the
risk name, location of the risk associated with the affected
task and the owner of the risk, defaulted to the owner of
the task. The risk register also displayed the risk result
according to priority, starting from the risk with high to
low severity. After one sprint is completed, the risk result is
stored into the Risk data repository.

After each sprint in CSA was completed, reports were
created. The presented reports provide useful information
on the total of risk score each day and in one sprint. This
includes information on the breakdown of risk identified
each day.

4.3.2 Case study beta (CSB)

Based on the experience from CSA, investigation notes
revealed the following issues:

1. Design of the project: Since the project was designed
for students as part of a university course, the real goal
in practice was for students to apply what they had
learnt during the course. Hence changing the structure
of the project was not possible. Further, due to the lim-
itation of time in completing their project it is not pos-
sible to add more management tasks. Nonetheless, data
collection needed to be easier.

2. Format of the document: In order to avoid missing
data, standard formats were established for documents
used for data collection in the project; i.e. meeting
minutes.

3. Naming conventions/traceability: It was decided that
in order to easily track the data between a task and its
owner a unique id for each task and each team member
was required. For example, all tasks should start with a
unique id beginning with “TS” e.g. TS001 and all team
members could have a unique id starting with “TM”
e.g. TM001.

4. Task allocation and estimation: Based on the summary
of data collected on each group project background,
it is found that some groups failed to allocate tasks
evenly to each team member. Some team members car-
ried out too many tasks which resulted in some of the
tasks not being completed. Further, it was noticeable
that some of the estimated task sizes were too big and
should have been split into smaller tasks of almost the
same size. It was also emphasized that team members
should practice pair programming whenever a bigger
task is assigned.

5. Specifying student skill level and agile experience:
During sprint SP1 it was proposed that student skill
and agile experience should be taken into account. At
this stage, identifying student skill was relatively easy.
Specifying agile experience is more problematic. In
SP1 it is assumed all students did not possess any agile
experience but their agile experience was then meas-
ured in SP2 based on the assessment by the educator
from the first sprint.

6. Risk rule for pair programming: Risk results were pre-
sented to the product owner and one of the most com-
mon risks found was related to absence of pair pro-

 E. E. Odzaly et al.

1 3

gramming. It was obvious, from the findings that most
of the students did not adhere to this practice. How-
ever, the argument was that some of the tasks were too
small and were not suitable for work in pairs. As such,
it is essential to propose to modify the rule, where the
modification being described further in the following
case study—CSB.

Based on the lessons learnt, the improvements to data
collection were made and to performance of the students
in applying the agile practices learnt in their course. Stu-
dents were informed of these. At this stage, it is assumed
that the product owner’s awareness of the students’ perfor-
mance has increased based on the lessons learnt from CSA.
In addition, it is expected to change the performance of the
student group in this case study.

During the Input stage, the same steps included in the
previous case study were adhered. As described previously,
due to the nature of the project we were not able to change
the structure of the project and therefore the same artefacts
were used and data capture methods from these artefacts.

At the data gathering step the process was found to be
much easier than in the previous case study. For example,
some of the student groups used the new naming conven-
tion in naming their reports and one group used the format
of the proposed minutes of meeting. As reported earlier
regarding some missing data from the previous student pro-
jects and for this case study there was one group who had
not logged their main document which was the Hartmann-
Orona spreadsheet in the repositories. This document was
untraceable therefore there is a need to drop this group
from this study. Although the acceptance in changing the
working method is rather poor in this instance this can be
improved gradually. Similarly, in a real world project it is
normal that some organizations might refuse or feel chal-
lenged when asked to change their methods. However,
due to the limitation discussed earlier it is not possible to
compel the students to adhere to standards due to the con-
straints of this also being an assessment exercise.

As discussed earlier the difficulty in carrying out the
process of transforming the raw data into the template
during the ART data translation step. Although the effort
of performing this step is still quite intensive, the time
to translate one group’s data was reduced to less than an
hour. This was especially the case where the standard nam-
ing convention was used in reporting for some groups. In

addition, it is agreed that to implement this approach the
first time was rather challenging. This was greatly improved
and the process would be more effortlessly managed if
adopted repeatedly.

Next, the risk rules for this case study were applied. In
the previous case study, the list of the risks and their asso-
ciated rules (Table 6) were summarized. Based on the out-
comes and lessons learnt from the previous case study, the
pair programming rule was modified in order to provide
a more realistic risk rule. The ability to modify the rules
as needed demonstrate that the solution approach and tool
support is dynamically responsive to changes thus, as is
required in agile projects. This is described in Table 7
which shows the highlighted risk rule as modified. The
remaining risk rules were unchanged.

Once the Process and Output stage have been completed
for the two sprints, again, the reports on the information
gathered on the Risk data were created and presented in the
form of diagrams. The outcome of both case studies has
yielded results of Total Risk Score (TRS).

4.4 Case study results

Risk data derived using the tool and displayed in a Risk
Register was recorded and saved in the Risk Data Reposi-
tory. This risk results later were assessed and presented
using graphs.

4.4.1 Summary of CSA project data

During the planning phase, each team was given Product
backlog items that consisted of a list of user stories. They
were asked to estimate the work effort needed for each
user story in hours and break this down into a set of tasks.
Hence, each team had a varying range of total number of
tasks in each sprint. At this stage, the students were chal-
lenged, based on lectures taught in class, in their ability to
plan and estimate the work effort required for each sprint.

The output from the tool is used as means of assessing
the total risk in the project at any point or in a post sprint
review as shown in Figs. 4 and 5. This graph includes infor-
mation on the breakdown of risk identified each day using
total risk score (TRS). TRS is based on the generic severity
score of a risk item for the task it is related to. The metric
provides results on counting of risk daily and cumulative

Table 7 Risk name along
with its associated rules and
probability and impact score
(modified)

Risk ID Risk name Rules [Object.Attribute] = [Value] Prob score Imp score

R0001 Pair programming PROJECT.PROJECT_STATUS = Completed
TASK.PAIRED_BY = “”
TASK.ESTIMATE > 5

3 5

Agile risk management using software agents

1 3

risk counting in a sprint for continuous risk management
purposes. The TRS is calculated as below.

Consider that there is a set of tasks T in the project on a
given day d:

Td = {t1…tn} where n = total number of tasks on day d.
There is also a set of predefined generic risks R that can

potentially be identified in the project:
R = {r1…rm} where m = total number predefined risks.
Thus, risks associated with each task, t on a given day d

is Rtd ⊂ R.
The TRS for a task t on day d is therefore.
TRStd = card (Rtd), where card is the cardinality of the

set.
These risks can be associated with any of the tasks t in

T. The risks are present while the task is being carried out
in the sprint.

Therefore, for a given day d the TRS is

where the total of risks triggered will be calculated in all
tasks carried out in that particular day.

The application of TRS can be used in a current or on-
going project or a past project. In a current project, TRS
is calculated daily. This is when the project manager can
see the risk triggers from day one and if it is resolved, the
risk is no longer appears. On the other hand, TRS can be
applied to a past project as a means for review. The risk
data obtained can be used as an input using the proposed
approach or to predict risk for a future project.

Figures 8 and 9 below show a plot of the TRS for both
sprints. In SP1, the number of risks score ranged from
as low as zero (either no risk being present or no ongo-
ing task) up to the highest of 53 risks found in team Alp1,
Day 9 of the sprint. In SP2, risk score ranged from zero to
the highest of 103, also found in team Alp1, Day 15. Both

TRS
d
=

t=n
∑

t=1

TRS
td
,

graphs show the increasing and decreasing pattern of risk
detected for each team with some peaks at certain days
which give a better visualization of risk.

The already-established risk burndown chart (Cohn
2010) generally results in a downward risk exposure graph,
computed from the changing probability and size of poten-
tial losses in every sprint. However, that technique does
not show or visualize specifically which risk is being iden-
tified, assessed and monitored throughout the project. On
the other hand, the graph below may be used to develop a
risk trend for a type or a category for agile team. For exam-
ple, a team who are new to agile projects, one might see
risks might increase gradually to a peak and start decreas-
ing towards the end of the sprint as risks are resolved or
tasks completed. On the other hand, a more established
team might not have any risk occurring daily in their sprint;
instead showing a peak at certain times with regards to the
type of risk that they want to monitor.

The data shown in Fig. 10 provides a better visualization
of the type of risk triggered each day in team Alp2, for both

1 2 3 4 5 6 7 8 9 10
Alp1 2 13 25 36 38 31 42 34 53 46
Alp2 2 14 13 33 32 35 39 41 17 7
Alp3 3 0 0 23 27 18 19 21 37 48
Alp4 10 14 13 24 31 29 30 13 18 12
Alp5 10 23 14 20 15 15 22 41 23 32
Alp6 0 6 10 13 13 16 31 26 13 23

0

10

20

30

40

50

60

erocS
ksiRlatoT

Day

CSA - TOTAL RISK SCORE IN SP1

Fig. 8 Total risk score graph of case study alpha (Sprint 1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Alp1 0 2 21 26 36 50 59 62 60 69 97 76 73 72 103
Alp2 16 5 4 3 15 18 18 15 17 16 12 10 8 9 7
Alp3 6 7 10 17 13 13 23 24 40 26 13 9 14 12 10
Alp4 3 7 5 10 10 12 12 13 15 12 11 13 18 8 7
Alp5 0 0 2 3 6 10 2 2 3 7 1 3 4 2 3
Alp6 5 4 3 4 5 4 7 5 6 14 9 11 5 2 6

0
10
20
30
40
50
60
70
80
90
100
110

erocS
ksiRlatoT

Day

CSA - TOTAL RISK SCORE IN SP2

Fig. 9 Total risk score graph of case study alpha (Sprint 2)

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

yadrep
erocS

ksiRlatoT

Day

BREAKDOWN OF TRS ALP2 IN
SP1 & SP2

R0009/19

R0008

R0007

R0005

R0003

R0002

R0001

SP1 SP2

Fig. 10 Graph showing the breakdown of Total Risk Score for team
Alp2 in SP1 and SP2

 E. E. Odzaly et al.

1 3

sprints SP1 and SP2. The advantage of this method was
twofold; (1) one would be able to view the category of risk
triggered for the particular day as well as (2) one would be
able to view which risk being triggered the most and needs
attention from the project manager in order to help in mak-
ing decisions e.g. whether prompt action should be taken
towards the risk that occurred consecutively. For example,
in SP1, team Alp2 had generated risk mainly through not
performing pair programming and from having team mem-
bers without agile experience. However, in SP2, since the
students had already developed using agile in SP1, the risk
of no agile experience no longer existed, but the risk from
not performing pair programming could still occur. In the
student projects these risks if realized might have very little
impact towards project success but in the real-world pro-
ject and these risks are triggered without being addressed
a threat to the project could arise. On the other hand, pat-
terns of risk occurrence for a particular team member can
be inferred and used for estimating future project risks in
similar projects with the same team members.

4.4.2 Summary of CSB project data

Comparing with the TRS presented in the CSA earlier
(Figs. 8, 9) for both sprints, the TRS for CSB was much
lower than the TRS in CSA. This has supported the
assumption stated earlier that the indication of possible
inspection with regard to risk may affect the developer or
student behaviour during the project. Despite the modi-
fication of the pair programming rule for CSB, the TRS
produced in this case study was more realistic so that pair
programming was critical only in bigger tasks. This may be
due to the fact student projects were used in the case study
and a less motivation to do pair programming than if told
to in a workplace. Thus, a high number of risks have arisen
due to the violation of this rule. In practice, the project
manager could modify this rule from time to time.

Figures 11 and 12 show the calculated TRS for both
sprints. In SP1, the risk score ranged from as low as zero
(either no risk being present or no ongoing tasks) up to
the highest risk score of 43 in team Bet7, Day 8 of the
sprint. Whereas in SP2, the risk score ranged from zero to
the highest risk score of 38, which was also found in team
Bet7, Day 9 of the sprint. Both graphs show the increasing
and decreasing pattern of risk detected for each team with
some peaks on certain days thus providing us a better visu-
alization of the risks arising. Normally one would expect
risk should decrease (burn down) over a sprint. However,
referring to both figures of a sprint review, for Team Bet1
on both sprints would demonstrate clearly a useful out-
come of using the tool, that the team performance here was
problematic.

Similarly to CSA, in the light of viewing specific risks
that triggered on a particular day, the data shown in Fig. 13
provides better visualization of the type of risk triggered
each day for team Bet5, for both sprints. The advantage of
having this method is that we would be able to view the

1 2 3 4 5 6 7 8 9 10
Bet1 5 6 13 3 4 13 9 14 6 4
Bet2 1 11 22 29 32 22 18 18 20 13
Bet3 4 9 16 20 19 23 32 21 30 31
Bet4 0 6 11 12 15 26 19 17 17 1
Bet5 8 7 8 15 12 15 13 19 18 8
Bet6 4 14 12 9 9 19 10 11 11 2
Bet7 9 22 29 23 19 41 28 43 28 24

0
5

10
15
20
25
30
35
40
45

erocS
ksiRlatoT

Day

CSB - TOTAL RISK SCORE IN SP1

Fig. 11 Total risk score graph of case study beta (Sprint 1)

1 2 3 4 5 6 7 8 9 10
Bet1 1 7 8 5 9 4 9 8 4 0
Bet2 0 0 0 0 2 1 3 5 8 8
Bet3 14 7 3 4 3 7 4 4 3 2
Bet4 0 8 2 1 2 5 4 4 6 3
Bet5 1 2 2 0 4 1 2 2 3 1
Bet6 1 2 2 3 3 4 6 5 4 4
Bet7 1 2 9 14 11 18 18 33 38 15

0
5

10
15
20
25
30
35
40

erocS
ksiRlatoT

Day

CSB - TOTAL RISK SCORE IN SP2

Fig. 12 Total risk score graph of case study beta (Sprint 2)

Fig. 13 Graph showing the breakdown of total risk score for team
Bet5 in SP1 and SP2

Agile risk management using software agents

1 3

type of risk triggered for the particular day as well as to
view which risk is being triggered the most and therefore
which should be countered as a priority.

5 Discussion

The results obtained from the case study have offered evi-
dence that apart from the novelty of the proposed approach
and tool support, the approach is usable and provides
useful data. The TRS graphs produced in both case stud-
ies provide a useful visualization method which supports
identification and monitoring of risks in a dynamic agile
project. They show the number of risks picked up by the
ART agents and provide a realistic and interactive way of
monitoring risks. The study revealed that it is possible to
use existing SE environment data to support risk manage-
ment. However, there are many environment data items that
can be used to detect risk thus, acquiring project manager
to define which ones that are related to their project. Fur-
ther to this, our empirical evidence also revealed that data
can be collected with minimal intrusion and effort.

Three Research Questions (RQs) were established ear-
lier as an expression of the aims of this research work.
The following paragraphs summarize how these have been
responded to in the case studies.

RQ1: The conclusion provides evidence that it is possi-
ble to use the project environment data to identify risk and
so overcome the main barriers in the application of risk
management. This supports the notion that, in agile pro-
cesses, a lightweight risk management approach is required
that automates some of the risk processes. As a result of
this, a solution was developed using software agents to
react to the project environment, based on designated rules
in order to manage risk.

RQ2: The method used for both case studies evidenc-
ing that data collection conducted from both case studies
involved minimal intrusion and effort, and with no cost
involved. In the cases studies employed, the environment
data used includes the student project data, in this instance
from archived data. The data was stored in SVN reposito-
ries and was retrieved by the educator for use in the case
study. Both case studies did not include any interaction
with the participants in the study setting in order to meet
the purpose of the study. This includes to identify risk in
their project and to investigate compliance of the team
member with agile practices. The collected data was vali-
dated by the educator/product owner of the student’s pro-
ject based on discussion sessions prior to and after the
implementation of the project.

RQ3: A prototype tool was developed in order to vali-
date the interaction between agents, agents’ compliance
with the designated rules and how agents react to changes

in project environment data. This is discussed throughout
Sect. 3.1.1 starting from defining the input, processing the
input and producing the output. Later, a walkthrough of the
ART process is adopted in both case studies supported by
the prototype tool. This demonstrates that software agents
coupled with a rule engine can automate risk management
using data from the project environment.

5.1 Study validity

Since the study presented introduces a new approach in
managing risk in agile project, the main issues are focused
on the internal threats. The first internal threat is in terms
of the accuracy of the measured data, especially because
the data used was based on historical artefacts. Further,
confirmation of this data was not possible as the project
had already been completed at the time of analysis. Sec-
ondly, the approach used entailed manual collection and
translation of data from archived artefacts into the ART
tool. This human effort was required before the ART agents
could begin reacting towards environment data as they
were designed to work in. This effort could be minimized
by selecting a proper individual in the team to conduct this
process, for example the Scrum Master in a Scrum project.

One step taken to ensure the quality of the study was
that cross checking was done from time to time with the
Product owner to confirm perception based on his obser-
vation. Considering external validity threats, the risk man-
agement approach and tool supports were designed to be
as general as possible so that this is applicable in general
to agile project environments. This includes taking into
account two popular agile project management tools stud-
ied for this work so that the approach is as applicable as
possible to other contexts but also lightweight and unobtru-
sive to the team daily activities. Nonetheless, no claim can
be made of good fit with tools not studied. Additionally, the
study used student project data along with the case study
execution guideline (Runeson and Höst 2009) rather than
industrial data. Hence, there will be arguments whether this
is applicable to a real world environment.

6 Conclusion

In this paper we presented a novel approach to manage risk
in agile projects. The work offers contributions in two areas
(1) on the use of case studies for assessing new methods
and tools and provides an example of how student teams
can be used to gather information not feasible in industrial
settings. (2) on the use of agents to semi-autonomic ally
manage software risk.

This work provides several significant investigations on
the problems and issues in risk management specifically in

 E. E. Odzaly et al.

1 3

agile projects. The development of the ART model and tool
support has been demonstrated to help by at least reducing
the problems previously identified with risk management.
The approach is necessarily supported by a prototype tool
which has been shown to manage risks in example agile
projects. The role of risk management in iterative and agile
processes has to date been neglected but this model inte-
grates risk management model with agile methods in a way
that does not bloat the agile process.

This approach however, to the authors’ knowledge and
understanding has never been applied in risk management,
especially with the specific aim of reduction of human
effort. In addition, the resulting risk management process
is naturally lightweight since each software agent is design
to achieve a designated goal i.e. to identify, assess, prior-
itize or monitor risk. This paper has led to use designated
software agents to facilitate the risk management process.
Therefore, this work demonstrates the potential of autono-
mous computing being applied to risk management where
software agents have been used to assist the human oriented
and complex risk management process. In future, this work
aimed to comprehend the physical implementation of the
ART model and tool support, where there is a need to inte-
grate this with existing Agile Project Management tools,
perhaps as a plug-in, so that automated risk management
can be fully realised. This would allow more practical risk
management while a project runs in the foreground, soft-
ware agents are in the background ready to manage emerg-
ing risks.

Acknowledgements This research has been funded partly by Uni-
versiti Teknologi MARA Malaysia and has been part of the Ph.D the-
sis work submitted to Queen’s University Belfast, United Kingdom.
This paper has been selected among best papers presented at the First
EAI International Conference on Computer Science and Engineering
(COMPSE) 2016.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

Ahmed A, Kayis B, Amornsawadwatana S (2007) A review of tech-
niques for risk management in projects. Benchmarking: Int J
14(1):22–36

Bandyopadhyay K, Mykytyn PP, Mykytyn K (1999) A framework for
integrated risk management in information technology. Manage-
ment Decision 37(5):437–445

Bannerman PL (2008) Risk and risk management in software pro-
jects: a reassessment. J Syst Softw 81(12):2118–2133

Bellifemine FL, Caire G, Greenwood D (2007) Developing multi-
agent systems with JADE, Wiley.com

Boehm BW (1989) Tutorial: software risk management. IEEE
Computer Society Press, Washington

Boehm B, Turner R (2003) Using risk to balance agile and plan-
driven methods. Computer 36(6):57–66

Boehm B, Turner R (2005) Management challenges to implement-
ing agile processes in traditional development organizations.
Softw IEEE 22(5):30–39

Bresciani P, Perini A, Giorgini P, Giunchiglia F, Mylopoulos J
(2002) Modeling early requirements in Tropos: a transforma-
tion based approach. In: Agent-Oriented Software Engineering
II. Springer, Berlin, pp 151–168

Chakradhar K (2009) Risk management in agile development.
White paper edn. Polaris Software Lab Limited

Cho J (2008) Issues and Challenges of agile software development
with SCRUM. Issues Inf Syst 9(2):188–195

Cockburn A, Highsmith J (2001) Agile software development, the
people factor. Computer 34(11):131–133

Cohn M (2005) Agile estimating and planning. Pearson Education,
London

Cohn M (2010) Managing Risk on Agile Projects with the Risk
Burndown Chart

Conboy K, Coyle S, Wang X, Pikkarainen M (2010) People over
process: key people challenges in agile development. IEEE
Software

Dardenne A, Van Lamsweerde A, Fickas S (1993) Goal-directed
requirements acquisition. Sci Comput Programm (20)1:3–50

Deemer P, Benefield G, Larman C, Vodde B (2010) The scrum
primer. Scrum primer is an in-depth introduction to the theory
and practice of Scrum, albeit primarily from a software devel-
opment perspective, vol 1285931497. http://assets.scrumtrain-
inginstitute.com/downloads/1/scrumprimer121.pdf

Easterbrook S, Singer J, Storey M, Damian D (2008) Select-
ing empirical methods for software engineering research. In:
Guide to advanced empirical software engineering, Springer,
Berlin, pp 285–311

Fowler M, Highsmith J (2001) The agile manifesto. Softw Dev
9(8):28–35

Hindsa, Extreme Manager, http://www.hindsa.com. Accessed 14
March 2014

Hossain E, Babar MA, Paik H, Verner J (2009) Risk identification
and mitigation processes for using Scrum in global software
development: A conceptual framework. Software Engineering
Conference, 2009. APSEC’09, Asia-Pacific, IEEE, p 457

Ibbs CW, Kwak YH (2000) Assessing project management matu-
rity. Project Management Journal 31(1):32–43

Islam S (2009) Software development risk management model: a
goal driven approach. In: Proceedings of the doctoral sympo-
sium for ESEC/FSE on Doctoral symposium, ACM, p 5

Kitchenham B, Pickard L, Pfleeger SL (1995) Case studies for
method and tool evaluation. Softw IEEE 12(4):52–62

Kontio J (1997) The RISKIT method for software risk management,
version 1.00. Computer Science Technical Reports, University
of Maryland, College Park, MD, USA

Layman L, Williams L, Cunningham L (2006) Motivations
and measurements in an agile case study. J Syst Archit
52(11):654–667

Lindvall M, Basili V, Boehm B, Costa P, Dangle K, Shull F, Tesoriero
R, Williams L, Zelkowitz M (2002) Empirical findings in agile
methods. In: Extreme Programming and Agile Methods—XP/
Agile Springer, pp 197–207

Melnik G, Maurer F (2006) Comparative analysis of job satisfaction
in agile and non-agile software development teams. In: Extreme
Programming and Agile Processes in Software Engineering
Springer, pp 32–42

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://assets.scrumtraininginstitute.com/downloads/1/scrumprimer121.pdf
http://assets.scrumtraininginstitute.com/downloads/1/scrumprimer121.pdf
http://www.hindsa.com

Agile risk management using software agents

1 3

Melo C, Cruzes DS, Kon F, Conradi R (2011) Agile team perceptions
of productivity factors. Agile Conference (AGILE), 2011 IEEE,
pp 57

Menzies T, Williams S, Elrawas O, Baker D, Boehm B, Hihn J,
LumK, Madachy R (2009) Accurate estimates without local
data? Softw Process Improv Pract 14(4):213–225

Nelson CR, Taran G, de Lascurain Hinojosa L (2008) Explicit risk
management In: International Conference on Agile Processes
and Extreme Programming in Software Engineering. Springer,
pp 190–201

Nerur S, Mahapatra R, Mangalaraj G (2005) Challenges of migrating
to agile methodologies. Commun ACM 48(5):72–78

Nyfjord J, Kajko-Mattsson M (2008) Integrating risk management
with software development: State of practice. In: Proceedings,
IAENG International Conference on Software Engineering.
BrownWalker Press, Boca Raton Citeseer

Odzaly EE, Greer D, Sage P (2009) Software risk management bar-
riers: An empirical study. Empirical Software Engineering and
Measurement. ESEM 2009 pp 418–421

Odzaly EE, Greer D, Stewart D (2014) Lightweight Risk Manage-
ment in Agile Projects. In: SEKE (pp 576–581)

Patterson FD, Neailey K (2002) A risk register database system
to aid the management of project risk. Int J Project Manage
20(5):365–374

Pfleeger SL (2000) Risky business: what we have yet to learn about
risk management. J Syst Softw 53(3):265–273

Rally, http://www.rallydev.com. Accessed 14 Mar 2014
Ropponen J, Lyytinen K (1997) Can software risk management

improve system development: an exploratory study. Eur J Inf
Syst 6(1):41–50

Runeson P, Höst M (2009) Guidelines for conducting and reporting
case study research in software engineering. Empir Softw Eng
14(2):131–164

Willams TM (1994) Using a risk register to integrate risk manage-
ment in project definition. Int J Project Manage12(1):17–22

Williams RC, Walker JA, Dorofee AJ (1997) Putting risk manage-
ment into practice. IEEE Soft 14(3):75–82

http://www.rallydev.com

	Agile risk management using software agents
	Abstract
	1 Introduction
	2 Research problems
	2.1 Traditional risk management
	2.2 Risk issues in Agile software projects

	3 Solution approach
	3.1 The agile risk tool (ART) model
	3.1.1 Input
	3.1.2 Process
	3.1.3 Output

	4 Case studies
	4.1 Case study methodology
	4.2 Case study design
	4.2.1 The environment data
	4.2.2 The risk rules

	4.3 The case studies
	4.3.1 Case study alpha (CSA)
	4.3.2 Case study beta (CSB)

	4.4 Case study results
	4.4.1 Summary of CSA project data
	4.4.2 Summary of CSB project data

	5 Discussion
	5.1 Study validity

	6 Conclusion
	Acknowledgements
	References

