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a b s t r a c t

Online social networks (OSN) have attracted millions of users worldwide over the last decade. There are
a series of urgent issues faced by existing OSN such as information overload, single-point of failure and
privacy concerns. The booming Internet of Things (IoT) and Cloud Computing provide paradigms for the
development of decentralized OSN. In this paper, we build a self-organized decentralized OSN (SDOSN)
on the overlay network of an IoT infrastructure resembling real life social graph. A user model based on
homophily features is proposed considering social relationships and user interests and focuses on the
key OSN functionality of efficient information dissemination. A swarm intelligence search method is also
proposed to facilitate adaptive forwarding and effective service discovery. Our evaluation, performed
in simulation using real-world datasets, shows that our approach achieves better performance when
compared with the state-of-the-art methods in a dynamic network environment.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Online social networks (OSN) connect millions of Internet users
and have played a principal role in changing the world into a new
era of globalization, i.e. the online society. OSN websites, such
as Facebook, Myspace, Twitter, Google+, and Flickr have become
increasingly popular online applications for people to communi-
cate information, share moments, and distribute ideas. As of 2016,
the number of social network users reached 2.3 billion, which
represents 68.3 percent of Internet users, and these figures are
expected to increase in future years [1]. Most OSNs sites provide
free storage for users to share their social content. In 2014, the data
warehouse of Facebook, the largest social website, stored upwards
of 300 PB of Hive data using a cloud system,with an incoming daily
rate of about 600 TBuser-generated content [2]. Social data is being
produced faster than any organization has had to deal with before.
To add to the challenge, the data is heterogeneous and produced
in many formats, including plain text, document, image, video and
so on. This flood of data is being generated from any number of
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connected devices—from PCs, smart phones, tablets to streaming
set-top boxes, gaming consoles, digital cameras and even fitness
sensors. It is evident that we are entering into a social big data
world that is urging the development of novel computing models
and new types of architecture to cope with the sheer volume of
data. Cloud Computing is a model for enabling ubiquitous, on-
demand access to a shared pool of configurable computing re-
sources that can be rapidly provisioned and released with mini-
mal management effort [3]. After nearly ten years’ development,
Cloud Computing is maturing and addressing barriers for big data
problems. Therefore, OSN can be hosted on Cloud platforms to
utilize scalable computing and storage services to process their
data in either privately owned, or third-party data centers with
lower infrastructure costs [4].

However, all the mainstream OSN providers have a cloud based
infrastructure that is designedwith a logically centralized architec-
ture controlled by a single authority, i.e. the social network service
provider. Though largewebsites use content distribution networks
and distributed computing for performance reasons, there is still
a central repository for user data. In this sense, all sensitive per-
sonal data is stored in the providers’ repository and so users are
susceptible to loss of control over ownership of their privacy.
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Furthermore, along with the tremendous amount of user requests
and social data, the performance bottleneck has become a critical
problem in real-time systems to ensure a smooth continuation
and acceptable performance. Besides, the centralized nature has
other drawbacks including single points of failure, a need to be
online for every transaction and a lack of locality. These issues have
provided momentum to the research and development of open,
decentralized alternatives; this provides the motivation and con-
text for our work. The architecture of decentralized OSN (DOSN)
is created through participation by a set of autonomous OSN users
collaboratingwith each otherwithout a centralized repository. The
social data will be stored in local devices and controlled by end
users instead of OSN providers. In this way, the huge amount of
social data will be distributed in potentially hundreds of millions
of end devices rather than a single monolithic system. Therefore,
DOSN can alleviate the rigid privacy-control issues, as well as
provide adequate flexibility and capability to deal with big data
problems

In the meanwhile, the mushroom growth of the IoT and the
rapid development of associated technologies provide paradigms
for the development of newDOSN. The IoT is a technical revolution
that leads the development of next-generation of computing and
communications. The IoT can utilize high-end computing process-
ing power, provide interoperable networks and communication
protocols and achieve greater flexibility and availability.Moreover,
the Social IoT (SIoT) has become an emerging trend of augmenting
physical devices and objects with social capability in order to
make full use of the collective resources of connected ‘‘things’’. In
any SIoT scenario, entities connect to form social groups, enabling
collaboration to achieve specific collective goals. It is estimated
that the IoT will consist of almost 50 billion objects by 2020 [5].
This prediction suggests that it is reasonable to anticipate that
‘‘things’’ will also form enormous social networks: thing-to-thing
social networks resembling human society in the near future.

The infrastructure of the thing-to-thing social networks can
be generalized as Peer-to-Peer (P2P) social networks. In recent
years, P2P networks [6–11] have been proposed to support the
decentralized infrastructure of OSN. The similarity between P2P
networks and social networks, where peers can be considered as
Internet users and connections reflect social relationships, leads us
to believe the principles of P2P networks are suitable to guide the
research on the design of DOSN. The nature of P2P networks resem-
bles a real-life social graph built from bottom to top rather than
the monolithic, top-down centralized structure that has existed to
date, providing people with more control over what they share.
Moreover, it possessesmany favorable topological features such as
self-organization, strong adaptability and fine scalability for large-
scale networking applications. Furthermore, P2P networks can
gather and harness tremendous computation and storage across
the Internet. With SIoT technology, intelligent devices, vehicles,
buildings and other objects embedded with sensing, computing,
and communication capabilities can participate in an OSN with
a dual role of computational processing as well as the content
provision.

Until recently, P2P networks have been principally used for
file sharing applications. Research into the mechanisms of DOSN,
which is still at an early stage, has identified many problems and
challenges, which are yet to be solved [9,10]. We examine two
major research problems, namely how to design the architecture
of DOSN and how to support efficient social information dissem-
ination and service discovery. It should be noted that the service
mentioned in the paper is a general concept that is not restricted to
well-defined web services, but many types of data including text,
hashtags, pictures or video clips in social networking systems. The
service discovery should be considered to be a capability to locate
varied, multisource social resources.

This paper proposes a self-organized decentralized social net-
work (SDOSN) featured by P2P infrastructure with a swarm intelli-
gence [12] search strategy. Specifically, a self-organized P2P social
overlay network is introduced to forma local knowledge index that
can facilitate accurate and personalized service discovery. The key
challenges of this stage are how to define similaritymeasurements
for social users to establish acquaintance shortcuts and how to uti-
lize limited knowledge to make predictions for neighbor selection.
A homophily-based user model is proposed to select promising
neighbors in each routing step considering social relationships as
well as content semantic features. Furthermore, a novel olfactory
sensitive search (OSS) algorithm is proposed by exploring the
swarm intelligence. The free and uncertain foraging behavior of
swarm collaboration is abstracted and modeled to optimize the
service discovery process in the DOSN. The OSS is well suited to
this environment because it integrates knowledge of collective
intelligence and the highly self-organized social features of users.
In this way, a user can progressively gain experience during the
discovery process and make future discovery more focused and
accurate.

The performance of the proposed approach is evaluated using
simulation experiments. A P2P social network platform is devel-
oped that is able to simulate network structure dynamisms (topol-
ogy construction, churns, and routing) and service discovery pro-
cesses (indexing, bootstrapping, and searching). The experiments
use real-world datasets in three different network structures. The
results show that the performance of the proposed service discov-
ery algorithm in SDOSN achieves less average visited nodes, higher
success rate and a higher recall when compared against existing
state-of-the-art methods.

The main contributions of this paper are summarized as fol-
lows:

• A self-organized architecture for social overlay network of
DOSN is proposed. This architecture fills the research gap
between the traditional P2P infrastructure and the decen-
tralized architecture of OSN.

• A homophily-based user model is introduced to capture
the homophily similarity that integrates social relationship
and user interest. This model is able to identify promising
neighbors those are similar to the service provider and have
the high number of connections.

• A novel olfactory sensitive search algorithm is proposed to
guide the service discovery with an adaptive forwarding
degree. The algorithm utilizes the collective swarm intelli-
gence to discover the shortest paths withmaximum desired
services.

• A software simulation platform is designed and developed.
It can simulate dynamic unstructured P2P networks with
configurable routing protocols to support social overlay net-
works, decentralized service discovery, and evaluation of
search models.

The remainder of the paper is structured as follows. Related
works are identified in Section 2. Discussions on the design of self-
organized architecture and supporting service discovery mecha-
nisms are presented in Section 3. The homophily-based usermodel
and thematchmakingmethod are presented in Section 4. Section 5
introduces the swarm intelligence algorithm necessary to achieve
adaptive forwarding. The simulation platform, experiments and
results are discussed in Section 6, and finally the conclusion is
presented in Section 7.

2. Related works

In this section, the related works of service discovery in de-
centralized architectures are compared and contrasted. In decen-
tralized architectures, all nodes are considered to be equal and an
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arbitrary topology exists. This type of architecture provides greater
flexibility and adaptability. Nodes only have a partial view of the
network structure or service organization and need collaboration
with the rest of the system in order to succeed in the service
discovery process. In general, existing approaches employ blind or
informed search methods to locate target services.

When using blind search methods, nodes do not keep infor-
mation about service locations. In order to find target services,
search methods such as Gnutella [13] use a flooding method,
employing the Breadth First Search (BFS) on the overlay network
graph with a depth limit. However, this generates a large number
of duplicate messages and as a result, does not scale well. Many
alternative schemes have been proposed to address the limitations
of Gnutella, such as random walks [14], iterative deepening [15],
and attenuated bloom filter based search [16]. These schemes ap-
ply bandwidth-efficient techniques instead of flooding the query,
reducing the overhead in the discovery process by shortening the
average routing length and reducing the number of visited nodes.
However, blind search methods are unreliable, and the success of
queries is no guarantee as thenodes are continually connecting and
disconnecting. In addition, the bandwidth cost of searching grows
exponentially in relation to the number of connected users, often
saturating connections and rendering slower nodes useless. As a
result, most search queries may only reach a very small part of
the network, often being dropped before successfully locating the
target information.

In order to prevent the generation of excess traffic, informed
search methods that maintain local information have been pro-
posed. In thesemethods, nodes store somemetadata or knowledge
to establish shortcuts among nodes, which facilitate the query
routing to reduce the traffic overhead in the service discovery
process. Routing Indices [17] allow nodes to forward queries to
the neighbor that is most likely to have the required resources.
Each node maintains a routing index with information about the
number of documents along the path and the number of docu-
ments on each topic of interest. If a node cannot answer the query,
it forwards the query to a subset of its neighbors based on its
local routing index rather than randomly selecting or flooding the
network. The problem with this proposal is that it is necessary
to keep the large amount of information updated. The number of
messages required to propagate changes in the system could over-
load the network. If the information update process is delayed, a
node can have information about routes that are invalid.Moreover,
the precision of this method depends on the number of categories
that are considered in the search process. Adaptive probabilistic
search (APS) [18] is an algorithm that is based on a combination
of k-random walk algorithm and probabilistic forwarding. Each
peer has a local index that keeps one entry for each neighbor.
The value of each entry is a tuple that contains the identifier of
a neighbor and the probability that the neighbor will be selected
the next time based on previous searches. Analogous research [19]
proposes an intelligent search mechanism that allows peers to
identify links that are likely to have relevant information. A draw-
back of these algorithms is that a period of time is required to
collect the information to improve the search. Moreover, if the
links between peers change frequently, the statistical information
stored in the local indexes could become inoperative. A further
limitation is that some of the heuristics that are used to guide
the search process could overload some peers and leave other
potential peers without traffic. Freenet [20] employs a heuristic
key-based routingmethodwhere each file is associatedwith a key,
and files with similar keys tend to cluster on a similar set of nodes.
Freenet uses a steepest ascent depth first and queries are likely to
be routed to the node that is associated with the most similar key
without needing to visit many peers. However, Freenet searches in
a greedy fashion, which does not guarantee the global optimum.

In addition, the routing based on cluster similarity cannot resolve
unfamiliar queries (i.e. area beyond the similar cluster) and often
reaches only a very small range of the network. NeuroGrid . [21] is
a decentralized adaptive search system. Unlike previous methods,
NeuroGrid adopts the historical information of previous searches
to guide peer nodes to make routing decisions. However, Neuro-
Grid is effective for previously queried keywords only and is not
suitable for networks where peer nodes join and leave rapidly. In
ESLP [22], the connections of peer nodes are adaptive with cached
knowledge and only a number of associated connections are stored
in each node. ESLP utilizes an adaptive forwarding degree approach
to guarantee service quality without having exorbitant overhead.
However, ESLP does not provide bandwidth-efficient routing due
to redundant queries and messages. The adaptive forwarding de-
gree achieves promising performance but it lacks probabilistic
explanation. Literature [23] proposes a decentralized service dis-
covery in open service-oriented multi-agent systems. The authors
propose the homophily in service-orientedmulti-agent systems to
create efficient decentralized and self-organized structures where
agents have a greater probability of establishing links with similar
agents than with dissimilar ones. A second contribution is an
algorithm for service discovery that considers the local information
that is related to the homophily between agents. However, this
model employs a greedy search method, following every hop only
themost promising nodes are selected to forward the query, which
could require multiple unnecessary hops to locate the required
service. In addition, the recall of this approach is low.

Other approaches use biologically inspired techniques to lo-
cate and organize resources. For instance, ant algorithms are
suitable for unstructured network because they do not rely on
global knowledge about the network. The algorithm proposed by
Michlmayr et al. [24] uses ant algorithms to guide the search in P2P
networks. Every peer maintains a repository of documents, each of
which has a keyword, the neighbor provides the document and the
quality of pheromone. There are two types of ants in the system:
forward ants and backward ants. The forward ants navigate the
network until the document is found or the TTL finishes. The main
problem of this research is that the pheromone information is only
based on keywords of the document. Therefore, if a peer is search-
ing for a document using a keyword that is not specifically used in
the document, the peerwill not be able to locate the information in
the network evenwhen similar documents exist. IAPS [25] is a fully
distributed and bandwidth-efficient algorithm, which uses ant-
colony optimization and takes file types into consideration in order
to search for file container nodes with high probability of success.
The search performance is affected by the Kwalker deployed in the
system. The results show that IAPS reduces duplicated messages
and increased success rate when compared to random walk and
APS. However, IAPS does not consider semantic features of the
node content, and it is only evaluated in a static P2P network
without churn.

3. System architecture

3.1. Social overlay network

In SDOSN, users run P2P clients (peer nodes) on their hosts to
post content on the timeline and to browse the profiles of friends.
The social network is modeled as an undirected graph G = (V , E),
where V contains users and E is the friendship relations among
them. To avoid confusion, within this paper a user and a node are
considered as one-to-onemapping; therefore, the terms ‘‘user’’ and
‘‘node’’ are totally interchangeable.

Due to the nature of fully unstructured P2P network, peer nodes
resemble social users, and every node is considered to be equal in
the network. This paper adopts the friend-to-friend approach [26]
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Fig. 1. Social overlay network.

to build a social overlay network, where communication among
nodes is enabled only if their owners know each other. In this
design, peers are arranged in a social overlay where one-to-one
mapping mirrors the underlying network as showed in Fig. 1. The
maintenance of the overlay network is in a self-organized manner,
which means node connections are established or detached in a
full-unstructured P2P network based on social knowledge during
user interactions. The social knowledge is historical information
stored locally to maintain shortcut relationships between nodes.
Some of the main benefits of choosing the unstructured friend-to-
friend overlay are summarized as follows: Firstly, unlike links in a
DHT, links in a social overlay represent friendship. The hypothesis
here is that friends are more likely to interact and cooperate with
other friends than with random strangers. A recent study [27]
showed that approximately 78% of user interactions take part
within one-hop neighborhoods. Secondly, because people tend to
talk to people they know, a social overlay enables shortcuts and
constrains traffic to small network sections at a time when han-
dling frequent interactions between friends. Thirdly this overlay
improves locality of P2P social network as people tend to connect
to people that are alike, with geographical co-location playing
a key role. Therefore, paths over social overlays are likely to be
short and localized. Moreover, privacy issues are mitigated since
communication is restricted to friends; only the identity of the
original user needs to be checked [28].With the utilization of social
overlay network, SDOSN discovers the identity of users who likely
hold the desired service, and then optimizes the search routes to it
by using OSS algorithm.

Since SDOSN operates the service discovery on an unstruc-
tured P2P infrastructure, the network dynamism is one of the
main challenges for maintaining the social overlay network and
managing the services. Dynamism features are studied from two
aspects: friendship network and overlay network. In SDOSN, new
friendship relationships are continually being formed or old ones
are being severed. However, in real online social networking sys-
tems, such changes are infrequent to the extent that they are
insignificant within the time scale of our problem of information
dissemination and service discovery. Therefore, for the purpose of
this research the friendship network is considered immutable. The
dynamism of social overlays cannot be disregarded in the same
way. Since users may disconnect or stop their devices at any time
they choose, any given user may be offline and not available for
some periods. This phenomenon, in P2P terminology, is known as
the churn. The social overlay network undergoes frequent recon-
figuration, which affects the performance of information propaga-
tion and service discovery.

Fig. 2. Example of knowledge index structure.

In SDOSN, nodes update two distinct indexes: a local service
index and a knowledge index. The local service index is an in-
verted index that organizes various types of local services, such
as documents, music, video, etc. The knowledge index stores the
overlay shortcuts information obtained during social interactions,
i.e. the knowledge index contains associations between a node and
its immediate neighbors based onhistorical searches. The structure
of knowledge index is a relational table: each row represents
an immediate neighbor, and the columns include the neighbor’s
neighbor list, the neighbor’s interests list, and pheromone infor-
mation (i.e. topic hit). In the knowledge index, a user knows not
only the set of neighbors (friends), but also the neighbor list of
neighbors (friend’s list of friends). This assumption is reasonable
because inmodernOSN e.g. Facebook or LinkedIn, the set of friends
is already part of the profile and incremental updates (in the form
of new friendship events involving your friends) are showed in
the newsfeed [29]. For instance, if A and B are friends in a social
network, A is able to see B’s friends list as this is a part of B’s profile
and vice versa. If B and C have formed a new friendship, A will
receive the update that B has a new friend C in the newsfeed.

An example of knowledge index for Node0 is showed in Fig. 2.
In this example, Node0 has three neighbors Node1, Node2, and
Node3. Node0 maintains knowledge of the neighbor list, interest
list and pheromone table of its three neighbors. The real-time
pheromone is calculated according to specific queries and used to
determine the adaptive query forwarding in the service discovery
process. The details of how to utilize the knowledge index will be
introduced in Sections 4 and 5.

Initially, a newly joined node has no knowledge of the network.
It will send a limited number of queries to a set of randomly
selected peer nodes. If a search is successful, the requesting node
updates its knowledge index to associate the peer nodes those have
responded data successfullywith the requested topic and connects
to these nodes. Social interests and friends list for a user are public
information between friends in most mainstream OSN. During the
connection process, this publicized information is obtained and
stored in the knowledge index. In a parallel process, the requesting
node removes invalid cached knowledge according to the results
of searches. For example, if a neighbor of node A has removed a
certain shared service corresponding with a query topic q, then
node A will no longer be able to locate the service directly. Any
future query q directed to node Awill be unsuccessful and so node
A removes the query topic q from its knowledge index. In addition,
we also need to consider the churn in the network. If one neighbor
disconnects from the network, the current node detects it and
updates the knowledge by setting the neighbor’s list as −1. When
the neighbor re-joins the network, the neighbor’s degree needs
to be updated accordingly. Therefore, peer nodes can learn from
the results of previous searches, which make future searches more
focused. As more searches are performed, more knowledge can be
collected from the search results. As the process continues, each
node will cache a great deal of useful knowledge that is effective
inmaking future decisions to re-visit peer nodes with access to the
required services.
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Fig. 3. Frame diagram of service discovery.

In existing methods of informed search, nodes often utilize
queries to gather knowledge about the network; the target nodes
sharing the desired services will respond with the information
related to the requested topic only. Using this principle, a node
will issue a large number of queries to gather information about
the network. This may lead to a huge number of messages and
result in significant overhead. Therefore, this paper proposes a fast
knowledge acquisition approach to fetch a batch of information
with Active Query during the advertisement stage, as introduced
in our previous work [22]. The Active Query is an extension of
a traditional query, which can absorb a significant amount of
information about the network but with fewer queries. The target
nodes will not only respond to the requested topic but also inform
the originator of other associated topics shared within the same
interest area. An interest area in SDOSN is a semantic area with
a set of topics. The corresponding interest area of a specific topic
and other topics in this interest area can be found from the open
directory DMOZ [30] which is a widely distributed database of
Web content using a hierarchy topic structure. The DMOZ has been
widely used in popular Internet services, such as Google, Netscape,
Lycos, Hotbot, Dogpile, Thunderstone, Linux, Mars Society, etc.

3.2. Service discovery in social overlay network

In social networks, people remember and update potentially
useful knowledge from social interactions; as a consequence ran-
dom and diffuse behaviors gradually become highly organized
[31]. In SDOSN, service discovery is also based on knowledge; a
user knows not only the friend list of friends, but also the interests
of friends. The service discovery is intended to locate the required
service based on the historical interactions of users.Furthermore,
in a social network, people use tags by creating user-defined terms
or selecting system-provided terms to declare their social inter-
ests. The social interests are significant indicators to classify user
groups and recommend new friends in social networks, which can
improve the accuracy of service discovery.

Fig. 3 depicts the system structural frame and module func-
tional frame of service discovery. The underlying infrastructure is
an unstructured P2P network. The overlay network is a one-to-
onemappingmirroring the underlying network. Above the overlay
network, users connect to others to build a social network and
the communication among users is enabled only if users know

each other, i.e. they are connected by the social network. Service
discovery, where users interact with others through query and
response messages, is one of the most important interactions in a
social network. Each user builds a local service index and a knowl-
edge index. The local service index maintains an inverted index
table of all of the social network services a peer node possesses
in local storage. The knowledge index stores network shortcuts
i.e. the information about immediate neighbors. When a new user
joins the social network, the social relationship and the initial
knowledge indexwill be built rapidly through advertisement of the
user’s interests and active queries. Details of the advertisementwill
be introduced in the next section.

The query process is showed in Fig. 4. When a user receives
a query, he will first search from the local service index to find
matched services considering homophily similarity. If the query
needs to be further forwarded, the user will consult the knowledge
index to find associated users using the OSS algorithm and multi-
cast the query to these selectedusers. TheOSS algorithm is a swarm
intelligence approach,which employs pheromone information and
olfactory sensibility to support adaptive forwarding. During query
forwarding, the number of duplicated query messages will be re-
ducedwithout losing the probability of finding requested services.

The query process will be terminated if the query has been
successfully resolved or the number of query hops has exceeded
a user-defined limit.

4. Service discovery module

4.1. Overview

The problem of service discovery in a P2P network is known as
Semantic Query Routing Problem (SQRP). The general goal of SQRP
is to determine the shortest path from a node that issues a query
to nodes that can appropriately resolve the query by providing the
requested service. Furthermore, the number of services located is
maximized and the number of steps to locate the services is mini-
mized. The query traverses the networkmoving from the initiating
node to neighboring nodes and then to neighbors of neighbors and
so forth until it locates the requested service or exceeds a user
defined limit.

The service discovery comprises two stages: the advertisement
stage and the discovery stage. The advertisement stage is the
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Fig. 4. Query forwarding process flow chart.

initial bootstrapping phasewhen eachnew joineduser periodically
advertises an active query message containing digest information
about services to be shared alongwith their declared interests. The
digest information is pre-processed based on the Bloom Filter [16]
techniques that are able to compress both query requests and
responses. The Bloom Filter is a hash-based, space-efficient data
structure that compresses the querymessage thereby significantly
reducing the size of messages transferring in the network layer.
Though there is a small probability of false positives in BloomFilter,
this is beyond the topic of this paper. In the discovery process,
when a node searches for a specific service, it deploys an ordinary
query message to find the node holding the desired service. The
query message is forwarded by intermediate peer nodes based on
their pheromone information that will be discussed in the next
section. If the target node is located, a response message will be
returned to the requester and pheromone information is laid along
the routing path. In the future, if other query messages are seeking
similar services, the query messages could follow previously laid
pheromone information and not traverse the network in a blind
way.

4.2. Advertisement stage

The aim of the advertisement stage is to increase the probability
that nodes find a peer node containing the requested service. To
achieve this goal, each node advertises its shared services and per-
sonal interest information using active query messages. For exam-
ple, if the originator generates a query with the topic ‘‘Paintball’’, a
target node that shares the desired services will answer the query
about ‘‘Paintball’’ as well as the associated topics in this interest
area such as ‘‘High Impact Paintball’’, ‘‘Lemmings Paintball’’, and
‘‘Ultimate Paintball’’ in this interest area. The obtained new infor-
mation will be added to the local knowledge index by the origina-
tor for future queries. With active query messages, the originator
can gather more pieces of knowledge from each successful query;
however, additional traffic will be generated when transferring
the additional knowledge. The extra traffic could be significant; if
every node generates all queries in this manner, the traffic may be
excessive for bandwidth-limited networks. In contrast, if search
is undertaken with only ordinary queries, each new node accu-
mulates knowledge slowly by gathering one piece of knowledge
from each successful query, especially for those peer nodes that
are seldom present or rarely query the network. To address these

issues, a trade-off scheme is designed for bandwidth-limited net-
works. The recently joined nodeswill utilize active querymessages
to gather a large amount of useful information quickly regarding
their interests. After the amount of cached knowledge reaches a
certain threshold ratio with respect to the maximum size of the
knowledge index, the peer nodes will utilize ordinary queries to
discover the required files with low traffic cost. The threshold
ratio was presented and evaluated in our previous work [22]. This
process is not only applicable for recently joined nodes during the
advertisement stage, but also enables peer nodes to recover from
unpredictable knowledge loss during the discovery stage.

4.3. Discovery stage

In the discovery stage, nodes utilize query messages to search
the network in a decentralized manner. However, as service envi-
ronments have become significantly complex and chaotic lacking
hierarchical organization or centralized control, the vast majority
of services exist without explicit associated semantic descriptions.
On the other hand, the current service discovery methods in P2P
networks are mainly supported by keyword-based solutions that
cannot provide a context-aware and personalized search for end
users. As a result, many services that are relevant to a specific
user’s request may not be considered during the service discovery
process. In order to deal with these problems, an interest-based
model is proposed to exploit service content and users’ social
interest.

4.3.1. Service representation and user interest profiling
In order to achieve accurate and efficient service discovery in

SDOSN, semantic features and social features are both considered
in our work. The topic model Latent Dirichlet Allocation (LDA) [32]
is extended and improved to extract latent topics from the user’s
service repository to form users’ profiles LDA is a very popular
technique for discovering the main themes or topics from a large
collection of unstructured documents and has beenwidely applied
in various fields, including text mining, computer vision, finance,
bioinformatics, cognitive science, music and social sciences. Using
LDA a document can be represented as a randommixture of latent
topics, where each topic can be characterized by a probability dis-
tribution over a vocabulary of words. However, the social network
service contents are usually short documents and directly applying
the conventional LDA topic model on such short texts may not
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Fig. 5. Service representation and match making.

work well. The reason lies for this being that LDA implicitly cap-
tures the document-level word co-occurrence patterns to reveal
topics, and thus suffers from the severe data sparsity in short texts.
Therefore, we extended the conventional LDA using principles
proposed in BTM [33] The implementation of the extended LDA
model is outside of the scope of this research. Using the topic
model, heterogeneous service contents (such as documents, tags,
and photo/video descriptions) are converted to a topic spacewhich
has fewer dimensions than the traditional term-document space.

Moreover, this paper also integrates user’s interests to deal
with personalized social information. Social interests are the terms
that describe the personal concerns or involvement of a user in a
social network. Interest terms are user-defined or system-provided
terms (e.g. social tags) that do not necessarily appear in user’s local
repository. Interests aremore semantically recapitulative concepts
than topics extracted from local services and are strong indicators
of a users’ preference or expertise.

For instance, Bob is a botanist, and he issues a query ‘‘apple
production in the US’’ to find out the apple fruit production in
the US. His interests include ‘‘botany, biology, plant, flower’’. Kate
is a sales manager working with Apple Inc. and lists interests as
‘‘Apple, products, sales, marketing, business’’. When Kate receives
Bob’s query, traditional matchmaking will match the local service
repository of Kate and ‘‘resolve’’ the query However, this result is a
false positive and the service provided byAnndoes notmatch Bob’s
intention. By applying the interest-based matchmaking, when Bob
issues the query, the method can filter out the unrelated infor-
mation. Interests between Bob and Kate are very different, hence
lower ranking of Kate regarding this query.

When a user is being queried, SDOSN not only considers the
similarity based on queries and services, but also takes users’
interests into account. Furthermore, according to recent study
[34–36], individuals tend to interact and establish links with in-
dividuals who have similar interests. This phenomenon is called
homophily in social network research. Homophily influences dif-
fusion patterns over a social network in two ways: it affects the

way a social network develops and individuals are more likely to
successfully influence others when they are similar to them [37].

The matchmaking process is tailored specifically to an indi-
vidual’s social feature by incorporating information about the
individual beyond specific query provided, which is showed in
Fig. 5. The main purpose is to achieve a comprehensive similarity
between a query request and a node that is receiving the query. A
query message is augmented with the query requester’s interests
and neighbor information to represent an estimated target profile
vector. In this way, the problem of the matchmaking between a
query and a user has transformed to the matchmaking between
two users’ profile vectors. As a result, heterogeneous information,
such as queries and service contents, as well as user interests
and neighbors are converted to the same profile vector space,
then represented, discovered and compared under a homogeneous
data structure. Besides, it can effectively alleviate the synonymy
problem (i.e. different concepts referring to the samemeaning) and
reduce the term dimensions in service discovery thus making the
discovery process more accurate and efficient.

Thematchmakingmodulemeasures the similarity between the
query vector and user vector, which considers both homophily
similarity and semantic similarity. Homophily similarity is a linear
combination of status homophily and value homophily. Status
homophily counts the common neighbors and value homophily
gauges the common interests. The semantic similarity is based on
the likeness of meaning between the query keywords and service
topics. Matchmaking applies a cosine similarity to calculate the
overall similarity between the query vector and user vector. Cosine
similarity is a commonly used approach in modern information
retrieval [38,39]. A threshold of cosine similarity that determines a
user can provide a ‘‘similar enough’’ service to the query requester
is set to 0.25 in our system. This threshold is evaluated in the
experiment’s section.

4.3.2. User modeling and neighbor scoring
Homophily is one of the most salient properties in complex

networks [40–42]. The idea behind homophily is that individuals
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Fig. 6. User query model.

tend to interact and establish linkswith similar individuals. In their
original formulation of homophily, Lazarsfeld and Merton [34]
distinguished the concept between status homophily and value
homophily. This subsection introduces the formal definition of
status homophily and value homophily to model the similarity of
users.

In SDOSN, the homophily is defined as the linear combination
of status homophily (SH) and value homophily (VH):

H(u, v) = δSH(u, v) + (1 − δ)VH(u, v). (1)

The δ parameter regulates the importance of the influence of status
homophily and value homophily in the overall homophily of two
nodes. H(u, v) is a measurement of interpersonal similarity that
influences the service matchmaking and forwarding degree in our
service discovery process. Users are more likely to successfully
provide the services or guide the discovery when they are similar
to each other [39].

The status homophily defines the social familiarity, which cal-
culates the common friends (neighbors) of two nodes. If user u and
v are familiar, it tends to be they share many common friends. The
status homophily between user u and v is denoted as SH(u, v):

SH(u, v) =
|Nu ∩ Nv|

|Nu ∪ Nv|
. (2)

Where Nu, Nv are the neighbor set of user u and v respectively.
However, those users who have high SH may have very different
interests. A query is likely to be resolved by a user whose interests
cover topical areas of the query. So in the next step, the personal
interests are also considered. The value homophily calculates the
degree of matching between two sets of content topics including
interests in the user profile vector, which is defined as:

VH(u, v) =
|Tu ∩ Tv|

|Tu ∪ Tv|
. (3)

Where TuTv are the interest set of user u and v, respectively.
Equation (2) and (3) apply union and intersection operation in
the neighbor set and the interest set to achieve fast calculation of
homophily score.

In SDOSN, the service discovery is powered by query routing
of immediate neighbors. When a node searches for an unknown
target service, it sends a query to the users in its neighbors list.
Likewise, when a node receives a query about a service that cannot
be provided, it will forward the query to its neighbors Each for-
warding process between a node and its immediate neighbors is
counted as one hop of a query. This process will carry on until the
number of hops exceeds a pre-defined Time-to-Live (TTL) value.

As stated earlier, the goal of the query routing is to determine
the shortest path from a node that issues a query to nodes that
can appropriately resolve it. However, the query requester only
has a very limited knowledge of the decentralized social network,
and often it does not know the path and distance to the target
nodes that can provide the requested service. During the discovery
process, traditional approaches match the query and services in a
node to determine whether it is a target or not, which is nearly a
brute force search with very little information about the targets.
In our work, a heuristic method is proposed by modeling a virtual
target node with potential services that meet the query requests
and homophily features that are similar to the requester. This
method is beneficial for the service discovery for two reasons.
Firstly, the virtual target node has more information to describe
the query request, which makes the matchmaking more accurate
and unbiased. Secondly, homophily helps the discovery process
to access social information that is useful for promising neighbor
selection during the query routing.

As showed in Fig. 6 the query q issued by node u is modeled as
a dotted node of uq.uq a temporary shadow of u,contains the infor-
mation on the profile of node u (such as interests, neighbor list) as
well as the service requirements andmaxTTL. The shadow node uq
can be considered to be an estimate of the profile of possible target
nodes. The estimated target node should have the required services
as well be likely to share some common features with the service
requester according to the homophily study [23]. The lifecycle
of uqstarts from the query being issued and ends with multiple
successful service discovery replies until themaxTTL expiry. The uq
information is processed based on the hash techniques mentioned
in the previous subsection.

This paper utilizes homophily-based factor and degree-based
factor (number of neighbors) in an exponential function to mea-
sure the probability of a neighboring node to be capable of resolv-
ing the query. This probability will be used to determine whether
or not to forward a query to a neighbor and so the probability is
called choice probability. Themost promising neighbor is themost
similar neighbor to the estimated target node and has the highest
number of connections. Therefore, when node vy forwards query
uqto its neighbor set Nvy the following equation calculates choice
probability of ∀vx ∈ Nvy

CP(vx, uq) = 1 −

(
1 −

(
H(vx, uq)∑

v∈Nvy
H(v, uq)

))|Nvx |

. (4)

The choice probability CP considers the homophily between the
node vx and the estimated target node uq. Moreover, it also consid-
ers the degree of the neighbors. The degree is an important factor
in query routing. Those nodes with a higher degree have more
influence on the information dissemination. The reason is that
they can forward information to more nodes in one hop and also
makemore impact on the network traffic. The exponential function
used in Eq. (4) creates a marginal improvement of the ranking
score by applying a power exponent of the degree. This function is
not only able to capture the homophily between the neighboring
node and the estimated target node to encourage interest-based
discovery, but also integrates the degree factor to accelerate the
service discovery process. As a result, the search range in each hop
can be more accurate and overall query messages can be resolved
with fewer hops on average.

We now present an example calculation of choice probability
In Fig. 6, before forwarding the query to the neighbors, node v1
needs to determine the choice probability of v2, v3 and v4 in the
knowledge index. Using example values for the homophily score
between q and v2, q and v3, and q and v4:

H
(
v2, uq

)
= 0.4,H

(
v3, uq

)
= 0.5,H

(
v4, uq

)
= 0.6.
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Then the choice probabilities of v2, v3 and v4 are given by

CP(v2, uq) = 1 −

(
1 −

(
0.4

0.4 + 0.5 + 0.6

))3

= 0.61,

CP(v3, uq) = 1 −

(
1 −

(
0.5

0.4 + 0.5 + 0.6

))2

= 0.55,

CP(v4, uq) = 1 −

(
1 −

(
0.6

0.4 + 0.5 + 0.6

))2

= 0.64.

In this example case, the choice probability is calculated by
using homophily score and connection degree. It can be seen that
the choice probability is high when both homophily score and
connection degree are high. v4 has the highest choice probability is
this case. In themeanwhile, v2 has the lowest homophily score, but
the highest connection degree The choice probability of v2 is higher
than v3 is because the connection degree plays a more import role
in Eq. (4).

The use of Eq. (4) has generated a probability of resolving the
query q for each of the neighboring nodes of vy. Node vy can
forward the query to its neighborhood based on the calculated
probabilities CP(vx, uq). The subsequent requirement is to deter-
mine the number of nodes to be forwarded to in the current
circumstance. In existing query routing methods [21,23,25,43] the
number of nodes to be forwarded in each hop is a static value or
a simple threshold. Methods with a fixed number of forwarding
degree have limitations and cannot balance the recall and traffic
overhead in a bandwidth-limited network In each hop, if nodes
only select the most promising node, the number of visited nodes
and message traffic will be reducing to the lowest level. However,
many less promising nodes also may have the requested service.
As a result, the recall of this greedy neighbor selection is low.
On the contrary, if nodes utilize a large fixed forwarding degree
in each hop to achieve high recall (finding a greater number of
relevant services), the traffic in the network grows exponentially in
relation to the forwarding degree. In bandwidth-limited networks,
the performance is relatively low as there are many duplicated
query messages.

Fig. 7 shows examples of how the forwarding degree affects the
performance. There are two routing strategieswith a static number
of receivers per hop (d = 3) in Fig. 7(a) and an adaptive number of
receivers per hop (d = 2 ∼ 4) in Fig. 7(b). The black dots represent
the nodes that share requested services, while the gray dots show
the nodes that are highly correlated with the query and know
who has the requested services. As showed in Fig. 7(a) and (b),
the adaptive routing strategy achieves better search performance
by finding more target nodes with fewer visited nodes and fewer
query messages.

In order to improve the trade-off situation between network
traffic and recall and conduct a more efficient service discovery
in SDOSN, an adaptive forwarding degree approach is proposed
to adjust the number d (i.e. forwarding degree) of nodes to be
forwarded according to the olfactory sensibility and pheromone
information. The goal of query routing is to determine the shortest
reply paths while the number of found services is maximized and
the steps to locate the services are minimized.

5. Adaptive forwarding algorithm framework

5.1. Overview

This section introduces our proposed swarm intelligence ap-
proach called olfactory sensitive search (OSS) algorithm inspired
by the food seeking strategies of biological swarms. For instance,
ants use their olfactory senses to find food and communicate with
others due to their short vision range. Ants migrate between the

Fig. 7a. Fixed forwarding degree.

Fig. 7b. Adaptive forwarding degree.

nest and the food source by leaving trails of pheromones to others,
succeeding ants usually move preferentially in the direction of
higher pheromone intensity. Pheromones are a special chemical
secretion of species commonly known to lead other members of
its own species towards the point of interest, while imposing a
territorial boundary in the form of an allomone to organisms out-
side of their species. As an ant proceeds to the food location from
its nest, the trail pheromone aids a narrow and precise pathway
route for other members of the same colony to follow [44]. During
the foraging process, ants visit the shorter paths more frequently,
whereby leaves more trails of pheromones in the respective paths.
Ants usually identify the shortest path to the food source by follow-
ing the highest pheromone intensity. Most ants will be attracted
to follow the shortest path to the food source again which further
increases the pheromone intensity.

From our observation, service discovery process in SDOSN
shares a close similarity to this pheromone phenomenon. Users
generally have a very limited knowledge about the network and
conduct service discovery by exchanging information with their
neighbors. The behavior of user discovering target services resem-
bles the phenomenon of biological swarms locating food resources.
The likelihood of finding the target services relies on the users’
knowledge about the search path, similar to the trial pheromone
mechanism. Through the learning process of the knowledge index,
users gradually gain useful information about the targets during
discovery and form paths to the targets, similar to pheromone
diffusion.

The proposedOSS algorithm is designed by adopting the service
discovery behavior of swarm intelligence. This algorithm maxi-
mizes the phase of pheromone exploitation by utilizing the olfac-
tory sensibility of swarms (i.e. nodes). The level of olfactory sensi-
bility is adaptive anddepends on the environment (i.e. pheromone)
and individual factors (i.e. choice probability based on homophily).
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Fig. 8. The relationships of forwarding degree with the olfactory sensibility and
pheromone.

Individuals with the lowest level of sensibility can select any loca-
tionsmarkedwith pheromones in eachhop formaximizing the for-
warding degree.When the level of sensibility increases, individuals
ignore the locations marked with lower level of pheromones and
select higher level of pheromone locations, whereby reducing the
forwarding degree. In an olfactory-based discovery, the olfactory
sensibility is usually large for distantly located targets. In this
way, individuals ignore the nearby pheromones and try to explore
further in the network with a small forwarding degree. When in-
dividuals move closer to the target area, their olfactory sensibility
reduces accordingly to launch a search in nearby space and further
to spread the pheromone information. With more pheromone in-
formation, individuals effectively utilize a large forwarding degree
to exploit the current location and eventually locate all possible
targets. The relationships of the olfactory sensibility, pheromone
and forwarding degree are demonstrated in Fig. 8.

An individual member of the swarm can move step by step
through multi-dimensional search space. During the search pro-
cess, each one takes discovery walks. The aim of walks is to find
a flavor using their olfactory sensibility. During the exploration,
each one gets some flavors and distributes a pheromone in an
amount proportional to the amount of the found flavor. The flavors
can be seen as the historical query topics of a node in the social
network. The pheromone can be seen as the topic hits, so it will
be enhanced after each success walk. The pheromone information
is stored in the knowledge index; A scenario of the discovery
process is illustrated in Fig. 9. In this scenario, Node v1 receives a
query q. Upon receiving the query, v1 first searches its local index
for identifying the requested resource. When v1 cannot resolve
the query, v1 utilizes it knowledge index to calculate the choice
probability of its neighbors v2, v3 and v4 based on the ‘‘Neigh-
borlist’’ and ‘‘Interestlist’’ columns. Having obtained the values of
choice probability in the neighborhood, v1 learns the pheromone
regarding the query q using ‘‘Pheromone’’ column. Using the OSS
algorithm, v1 determines the overall scores of its neighbors and
forwards the query to the selected neighbors v2 and v3. Then the
query is handled by v2 and v3 and still remains unsolved. v2 and
v3 utilize their knowledge index to forward the query to selected
neighbors those have not received the query before. We can see
that v5 receives the query from v2 and v3. However v5 only deals
with the first received message and drops the duplicated message.
When the query reaches v6 the requested service is found in v6’s
local service index and a successful response message is sent back
to the query requester. Upon successfully resolving the query,
the corresponding pheromone information along the path will be
updated i.e. the pheromone table in the knowledge index of v1 and
v2 will be updated to guide future discovery of the same query TTL
is used to count querymessage hops and aMaxTTL is defined as the
upper bound of TTL. The query routing process is terminated either
the requested service has been found or when TTLmeets the upper
bound.

5.2. Algorithm

OSS algorithm is an adaptive forwarding algorithm, which se-
lects a subset of promising neighbors to resolve a query. The aim of
OSS algorithm is to determine the shortest paths from a nodewhen
it issues a query to other nodes those can appropriately resolve
the query with more relevant services. The number of forwarding
nodes depends on the level of sensibility and pheromone in each
hop.

Now we introduce the notations used in the remainder of this
paper. Swarm member j is the current query handling node; m
is the total number of nodes in the network; n is the number
of neighbors of j; and k is the number of flavors (i.e. topics) of
pheromone in a neighboring node of j The search space of j (1 ≤

j ≤ m) is defined as Xij = (x0ij, x1ij, . . . , xkij) where i (1 ≤ i ≤ n)
is the n− dimensional neighbor space, and t(1 ≤ t ≤ k) is the k-
dimensional topic space in each dimension of the neighbor space.
xtij(1 ≤ t ≤ k, 1 ≤ i ≤ n) is the location information of a
topic t marked by swarm member ifor the receiving member j.
Qj = {q1, q2, . . . , qc} is a queue of queries to be resolved by j.

The structure of the OSS algorithm consists of three phases as
initialization, discovery, and termination.

In the initialization phase, the initial location of j is defined as
X0j. j loads the received queries along with the knowledge index
into its local memory to establish the search space. Then j selects a
query from Qj, and initializes the pheromone P0j and the olfactory
sensibility S0j. Define P0j = S0j = max CP(Xij, uq) where Xij is j’s
neighbor (1 ≤ i ≤ n); CP(Xij, uq) is calculated by using Eq. (4),
and the max choice probability of j’ neighbors is defined as the
initial sensibility of j. The initial sensibility S0j is calculated by the
choice probability of utilizing the homophily score and connection
degree of neighborhood to estimate themax likelihood of resolving
a query before exploring its pheromone table.

During the discovery phase, the walk behavior of swarmmem-
ber j is described as fti = f (xtij), where t(1 ≤ t ≤ k) is the flavor
of pheromone, i.e., the topic of a neighbor in the knowledge index
of j. Each walk of j has k small steps to get the flavors of i. The f
function is a match function between a query q and t based on the
distance between the semantic concepts in DMOZ. The function
presented by [45] is used to calculate the distance between the
semantic concepts. The f is defined as following:

fti(q, t)1≤t≤k = e−αl e
βh

− e−βh

eβh + e−βh (5)

where q ∈ Qj is the query concept and t is a topic concept. h is the
shortest path length between concept q and t in an organizational
ontology, in our case, DMOZ. l is the depth distance of the two
concepts in the ontology. α ≥ 0 and β ≥ 0 are parameters scaling
the contribution of shortest path length and depth, respectively.

Pi(i∈Rj) = max1≤t≤kfti (6)

where Pi is the location marked with pheromone from i, which is
the best value of k flavors (i.e. topics) explored by j. Pmin and Pmax
are the minimal and maximal possible values of the pheromone
trails of Pi(1 ≤ i ≤ n). Here the upper bound and lower bound of
the olfactory sensibility are defined as:

Smax = Pmax; Smin = Pmin (7)

Smin and Smax are the minimal and maximal possible values of the
sensibility of the node j. As showed in Fig. 8, using Smax in every
hop j ignores the locations marked with a low level of pheromone
and only sense the highest level of pheromone. This will lead
to a minimal number forwarding degree. While using Smin, j will
select all the locations marked with pheromone. As a result, the
forwarding degree will be maximized.
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Fig. 9. Query routing based on the knowledge index.

After the exploration walks in the neighbor space, j has learned
the pheromone regarding the current query q. So j′s initial sensi-
bility needs to be adjusted to adapt to the new achievements. The
adaptive olfactory sensibility of j is generated by:

Sij = Smax − (Smax − Smin) × S0j (8)

Sij is the new sensibility of j after exploring its pheromone table in
the knowledge index, and S0j is the initial sensibility which is cal-
culated using Eq. (4). For instance, a higher S0j for j reflects its larger
probability to resolve the query. Therefore, the olfactory sensibility
is reduced to pick up more locations marked with pheromone.

Based on this adaptive sensibility, only the areas marked with
higher pheromones than j′s sensibility are sensed and considered
by j in the next forwarding process. By comparing the adaptive
sensibility and marked pheromones in the neighborhood, new
locations for next hop are generated as:

X ′

0j =

{
Xij if (Pi ≥ Sij)1 ≤ i ≤ n
X0j otherwise. (9)

This is a decision function to determine whether to explore a
new location or not. Here Xij is the best locations marked with
pheromone where individual j has found in its neighbor space. If
the level of pheromone Pi(1 ≤ i ≤ n) is not less than the j′s
sensibility Sij new locations X ′

0j will be selected by j in the next hop.
In other words, the algorithmwill only select the neighbors whose
pheromone is greater than or equal to j’s sensibility for forwarding
the query. Neighborswith less pheromone value than j’s sensibility
will not receive the query from j.

In the termination phase, the algorithm will be terminated
either when the query q has been resolved or when the TTL of
q exceeds the pre-defined maximal TTL. Then response messages
will be sent back to the query requester. Finally, the memory
resource of real-time computation will be released.

Themechanism of sensibility and pheromones determining the
forwarding nodes for a query q between v1 and its neighbor v2,
v3 and v4 is illustrated as follows. We use the same example in
Section 4.3.2 showed in Fig. 6. In the initialization phase, by using
Eq. (4), the choice probabilities of v2, v3 and v4 were calculated as
CP(v2, uq) = 0.61, CP(v3, uq) = 0.55, CP(v4, uq) = 0.64. The ini-
tial sensibility of v1 is assigned as S0v1 = max[0.61, 0.55, 0.64] =

0.64. In the discovery phase, assuming the pheromone values from
neighbor space are Pv2 = 0.7, Pv3 = 0.5, Pv4 = 0.2 based
on Eq. (5) and (6) considering semantic similarity, we have the
v1’s sensibility range Smax = 0.7; Smin = 0.2 after learning
pheromone information. By adjusting the sensibility range, the
adaptive sensibility of v1 can be obtained as Sv1 = Smax − (Smax −

Smin)×S0v1 = 0.7− (0.7−0.2)×0.64 = 0.38. Next comparing the
learned pheromone values and the adaptive sensibility, we obtain
Pv2 > Sv1; Pv3 > Sv1; Pv4 < Sv1. Using the decision function
Eq. (9), eventually v1 forwards the query to v2 and v3. Note in
this example, though v4 has the highest choice probability based
on the homophily feature and connection degree, OSS excludes
v4 from the forwarding list based on its adaptive sensibility, since
the pheromone information Pv4 for query q is below the level of
sensibility of v1.

To conclude, when a node receives a query message, it first
checks whether the query has been already received during the
past. Redundant query will be discarded without further process-
ing. Then the node utilizes the local index to score the homophily
between its user vector and the query vector to determinewhether
the requested service can be provided. If the query needs to be fur-
ther forwarded, the query-handling node initializes the knowledge
index to find promising associated nodes using OSS algorithm and
multicast the query to the chosen nodes. In OSS algorithm, each
node maintains a pheromone table in the knowledge index that
records the information of its immediate neighbors. Intuitively, the
pheromone of a neighbor is a shortcut link representing the histor-
ical success in query routings via that neighbor. In order to achieve
high recall and low messages overhead, an adaptive forwarding
degree is proposed. The number of nodes to be forwarded in each
hop is adjustable based on both the olfactory sensibility and the
level of pheromone in the neighborhood. The olfactory sensibility
is an adaptive value depending on the level of pheromone and the
choice probability. With higher level of pheromone information
and large choice probability, the node utilizes a large forwarding
degree to exploit the current location to locate more possible
targets. On the contrary, lower level of pheromone information
and small choice probability will lead to a small forwarding degree
for bandwidth-efficient discovery. A detailed description of this
algorithm is showed in Fig. 10.

6. Experiment

6.1. Simulation methodology

IoT offers advanced and complex connectivity of devices, sys-
tems, and services comprising heterogeneous components, and
generates large-scale unstructured data and covers a variety of
protocols, domains, and applications. In order to focus on the core
value of service discovery in a decentralized IoT environment,
simulation is a cost-effective method than implementing physical
systems to evaluate the performance of our research. A software
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Fig. 10. Olfactory sensitive search algorithm.

simulation platform is designed and implemented to simulate a
real world unstructured P2P network with configurable routing
protocols and basic social network functions. The platform can
conduct simulations of service discovery on different network
structures with self-organized social overlay network. The main
components of the simulation platform are illustrated in Fig. 11.

Basically, the architecture of the simulation platform comprises
two layers. The bottom layer offers a decentralized P2P network
infrastructure including network elements initialization, content
generation and distribution, topology initialization. The upper
layer encompasses the service discovery components including
dynamic network churns generation, query generation and for-
warding, social knowledge updating andmulti-metrics evaluation.

To be specific, each peer nodes in the social network has a
set of local services, a set of friends and a set of interest tags.
At the network initialization stage, the simulation creates a node
instance by allocating a range of memory spaces and establish-
ing the social attributes in an object-oriented design. Then the
attributes are assigned with values of real-world social services.
Furthermore, every node instance generates a local service index
and a knowledge index to utilize the assigned features. The local
index is an inverted index for topic-service of the local service
repository, while the knowledge index is a routing table that stores
social information about immediate neighbors. The node instances,

social connections and services are generated in a batch mode
based on different network configurations. At the simulation stage,
when the social network has been successfully established, every
node exhibits an absent probability insisting their probability for
disconnection from the social network and being unable to provide
services in a simulation instance. This phenomenon is called as the
churn in a decentralized social network and it is very common
in real IoT environments. The simulation platform encompasses
a special module to impose churn in the network to mimic a
more realistic scenario. Then large numbers of randomly selected
queries are generated by the nodes and the communication be-
tween two nodes is enabled if they are connected in the social
network and both physically present during the simulation. All
querymessages have a globally unique identifier (GUID) and amax
TTL. If a node receives the GUID, it will disregard the query to
avoid loops. The max TTL is the upper bound hops of a query. A
query is forwarded through neighbors to conduct service discovery
by utilizing the knowledge index and the process continues until
either the query has been resolved or its TTL exceeds the max
TTL. After each discovery, the successful hits and the number of
returned services are considered to evaluate the performance of
the proposed algorithm against the state-of-the-art methods.

6.2. Simulation design

Dataset preparation: this study uses DMOZ dataset [30], and
the Social-ODP-2k9 dataset [46]. DMOZ dataset spans from 1998
to 2016, which is the most widely distributed database of Web
content using a hierarchy topic structure. 682 topics from sub-
categories are extracted from DMOZ. These topics are treated as
user interests and the topic distribution to nodes is achieved us-
ing a power law stating few nodes contain many topics in their
repositories and the rest of the nodes contain few topics. Previous
studies [47,48] observed that the distribution of keywords in a
large repository can be approximated by Zip’s law in the form
of y ∼

1
xγ where y is the frequency, x the rank and γ is a

constant. Our simulation uses the estimated distribution described
in the works of [49]. Social-ODP-2k9 is a dataset spanning from
December 2008 to January 2009with data retrieved from the social
bookmarking sites Delicious, StumbleUpon, and Open Directory
Project (DMOZ). The Social-ODP-2k9 includes the annotation data
and document data. This dataset comprises 12,616 unique URLs, all
representing their corresponding social annotations. The content
of each document including title, keywords, and descriptions is
extracted to construct a structured document-topic vector where
each document is correlated with top 10 topics achieved by ap-
plying the topic model [33]. Meanwhile, the user annotation data
is used as the benchmark for precision and recall. The document-
topic vectors are used as service content data, which is distributed
among the nodes based on the power law. Within each user’s
repository, the user interests and the service content are correlated
with each other.

Each network structure of our experiment is an undirected
graph among 1000 nodes. The social network connections and the
service repositories are created statically, whereas the queries are
launched randomly during the simulation. Each node is assigned
with a list of possible query topics to search. This list is limited by
the total amount of topics extracted from the DMOZ. During each
step of the experiment, each node evenly selects random topics
from the list of possible topics, whereby all the nodes have the
same probability of generating service queries. A query message
consists of two features that characterize the estimated target
provider and the target service description. Each query message
will be forwarded by the nodes until either the query has been
successfully resolved or the query reaching the maxTTL. A query is
successfully solved when a node offers a ‘‘similar enough’’ service
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Fig. 11. Simulation platform components.

to the query message. A threshold θ is defined to determine this
similarity. We run each simulation for 10,000 time cycles (queries)
to observe the average performance for every 100 units of time.

Programming environment: Lenovo Thinkstation with Intel
Core i5-6400 Processor, 16GB RAM,Windows 10 Pro X64 The sim-
ulation platform is implemented using Java SDK 1.80 and Eclipse
J2EE IDE.

6.3. Performance evaluation

To evaluate the service discovery algorithm, extensive experi-
ments are conducted in the simulation platform. The experiments
compare the number of visited nodes, success rate, and average
recall under three commonly used network structures in complex
networks. The considered network structures include the follow-
ing:

RandomNetworks (RN):where links between peers are estab-
lished randomly.

Scale-Free Networks (SFN): where links between peers are
established based on the degree of connection. Peer nodes with a
high degree of connectivity have a greater probability of receiving
a new link than agents with a low degree of connection [50].

Homophily Networks (HN): Peers in these networks are linked
based on the homophily value and the degree of connection [23].

The OSS search strategy for decentralized service discovery has
also been comparedwith various search strategies used in complex
networks, differing by the way of neighbor selection in each step.
These strategies are:

Random: a search process utilizes random walks with a fixed
forwarding degree [13,51];

Degree: a search process utilizes only the degree of connection
information with a fixed forwarding degree [15,52,53];

FreeNet: a search model utilizes similarity with deep first
search with a fixed forwarding degree [20];

Neurogrid: a search model utilizes similarity with broad first
search with a fixed forwarding degree [21].

ESLP: a search model utilizes similarity with broad first search
with an adaptive forwarding degree [22].

EDSD: a search model utilizes similarity integrated with ran-
dom search in greedy search mode [23].

IAPS: a search model utilizes resource type score with a fixed
forwarding degree [25].

Recall, precision, and F-1 measure are the most common met-
rics to evaluate the effectiveness of a decentralized system. These
metrics represent the number of positive results returned by a
search model, which is defined as

Recall =
|{relevant results} ∩ {retrieved results}|

|{relevant results}|

Precision =
|{relevant results} ∩ {retrieved results}|

|{retrieved results}|

F1 =
2 × Recall × Precision
Recall + Precision

.

Recall on Time-to-Live (RTTL) quantifies the performance of
the search node based on the TTL used to find all relevant services.
The RTTL measures are given in terms of the average recall and the
maximum steps allowed in each node.

Number of visited nodes counts the average number of nodes
visited by a query to locate the required services. Lesser the num-
ber of visited nodes, shorter is the discovery path with reduced
traffic.

Parameter setting: In the simulation, TTL is evaluated over the
range 2∼8 In a moderately connected Gnutella network more
than 70% of the generated messages are redundant resulting in a
flooding with a TTL of 7 [54]. Also in our experiments, with the
TTL of 8, query messages can reach almost all the nodes in the
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Table 1
Simulation parameters and their default values.

Parameters Value Function

maxTTL 2–8 Max hops of a query
m 1000 Number of nodes
k 100 Max number of topics in pheromone table
δ 0.5 Homophily regulating parameter
α 0.3 Scaling parameter the contribution of depth
β 1 Scaling parameter the contribution of path length
θ 0.25 Cosine similarity threshold: FreeNet, Neurogrid, ESLP, EDSD,OSS
d 1–5 Forwarding degree

Fixed models: Random= 2, Degree= 2, FreeNet= 2, Neurogrid= 2,
EDSD= 2,IAPS= 2
Adaptive models: ESLP=1∼5, OSS=1∼5

γ 0.9 Zipf law for distribution of services
Churn 0.2 Nodes leaving and joining the network
Services 12616 Total number of services
Interests 682 Total number of interests
P2P model unstructured Pure unstructured P2P

Fig. 12. Similarity threshold evaluation of precision and recall.

overlay networks. The total number of nodes in the experiment
is set as 1000 for all experiments. The max number of topics in
the pheromone table is 100. The max size of the knowledge index
is 100. The Cosine similarity threshold θ is set as 0.25 for all the
similarity based search models including Neurogrid, ESLP, EDSD
and OSS. The homophily parameter δ is set to 0.5. The adaptive for-
warding degree in our experiment is evaluated in the range 1∼5.
The average forwarding degree of all themodels in the simulations
is approximated to 2 based on the experimental observations.
Note: the original model of FreeNet, EDSD forwards queries only
to a single neighbor in each hop to reduce the query messages.
In order to conduct a fair comparison of the forwarding degree,
we have altered the forwarding degree of FreeNet, EDSD similar
to other models. Table 1 shows the default values of simulation
parameters and the function description.

Network churn: In a dynamic and unpredictable internet en-
vironment, network churn is usually caused for two primary rea-
sons: firstly when peer nodes frequently go online and offline and
secondly during frequent sharing and removal of contents. In order
to simulate realistic P2P systems, our simulations include a churn
rate, where approximately 20% of peer nodes are presented less
than 30% of the time. The content of nodes in our simulations is
considered to be static.

In the scenario showed in Fig. 12, the cosine similarity threshold
is evaluated through a service discovery task, which is to return a
set of relevant enough services for a given query. Precision is the
probability that retrieved services are relevant. Recall is the prob-
ability of retrieving a relevant service in a search. The annotation
dataset provides the ground truth of relevancy between a query
and a service. Recall and Precision are inversely proportional;
the precision usually increases at the cost of reducing the recall
whenever the cosine similarity threshold increases. It is can be
observed that the two curves intersect with each other for the
defined threshold value of 0.25.

Fig. 13. F1-measure.

Fig. 14. Number of visited nodes under different network structures.

Typically, precision and recall are not discussed in isolation.
Instead, either one of the two measures is evaluated against the
other measure (e.g. precision at a recall level of 0.6) or both are
combined into a singlemeasure. Fig. 13 shows a combinedmeasure
of precision and recall which is known as F1-measure. The F1-
measure is the weighted harmonic mean of precision and recall.
From this graph, it is can be observed that the F1-measure reaches
its peak value when the cosine similarity threshold approaches
0.25. Based on the observation in Figs. 12 and 13 the parameter of
cosine similarity threshold θ is set as 0.25 in order to determine
a ‘‘similar enough’’ service for all the similarity based models
(Neurogrid, ESLP, EDSD and OSS) in our experiments.

Fig. 14 illustrates the average number of visited nodes in all
the studied models for each network structure. For each network
structure, the shortest path with a minimal number of visited
nodes is obtained based on their adopted strategy of building
the network, insisting that the search strategy and the network
structure are closely associated. Random network structure (RN)
and scale free network structure (SFN) connects the nodes with-
out considering the interests and semantic content of the nodes.
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Fig. 15. Success rates under different network structures.

Considering the differences between the content of nodes and their
neighbors, the homophily network structure (HN) establishes user
connections with similar interest and content. It can be observed
from Fig. 14 that the average number of visited nodes is quite low
for most of the search models in HN in comparison to those in RN
and SFN. This insists that the homophily is effective in facilitating
service discovery with shorter paths, since users tend to interact
with similar users in social networks. HN tends to bring similar
users together as neighbors, thus the number of visited nodes
to resolve queries are lower than RN and SFN. Furthermore, it is
clearly evident that our proposed OSS algorithm outperforms all
the compared models achieving the minimal number of visited
nodes,with the best performance achieved inHN. This is because in
each query forwarding hop, OSS accurately measures the distance
to the target service provider. OSS utilizes a homophily enhanced
querymessage as an estimated target provider. The querymessage
usually encloses the service description of the target provider along
with the homophily features of the target provider. OSS improves
the similaritymeasurement by considering both semantic distance
and homophily distance to the estimated target provider. Besides,
OSS uses an adaptive forwarding degree, whereby nodes with
lower similarity are ignored during the forwarding process, thus
OSS search model can successfully resolve queries with a minimal
number of visited nodes in all the three network structures.

Fig. 15 depicts the percentage of queries resolved by the studied
models before the TTL expires for all the three network structures.
In all the three networks, the success rates of search models are
affected by forwarding degree and routing strategy. It can be
observed that the knowledge-based models of FreeNet, Neuro-
Grid, ELSP, EDSD, IAPS and OSS are achieving better results than
the uninformed models such as Random and Degree. Among the
knowledge-basedmodels, BFS based searchmodels includingNeu-
roGrid, ELSP, and OSS are exhibiting a higher average success rate
than FreeNet which uses DFS based search. Comparing ELSP and
OSS based on the adaptive forwarding degree, OSS has a more
comprehensive knowledge index for gaining more social informa-
tion about the neighbors including interests, social relationships.
ELSP only has a topic information of immediate neighbors in its
knowledge index, but the neighbor’s degree and the homophily
are not considered in ELSP. During the service discovery process
OSS obtains homophily information in social network and utilizes
a more accurate neighbor selection than ELSP, thus OSS exhibits a
better success rate than ELSP. The network structure RN is exhibit-
ing a lower success rate for all the models and the average success
rate is above 60% for all the search models in SF. Nodes with more
candidate neighbors for the query routing process usually affects
the success rate in SF. In HN, the success rate is above 75% for the
knowledge-based search models. Once again, these results further
validate that the homophily network can improve the performance
of service discovery. Overall, in the three network structures, OSS

Fig. 16. Average recalls on time-to-live(TTL).

achieves a much better success rate above 80%, outperforming
all the compared models. This is because of the fact that OSS
not only utilizes semantic similarity but also considers neighbors’
connection degree as an important factor for query forwarding,
which combines the advantages of similarity based search models
and degree based search models. As a result, OSS achieves a higher
average success rate than other models and further exhibits a
better tolerance for different network structures.

Fig. 16 illustrates average recalls achieved by different models
for various TTL values under theHNnetwork structure. The optimal
recall (represented by the max curve in the figure) is used as the
max recall in the decentralized environment. It can be observed
that the TTL determining the average recall in all the search mod-
els. Longer the TTL, higher will be the recall. The random search
model is exhibiting the worst recall efficiency, which increases
very slowly with increasing TTL. Our proposed OSS model is very
sensitive to the TTL value; an increase in the TTL is having a more
positive effect on recall than any other models. This feature is very
important in DOSN, since a smaller TTL with a relatively high recall
can drastically reduce the messages. In HN, users are connecting
with similar users. OSS is sensitive to homophily features and
is able to utilize a relatively larger forwarding degree for many
queries when these queries are close to service providers. Other
models either use a static forwarding degree or not sensitive to
homophily features. Thus evenwith a small TTL, OSS can findmore
relevant services than any other models.

6.4. Summary

This paper utilizes an informed search method to conduct ser-
vice discovery in a fully decentralized network. The performance of
service discovery depends on structures of social overlay network
and how to utilize local knowledge to adapt to different struc-
tures. The results of experiments allow us to conclude that the
homophily network structure possesses themost desirable charac-
teristics for providing a preferable social similarity-based network
to support efficient service discovery. Search models running on
the homophily network exhibit a higher percentage of successwith
a low number of visited nodes in the service discovery process.
The proposed OSS model outperforms the state-of-the-art search
models in terms of the average number of visited nodes, success
rate and recall in the three different network structures. Moreover,
OSS is able to achieve better performance of service discovery than
the compared models despite the type of the network structures.

The main overhead of our approach is the maintenance of a
knowledge index in users’ local storage. The knowledge index
contains associations between a node and its immediate neighbors
based on historical search results, which includes the neighbor’s
neighbor list, the neighbor’s interests list, and the pheromone table
(i.e. topic hit table). On one hand, the neighbor list and interest
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list do not need frequent updates. In this research when the social
overlay network has been established, the neighbor list and inter-
est list are considered immutable, since such changes are infre-
quent to the extent that they are insignificantwithin the time scale
of our problemof information dissemination and service discovery.
It is a one-time operation to record them in the knowledge index
when friendship relationships are being formed. During the service
discovery process, the neighbor list and interest information will
not be updated. On the other hand, only the pheromone table
in the knowledge index needs frequent updates. The pheromone
table is created based on historical searches, updated upon success
requests. The maximum size of pheromone table is a user-defined
variable. In our simulation, the size of pheromone table is defined
as 100 topic items. When the number of topic records reaches
the maximum size, the old records will be replaced with new
records using the least recently used strategy. It is can be observed
from the experimental results that we achieved more than 30%
higher performance than uninformed search models by utilizing
a small-sized knowledge index. Besides, our proposed model has
fewer visited nodes and higher success rate than other models.
With fewer visited nodes, the number of forwardingmessages over
the network decreases correspondingly. Therefore, the network
traffic overhead is lower than the comparedmodels. Therefore, the
simulation results allow us to conclude that with the significant
improvement of service discovery performance, the maintenance
overhead of the small-sized knowledge index in our model is
reasonable and cost-effective.

7. Conclusions

Cloud Computing and IoT are revolutionary technologies that
are powering ubiquitous wireless communication and real-time
computing to expand the Internet-connected automation into new
application areas. This paper examines the problems of current
OSN and proposes a self-organized decentralized architecture for
future online social networks to enable efficient service discovery
in dynamic social IoT environments.

This decentralized architecture fills the research gap between
the traditional P2P infrastructure and the decentralized architec-
ture of OSN,which can alleviate the rigid privacy-control problems,
as well as provide adequate flexibility and capability for service
discovery. Then a homophily-based user model is introduced to
integrate social relationship and user interest. This model is able
to identify promising neighbors having considerable similarity to
the potential service provider as well as having the high number
of connections. Further to achieve a bandwidth-efficient search,
a novel OSS algorithm has been proposed to provide an adaptive
forwarding degree in each routing hop. This algorithm utilizes the
olfactory sensibility and pheromone information of swarms to dis-
cover the shortest pathswithmaximumdesired service.Moreover,
a Java based simulation platform has been designed to simulate a
dynamic unstructured P2Pnetworkwith knowledge-based routing
protocols for service discovery in DOSN. The proposed user model
and OSS algorithm have been simulated under different network
scenarios to evaluate its efficiencies against a range of state-of-the-
art search models in unstructured P2P networks. Experimental re-
sults demonstrate that our approach achieves better performance
under three dynamic network structures than the compared mod-
els.

Although this paper has addressed several issues of service
discovery in DOSN, there are still other research problems to
be taken into account in the future. At present, this paper only
considers user interests and social relationships to determine the
homophily similarity. As a future work, we plan to consider other
social features such as authority, centrality, and time/location at-
tributes, which might further improve the overall performance of

service discovery in social networks. Moreover, unlike a closed
simulation system, the topology structure of an IoT-based DOSN
is ad-hoc in practice. With objects joining and leaving the system
frequently and contents being generated and updated quickly,
service unavailability, resilience under high network churn are a
few commonly prevailing issues in service discovery. In addition,
testing the system performance in a real open system is also one of
our future research directions.
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