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A B S T R A C T

In genome-wide association studies of complex diseases, many risk polymorphisms are found to lie in non-coding
DNA and likely confer risk through allele-dependent differences in gene regulatory elements. However, because
distal regulatory elements can alter gene expression at various distances on linear DNA, the identity of relevant
genes is unknown for most risk loci. In Parkinson's disease, at least some genetic risk is likely intrinsic to a
neuronal subpopulation of cells in the brain regions affected. In order to compare neuron-relevant methods of
pairing risk polymorphisms to target genes as well as to further characterize a single-cell model of a neurode-
generative disease, we used the portionally-dopaminergic, neuronal, mesencephalic-derived cell line LUHMES to
dissect differentiation-specific mechanisms of gene expression. We compared genome-wide gene expression in
undifferentiated and differentiated cells with genome-wide histone H3K27ac and CTCF-bound regions. Whereas
promoters and CTCF binding were largely consistent between differentiated and undifferentiated cells, en-
hancers were mostly unique. We matched the differentiation-specific appearance or disappearance of enhancers
with changes in gene expression and identified 22,057 enhancers paired with 6388 differentially expressed genes
by proximity. These enhancers are enriched with at least 13 transcription factor response elements, driving a
cluster of genes involved in neurogenesis. We show that differentiated LUHMES cells, but not undifferentiated
cells, show enrichment for PD-risk SNPs. Candidate genes for these loci are largely unrelated, though a subset is
linked to synaptic vesicle cycling and transport, implying that PD-related disruption of these pathways is in-
trinsic to dopaminergic neurons.

1. Introduction

Parkinson's disease (PD) is a neurological disorder characterized by
the selective degeneration of dopaminergic neurons within the sub-
stantia nigra (Poewe et al., 2017). The resulting loss of dopamine sig-
naling from the substantia nigra to the striatum is the primary cause of
the distinctive motor symptoms associated with PD, such as rigidity,
slowness in movement (bradykinesia), postural instability, and a resting
tremor (Fahn, 2003). This damage is associated with the formation of
intraneuronal inclusions, Lewy bodies, and Lewy neurites that are
composed primarily of α-synuclein (α-syn) (Spillantini et al., 1997).
The misfolding of α-syn is a key step in the development of PD pa-
thology: the results from numerous cell culture and animal experiments
indicate that oligomeric and/or fibrillar forms of α-syn are cytotoxic
(Lee et al., 2014). However, the events that result in α-syn misfolding
are not completely understood, even though multiple molecular path-
ways and cellular mechanisms that have been identified suggest that
regulation of cellular homeostasis is crucial (Lopes da Fonseca et al.,
2015).

The heritability of PD is complex. For a succinct overview of what is
currently believed we recommend, from Cell, SnapShot: Genetics of
Parkinson's Disease (Bras et al., 2015). Rare Mendelian-inherited cases of
PD contribute about 10% of disease variability, whereas at least 41
common single nucleotide polymorphism (SNP) variants contribute
about 30%, with each of the latter imposing low but significant risk
(Chang et al., 2017; Nalls et al., 2014; Verstraeten et al., 2015).> 90%
of the identified risk SNPs are located in non-coding DNA, making the
assignment of potential functionality or causality difficult.

We (Coetzee et al., 2016; Pierce and Coetzee, 2017) and others
(Lebouvier et al., 2009; Tyson et al., 2016) have reported that diverse
tissues are implicated in PD predisposition, but substantia nigra neu-
rons are clearly most directly involved. Most recently, based on a meta-
analysis of PD GWAS studies, 71 candidate loci and putative target
genes were reported (Chang et al., 2017). The likely functional pro-
cesses include inflammation, energy metabolism, protein degradation,
vesicle trafficking, small-molecule clearing, cellular import, and oxi-
dative stress responses, and it is clear that several of these processes are
not intrinsic to the ultimately affected substantia nigra neuronal cells.
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Therefore, the relevant tissue and cell types in which these processes,
when impaired, lead to PD is a crucial question.

The unique properties of substantia nigra dopaminergic neurons
may contribute to their vulnerability. Each human dopaminergic
neuron contains up to one million axon terminals, many at vast dis-
tances from the soma, presenting a serious challenge to maintaining
cellular homeostasis (Pissadaki and Bolam, 2013). In comparison,
neocortical neurons are estimated to have from a few thousand to a few
tens-of-thousands of synapses (DeFelipe et al., 2002). Aging also ex-
acerbates this stress, as neurons do not renew themselves through cel-
lular division and toxic products and other damage can accumulate
within a cell. Furthermore, the metabolism of dopamine results in re-
active oxidative species that add extra stress to the system (Ryan et al.,
2013). However, not all non-dividing neurons or highly arborized
neurons are subject to neurodegeneration in PD brains, suggesting that
a combination of factors may be responsible for pathogenesis.

In the present study, we used an established cell line called Lund
human mesencephalic cells (LUHMES) as a model of human substantia
nigra neurons (Scholz et al., 2011). LUHMES cells differentiate into
post-mitotic neurons that are electrically active and produce both do-
pamine and wild-type human α-syn (Lotharius et al., 2002). Further
post-differentiation analysis of these cells revealed phenotypic markers
of neuronal maturation (Scholz et al., 2011). These cells have been used
previously to study neurodegeneration caused by dopamine-induced
oxidative stress (Lotharius et al., 2005), α-syn-induced toxicity
(Hollerhage et al., 2017), α-syn-induced transcriptional deregulation
(Paiva et al., 2017), and other neurotoxic effects (Smirnova et al.,
2016). The line is diploid, making genetic manipulation relatively easy,
so it is an appropriate model for substantia nigra differentiation and
mechanistic PD genetic risk assessments.

We report here genome-wide histone H3K27ac, CTCF occupancy,
and RNA expression in differentiated (6–7 days) and undifferentiated
LUHMES cells. Acetylation of H3K27 marks the location of active
promoters and enhancers, while CTCF is a transcriptional regulatory
protein that is required for three dimensional nuclear and demarcates
topologically-associated domains (TADs). We related the differentia-
tion-dependent appearance of the chromatin features to differentially
altered expression of nearby genes. This allowed detailed annotation of
gene expression and enhancer locations that determine the process of
differentiation as well as of processes that characterize terminally dif-
ferentiated neurons. We found that the differentiated, but not the un-
differentiated, cell enhancer profile was enriched for PD-risk SNPs,
suggesting that relevant PD processes are active in the differentiated
condition only. In turn, we defined risk enhancers as H3K27ac peaks
containing PD-risk SNPs. These represent targets for later experimental
validation. They point to a subset of genes and accompanying neuronal
processes that are active in differentiated LUHMES cells and are likely
impaired during the etiology of PD. In this way, we defined PD-risk
gene networks and possible mechanisms involved in PD onset and
progression.

2. Results

2.1. The LUHMES cell model

We cultured and propagated LUHMES cells in their undifferentiated
state (Fig. 1A) to allow for genetic manipulation and cloning (see
below). After tetracycline addition, they differentiated into neurons as
assessed by morphology after 6 days (Fig. 1B) and by ßIII tubulin
(TUBB3), at 100% of cells, and tyrosine hydroxylase (TH), at 10–20% of
cells, which has been previously reported for this cell line (Ghosh et al.,
2016) (Fig. 1C–E). The mRNA of both of these genes (TH and TUBB3)
were also upregulated in differentiated LUHMES cells as shown in our
RNA-seq data set. Our data also show that other key phenotypic mar-
kers of dopaminergic biology are expressed in differentiated LUHMES
cells (and at statistically significant lower levels in undifferentiated

cells) such as: dopamine receptors (DRD2 and DRD4), Dopa Dec-
arboxylase (DDC), vesicular monoamine transporter (SLC18A2), α-sy-
nuclein (SNCA), and many others (Fig. S1). However, because TH is
only visible, following immunocytochemistry, in a subset of the cells to
be precise we refer to the cells as ‘portionally-dopaminergic’. Un-
differentiated and differentiated cells were also clearly distinguishable
by their RNA expression profiles (Fig. S2), and can be visualized as the
change in transcript abundance for each gene (Fig. 2). Between the two
conditions, a total of 14,603 transcripts are expressed at a normalized
level of at least one count per million (CPM) on average between bio-
logical replicates. The volcano plot in Fig. 2 depicts differences in gene
expression between differentiated and undifferentiated cells. Color re-
presents the different levels in mean expression for each gene in the
undifferentiated cells. For instance, the red dots on the right represent
transcripts with low expression in undifferentiated cells that increase
dramatically after differentiation of LUHMES cells. On the left of the
plot are genes that show decreased expression after differentiation. In
total, out of 57,905 genes mapped (including non-coding genes and
pseudogenes and not restricted by overall expression level), 6147 genes
were significantly down-regulated (2449≥ 4-fold) and 7621 genes
were significantly up-regulated (3939≥ 4-fold) following the differ-
entiation of LUHMES into neurons. Overall, the expression changes are
as expected, with replication and cell cycle genes turning off and neu-
ronal processes like axon growth and synaptic signaling turning on, as
revealed by gene ontology analyses (Fig. 2). Considering only the
14,603 most highly expressed genes: the majority (10,230) were ex-
pressed at similar levels in each condition (Fig. 3A).

We next annotated genomic features in the two LUHMES states by
histone H3K27ac ChIP-seq (promoters and enhancers) and CTCF ChIP-
seq (insulators and TAD borders) (Fig. 3). Between the two LUHMES
conditions we recorded about 25,000 active enhancers, 12,000 active
promoters, and 40,000 occupied CTCF sites. There was a high degree of
overlap between differentiation conditions for CTCF and for promoters,
whereas the enhancer activation was much more distinct. This is con-
sistent with previous work establishing that enhancers play a key role in
modulating differences in gene expression between cell types and cell
stages (Parker et al., 2013; Rubin et al., 2017; Shen et al., 2012). An
example of differentiation-mediated increase in gene expression of
SNCA and the dramatic formation of H3K27ac peaks at the SNCA locus,
along with PD risk SNPs in the latter, is shown in Fig. 3E.

2.2. Enhancer–gene relationships

To further examine the relationship between active enhancer loca-
tions and gene expression changes, we related differentially expressed
genes to differentially activated enhancers (Fig. 4A–D). Enhancers can
regulate genes at over 1Mb distant and also occur at high density near
groups of active genes. The large number of expressed genes near active
enhancers and the converse, enhancers near active genes, makes es-
tablishing relationships difficult. For instance, in the 100 kb window
shown in Fig. 3E, there are 4 differentiated-specific enhancers (those
active in differentiated but not undifferentiated cells) near the 3′ end of
the upregulated gene SNCA. Within 1Mb of all differentially upregu-
lated genes in LUHMES are an average of approximately 26 active en-
hancers across conditions (12.4 differentiated-specific enhancers, 7.3
bi-conditionally active enhancers, and 6.4 undifferentiated-specific
enhancers). However, correlative relationships can be clearly seen
through filtering, such as by considering only the most significantly
altered genes and enhancers in close proximity. By comparing the 300
genes with the greatest increase in expression and the 300 with the
greatest decrease, it is apparent that the transcription start sites of the
majority (about 66%) of the upregulated genes were within 100 kb of a
differentiated-specific enhancer, while a minority were within 100 kb of
an undifferentiated-specific enhancer (Fig. 4A). A similar ratio of genes
with decreased expression were within 100 kb of an undifferentiated-
specific enhancer and not near a differentiated-specific enhancer. Based
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Fig. 1. Differentiation of LUHMES. DIC micrograph (60×) of LUHMES cells, (A) cycling, (B) differentiated for 6 days. Fluorescent micrographs (600×) of differentiated cells, (C) green,
tyrosine hydroxylase (D) red, ßIII tubulin; (E) blue, DAPI; green, tyrosine hydroxylase; red, ßIII tubulin.
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on the most differentially expressed genes then, following differentia-
tion into neurons, in general, genes that showed increased expression
were near enhancers that become active, whereas genes that showed
lower expression were near enhancers that became inactive. These
enhancer-gene relationships represent the most common type of near-
cis interaction but do not exclude interactions at greater distances and
even those that occur in trans (between chromosomes).

We also noted nearby gene expression from an enhancer-centered
perspective. Instead of counting enhancers within a window around
gene start sites, we counted expressed genes within a window around

the center of enhancers. At varying distances from condition-specific
enhancers, we compared the ratio of differentially expressed genes that
went up or down after differentiation into neurons. We found that
differentiated-specific enhancers had more up-regulated genes nearby,
while cycling-cell (undifferentiated-specific) enhancers had more
down-regulated genes nearby. This relationship gradually came to
match overall ratio of differentially expressed genes around 400 kb
from active enhancers. This suggests that at closer than 400 kb there is a
strong average causal relationship between the activation of an en-
hancer and the change in expression of nearby genes (Fig. S3).

Fig. 3. Comparison of response elements and gene expression changes. Euler diagrams of overlap between LUHMES genomic elements under undifferentiated (left) and differentiated
(right) conditions. (A) Gene transcripts with expression> 1 CPM. Solid colors indicate significant DE genes with< 1 CPM in the off condition. The striped area represents significant DE
genes with>+/−4-fold change and that are expressed under both conditions. The dotted lines represent significant DE genes but with low fold change. (B) Promoters (+/−1 kb TSS)
(C) enhancers, (D) CTCF Peaks. (E) Genomic browser view downstream of the SNCA locus. CTCF peaks are condition-independent but the increase in enhancer activity corresponds to
greater exon fragment mapping in the differentiated cells. In red: PD GWAS risk SNPs (set: pd_all) and rSNPs overlapping enhancer region and also predicted (using the software,
MotifBreakR) to show allele dependent disruption of TF binding motifs (Factorbook rSNPs).
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We next compared the frequency of differentially expressed (DE)
genes near active enhancers for which there are no intervening CTCF
peaks, using the same 600 highest fold-change (FC) genes. One of the
functions of CTCF is to act as an insulator, and it can be used to predict
topologically associated domain (TAD) boundaries (Defossez and
Gilson, 2002; Lu et al., 2016). As a comparison, we counted en-
hancer–gene associations that were located in a GM12878-defined
TADs (Fig. 4B). However, in order to investigate TAD information
specific to LUHMES, we examined whether adding CTCF binding site
information increased the association of enhancers to the most over-
expressed genes relative to proximity alone (Fig. 4C). We found that the
total number of gene–enhancer associations was reduced, but the ratio
of high-fold-change up-regulated genes near differentiated-specific en-
hancers (true positives) relative to the most down-regulated genes near
the same enhancers (false positives) was increased. The same re-
lationship was true for undifferentiated enhancers. In other words, re-
moving gene-enhancer pairs with an intervening CTCF peak decreased
the sensitivity but increased the specificity in pairing active enhancers
to nearby high DE genes compared to proximity alone. This confirms
that CTCF binding is significantly related to the interaction between
active enhancers and genes and that this information can be used to
improve enhancer–gene pairing.

Finally, we assessed whether existing expression-type quantitative-
trait-loci (eQTL) data could be used to accurately associate con-
ditionally specific active enhancers with the 600 highest fold-change
genes (Fig. 4D). eQTL data relate the allele identity of common variants
to nearby changes in gene expression, and is the basis of the gene names
for the PD risk loci in the most recent PD meta-analysis (Chang et al.,
2017). By considering all variants which overlap active enhancers in
LUHMES cells, we queried GTEx (Consortium, 2013) data for any genes
which have associated expression changes in either brain tissue or any
tissue with our enhancers of interest. Interestingly, both cases produced
a lower specificity and sensitivity of enhancer–gene association than
proximity alone. This suggests that eQTL data is currently suboptimal
for identifying regulatory relationships of the type we are studying
here.

After comparing different methods that link enhancers and the most
differentially expressed genes within 100 kb we next sought to define
the relationships more generally. We constructed a linear model re-
lating enhancer activity at varying distances to the fold-change in the
differential expression of a larger set of DE genes. This model ultimately
can be used to predict the likely relevant target genes to a regulatory
element, for instance one which coincides with a GWAS-risk-associated
SNP. The large number of enhancers relative to genes means that nearly
all DE genes are within 1Mb of both a cycling- and a differentiated-
specific active enhancer. We performed multiple linear regression
analyses to determine the predictive value of enhancer presence at
different distances or with a CTCF peak in relation to measured RNA
fold-change. We defined several parameters consisting of the count of
active enhancers in bins of varying distances from genes of interest (see
Materials and methods). Gene expression fold-change was significantly
related to the number of differentiated-specific active enhancers nearby
and inversely related to the number of undifferentiated-specific active
enhancers nearby. In a model including the initial expression level as
well as enhancer count variables for test genes, r2= 0.453 and the p-
value was<2.2E−16. The magnitudes of the coefficients and sig-
nificance of associations for enhancer counts fell off according to the
distance from enhancer to gene start site. At distances, greater than
about 500 kb, only enhancers that had no intervening CTCF peak were
significantly predictive. Predictive value was greatest for enhancers
within 50 kb of a gene of interest.

The relationship between enhancer distance and gene expression
fold-change followed an exponential decay function. We found that the
relationship is well described by the function of enhancer to gene-start-
site distance: F(dist)= e ∗ ln(dist) / dist (Fig. 4E). Variables re-
presenting the sum of all enhancers within 1.6Mb, weighted by this

distance function and signed according to undifferentiated or differ-
entiated status, explained approximately 10% of the variability in fold-
change. These two variables, encompassing nearby enhancer burden,
are more useful for predicting a binary description of differential ex-
pression rather than the continuous variable FC and are also further
informed by including the number of active enhancers with no inter-
vening CTCF site. This is shown in Fig. S4 where we assessed the use of
the linear model in predicting differentially expressed genes based on a
log2(fold change) of 2.

2.3. Role of transcription factors

Enhancers function through the recruitment of DNA-binding pro-
teins combined with interaction at nearby gene promoters and with the
influence of CTCF demarcation (Ren et al., 2017). Thus, it is likely that
the activity of specific transcription factors (TFs) further contributes to
the differential expression of genes and this explains why enhancer
activation alone is not more predictive of gene expression levels. In-
deed, a recent paper reports how information about both TF expression
and enhancer activity can predict enhancer targets (Duren et al., 2017).

In order to examine different transcriptional regulation profiles, we
obtained a list of 4182 human genes based on their annotation as
“transcription factor” or “regulation of transcription” from the Gene
Ontology Consortium and Uniprot. A total of 2869 of these are ex-
pressed in LUHMES cells, with 90.6% expressed under both conditions.
Based on a minimal expression measurement of 1 CPM and at least a 4-
fold change, statistically significant (< 0.05 adjusted p-value) un-
differentiated LUHMES TFs numbered 332, whereas 299 TFs showed
increased expression after differentiation. GO analysis of the differ-
entiation TFs revealed enrichment for multiple ontologies, including
several related to neurogenesis and axonogenesis.

To further examine which transcription factors may be instrumental
in driving differentiation, a more specific subset of transcription factors
with defined binding motifs was separately examined, based on data
from ENCODE, Hocomoco, and Homer. This consisted of 755 tran-
scription factors, of which 416 were expressed in LUHMES (82% under
both conditions). Of expressed transcription factors with statistically
significant and strong differential expression, 66 were more expressed
in undifferentiated and 61 in differentiated cells (Table S3). Again, the
set of differentiated TFs was enriched for known neurogenesis ontolo-
gies. We then checked for enrichment of known binding motifs within a
subset of differentially active enhancers within 400 kb of the most (> 4
FC) differentially expressed genes (7588 differentiated and 3954 un-
differentiated enhancers). Of the 416 expressed TFs with known motifs,
13 TFs were at least twice as enriched (had an odds ratio > 2) in
differentiated enhancers relative to undifferentiated enhancers, and
those 13—CUX1, CUX2, LHX2, ONECUT1, ONECUT2, POU3F1,
POU4F1, POU6F1, RFX3, RFX5, VAX2, ZFHX3, and ZNF740—were also
present in at least 1% of differentiated enhancers (Table 1, Table S3).

Finally, we looked for differentiation TFs in a third way by ex-
amining DNA binding sites based on ChIP-seq data sets collected by
ReMap (Griffon et al., 2015). Binding sites for a total of 497 TFs across a
variety of tissue types were available, giving a total of 2825 datasets.
We counted the number of times that TF peak locations overlapped
LUHMES enhancer locations for each TF. The binding peak locations for
six TFs (DUX4, EP300, KAT2B, ONECUT1, REST, and TAF1) coincided
twice as often, proportionally, with differentiated-specific enhancers
than with undifferentiated-specific enhancers and also were present in
at least 1% of enhancers (Table 2, Table S3). Interestingly, REST, a
repressor of neuronal genes in non-neuronal tissues, showed statisti-
cally significant overlap but is starkly downregulated in differentiated
LUHMES. This suggests that the same enhancer regions can be active
but lead to opposite effects, and via different TFs, in different tissues. In
contrast, ONECUT1, a transcriptional activator, overlaps differentiated-
specific enhancers frequently and is upregulated in differentiated
LUHMES cells.
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2.4. PD risk loci

The LUHMES cell line is reported to be useful for the study of
Parkinson's disease (Schule et al., 2009). We speculate that at least
some PD relevance is specific to the differentiated cells and may not be
present in the undifferentiated cells, or in other cell types. Thus, we
determined enrichment of GWAS-linked Parkinson's risk SNPs in reg-
ulatory elements in LUHMES cells. We considered three partially
overlapping sets of PD risk SNPs of different sizes and origins, the lar-
gest (pd_all) consisting of significant SNPs from three sources and ex-
panded to include SNPs in linkage disequilibrium (r2 > 0.8) (see
Materials and methods). SNPs can only impose risk by functioning in
active genomic regions, so by examining in which tissues or cell lines
SNPs overlap active regions more than expected by chance, we can infer
which cell types and cellular functions are relevant (schematically de-
picted in Fig. 5A). PD-risk SNPs are not enriched in active CTCF peaks
or undifferentiated enhancers, but they are enriched in differentiated
enhancers in LUHMES cells with a p-value=1E−4 (Fig. 5B). This

enrichment corresponds to 1.4% of PD risk SNPs (out of 23,918)
overlapping differentiated-active enhancers (including those also pre-
sent in undifferentiated cells) compared to a background level of 1.2%,
describing the proportion of all SNPs (135,276,726) that overlap the
same enhancers.

As an examination of the significance of this PD risk SNP enrich-
ment, we compared the risk SNPs for other diseases and enrichment in
other tissues (Fig. 5C). Based on the largest set of PD risk SNPs (pd_all),
PD risk loci are enriched for the enhancers of, and so likely active in,
blood or immunological cells and brain tissue. PD rSNPs are even more
enriched in differentiated-specific enhancers in LUHMES (L.diff.excl)
and most enriched in the smaller subset of differentiated-specific en-
hancers that are very near highly upregulated genes (L.diff.up.genes).
This enrichment indicates that PD risk SNPs are non-randomly located
with respect to differentiated-specific LUHMES enhancers and, so, the
identity of these enhancers and target genes is likely informative in
understanding PD etiology.

Because> 90% of PD-risk SNPs (i.e., GWAS index SNPs plus

Table 2
LUHMES differentiated-specific enhancers coincide with PD risk SNPs at 11 loci. Differentiated-specific enhancers that were within 400 kb of highly expressed and upregulated LUHMES
genes were intersected with 6869 minimally significant (p-value < 0.000001) PD risk SNPs. Multiple enhancers at individual risk loci overlap PD rSNPS. The coordinates of enhancers,
identifiers (rs#) for PD rSNPs, and the PD GWAS significance of the most significant index SNP (associated by LD to overlapping rSNPs) is listed. Genes which are upregulated, highly
expressed, and near each enhancer (center of enhancer to TSS) are shown, those genes annotated with enriched GO categories are emboldened.

Locus
count

Enh. chr. Enh. start Enh. stop PD risk SNPs that overlap LUHMES enhancers (rs#) SNP p-value Nearby upregulated LUHMES genes

1 chr1 54555307 54558907 1981039, 4926619 6.00E−08 FAM159A, RP4-758J24.5
chr1 54560654 54564069 7555099, 6588502 6.00E−08 FAM159A, RP4-758J24.5

2 chr1 205651656 205652285 61824663 7.00E−08 CNTN2, KLHDC8A, LEMD1, NFASC,
PLEKHA6, RASSF5

3 chr2 135340364 135342182 842361 1.53E−07 CXCR4, TMEM163
chr2 135367018 135368615 7573390, 35215000 1.15E−09 CXCR4, TMEM163
chr2 135396134 135398670 10928507, 10803548, 6705916 1.48E−07 CXCR4, TMEM163
chr2 135404783 135407527 13424016, 1568121, 1568120, 6724774, 6724777, 6724866,

6752634, 6742638, 6739706
2.66E−13 CXCR4, TMEM163

chr2 135427298 135429266 7571113, 11898084 1.53E−07 CXCR4, TMEM163
chr2 135430881 135436846 1123184, 11898465, 4954160, 4954161, 55920206, 35570087,

6430529, 6713239, 883964, 1104802, 1104801
1.15E−09 CXCR4, TMEM163

chr2 135460532 135465801 28788021, 730946 6.17E−07 CXCR4, TMEM163
chr2 135603195 135604690 10928520 8.98E−07 CXCR4, TMEM163
chr2 135622243 135625233 6430552 8.98E−07 CXCR4, TMEM163
chr2 135626435 135628962 7580655 8.98E−07 CXCR4, TMEM163
chr2 135648859 135651589 55865348 8.98E−07 CXCR4, TMEM163
chr2 135786533 135788334 16831264, 1551497 5.69E−08 CXCR4, TMEM163
chr2 135789382 135791186 6709763, 6737635, 56369660, 60350840 2.98E−07 CXCR4, TMEM163
chr2 136706117 136708430 6754311 8.96E−09 CXCR4, TMEM163
chr2 136782731 136783764 6714750 2.48E−07 CXCR4, TMEM163

4 chr4 827328 828816 11727899 6.87E−10 CPLX1, RP11-1263C18.1, TMEM175
5 chr4 90412135 90413937 112744012 2.34E−07 NAP1L5, SNCA, TMSB4XP8

chr4 90624633 90628074 356183, 356182, 356181 1.85E−82 NAP1L5, SNCA, TMSB4XP8
chr4 90656356 90660382 356205, 3775423, 75051606, 78504001 3.48E−30 NAP1L5, SNCA, TMSB4XP8
chr4 90834286 90838722 76707913, 17806425, 78586832, 10516850, 3775471, 3775473,

10516851, 12644375, 3775474
5.10E−18 NAP1L5, SNCA, TMSB4XP8

chr4 91109824 91111760 9307081, 17016622 5.68E−07 NAP1L5, SNCA, TMSB4XP8
6 chr7 23135953 23137039 6967419, 10266123 2.24E−11 CCDC126, KLHL7, STK31
7 chr8 92045275 92047872 34250051 1.14E−07 CALB1, NECAB1, RUNX1T1, TMEM55A
8 chr11 77174125 77176121 12271542 9.03E−07 AQP11, KCTD21, RP11-111M22.4, RP11-

111M22.5, USP35
9 chr16 31092740 31095147 750952 3.53E−07 ASPHD1, FAM57B, GDPD3, ORAI3, PRRT2,

RP11-455F5.3, SEZ6L2, STX1B, TGFB1I1,
YPEL3, ZNF843

10 chr17 17690230 17697458 3803763, 11649804, 11078398 6.00E−08 FAM211A, MYO15A, TOM1L2, TRPV2
11 chr17 43818184 43818636 17563827, 80072429 6.11E−49 AC003102.3, CRHR1, CTD-2020K17.3,

FAM171A2, FMNL1, MAP3K14-AS1,
MAPT, RUNDC3A

chr17 43847744 43850000 56070245, 56387266, 34303488, 62055932, 62055933,
7225082, 62055934, 62055935, 62055936, 62055937,
76294809, 75916678, 79730878, 62055938, 62055939,
62055940

6.11E−49 AC003102.3, CRHR1, CTD-2020K17.3,
FAM171A2, FMNL1, MAP3K14-AS1,
MAPT, RUNDC3A

chr17 44012628 44013985 77924424, 62061719, 17650381, 17650417, 62061720,
62061721, 79857651, 113756354, 12150111

6.11E−49 CRHR1, CTD-2020K17.3, FAM171A2,
FMNL1, MAP3K14-AS1, MAPT

chr17 44343836 44344244 2532343 6.11E−49 CRHR1, CTD-2020K17.3, FMNL1,
MAP3K14-AS1, MAPT
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surrogates in linkage disequilibrium) occur in non-coding DNA, we
explored the possibility that many of them act at enhancers, which can
be associated with gene regulation the LUHMES cells. In this paper, we
have described several indirect ways to match differentially expressed
genes to enhancers in LUHMES cells (e.g. proximity vs. proximity
combined with CTCF binding information) and have categorized en-
hancers in multiple ways (e.g. differentiated-specific vs. differentiated-
specific and also close to highly upregulated genes). There are also
multiple potential sets of PD risk SNPs that can be considered. Due to
this complexity, there is no single appropriate way to overlap risk SNPs
with enhancers and then obtain a single linked set of genes. However,
we compared multiple methods and found similar results. We will de-
scribe three methods and also provide the lists of risk SNPs, enhancer
locations, and DE gene locations as supplemental material.

Firstly, we matched the risk SNPs locations with the presence of
active enhancers as annotated by H3K27ac specifically in differentiated
or undifferentiated LUHMES cells or both. We used the largest set of
SNPs coming from three data-bases (pd_all) and filtered these for a
minimum significance (p-value < 0.000001). Thus, we identified 203
PD-risk SNPs that intersect 73 enhancers (in differentiated LUHMES, 41
out of 15,897; shared, 15 out of 6393; in undifferentiated LUHMES, 17
out of 8153). Using the most specific gene pairing method, those 73
enhancers are associated with 87 genes by proximity (< 1.6Mb) and
not interrupted by a CTCF peak. Twenty-eight of these genes are ex-
pressed in differentiated LUHMES cells (> 1 CPM). Among this set, 4
genes (GAK, SNCA, STX1B, STX4) are sufficient to give statistical en-
richment for “synaptic vesicle transport” (p-value=0.0000055).

We also determined the overlap of risk SNPs with only those dif-
ferentiated-specific enhancers that are also near genes which are both
highly expressed and up-regulated in differentiated LUHMES cells. This
represents a subset of enhancers which we think are most influential in
differentiation, and so are particularly good experimental targets. In
this case, 33 enhancers overlapped risk SNPs corresponding to 11 loci
(Table 2). These were associated (solely by proximity, the most sensi-
tive pairing method) with 52 genes that are within 400 kb, are highly
expressed, and showed increased expression after differentiation. Eight
of these loci gave genes (CALB1, CNTN2, CPLX1, MAPT, PRRT2, SNCA,
STX1B, TMEM163) that lead to statistical GO enrichment of “synapse”,
“axon part”, and “locomotory behavior” (respectively, FDR=0.025,
0.002, 0.0039).

Finally, we considered only the PD-risk loci reported in the most
recent meta-analysis of PD GWAS results (Chang et al., 2017), labeled
“pd_2017” in Fig. 5c. We considered both the reported highest risk
index SNP and SNPs in linkage disequilibrium (LD), as well as the pu-
tative causal genes for each of the 41 loci. This is the smallest set of risk
SNPs and does not include the majority of significant SNPs at a given
locus (only the most significant), but represents the most recent defi-
nitive list. Unlike the other two rSNP-sets it is not enriched for colo-
calization with LUHMES enhancers. Adding LD SNPs (r2 > 0.8) to the
index risk SNPs produced a set of 4514 SNPs, 3232 of which were as-
sociated with the single large LD block of the MAPT locus at chromo-
some 17. A total of 16 LUHMES enhancers overlapped these risk SNPs
which corresponded to seven general risk loci. Nine of these enhancers
are differentiated-specific LUHMES enhancers, corresponding to four

Table 1
Transcription factor binding sites are enriched in differentiated LUHMES cell enhancers. The top portion of the table lists the identity and consensus motif for TFs which were present in
differentiated-specific (Diff.) enhancer (Enh.) regions at a rate at least 2-fold higher than in undifferentiated-specific (Undiff.) enhancer regions. The bottom portion of the table identifies
the binding site (ChIP-seq) datasets of TFs that overlap differentiated-specific enhancer locations. TF expression and DE fold change (FC) in LUHMES is displayed, as is the number of
LUHMES enhancers that overlap TF peaks or TF motif locations (total enhancer number in parenthesis). Consensus motifs are in standard IUPAC nucleotide code. Odds ratio (OR)
represent the ratio of frequencies (Freq.) in differentiated to undifferentiated. Significance is given for differentiated-specific enhancer-overlap compared to any-LUHMES-enhancer-
overlap, as well as differentiated-specific compared to undifferentiated-specific overlap.

Protein Undiff.
Exp. log2
(CPM)

Diff.
Exp.
log2
(CPM)

DE
log2
(FC)

Data source TF consensus binding motif All Enh.
overlap
(30,443)

Diff. Enh.
overlap
(7588)

Undiff.
Enh.
overlap
(3954)

Freq.
in
Diff.

Freq. in
Undiff.

OR Signif.
Diff. vs.
all

Signif.
Diff. vs.
Undiff.

CUX2 −4.58 4.27 9.08 ENCODE TRATCRATAHz 2103 634 99 0.08 0.03 3.34 7.8E−09 2.3E−35
ONECUT1 −6.29 2.88 9.15 HOMER NTATYGATCH 2723 832 141 0.11 0.04 3.07 1.3E−12 3.6E−41
POU6F1 1.61 1.96 0.38 ENCODE VHNVWTAATKAGSWDDH 942 251 49 0.03 0.01 2.67 1.0E−01 8.8E−12
ONECUT1 −6.29 2.88 9.15 ENCODE VRAWAATCRATAHH 453 106 21 0.01 0.01 2.63 7.6E−01 1.2E−05
ONECUT2 5.44 9.45 4.06 ENCODE VRAWAATCRATAHH 453 106 21 0.01 0.01 2.63 7.6E−01 1.2E−05
CUX1 6.00 6.00 0.04 ENCODE TRATCRATMH 2909 851 170 0.11 0.04 2.61 1.0E−08 1.1E−33
POU4F1 8.26 9.22 0.97 ENCODE NTRMATWWTTWATK 1745 443 94 0.06 0.02 2.46 3.1E−01 3.8E−17
POU3F1 5.62 6.04 0.45 HOCOMOCO VRTKSTWATGCWWD 421 99 22 0.01 0.01 2.34 7.3E−01 1.5E−04
RFX5 4.08 3.99 −0.06 ENCODE NDRKHRCBMWRGYAACVD 296 88 20 0.01 0.01 2.29 2.5E−02 4.7E−04
LHX2 −1.92 7.05 9.00 ENCODE WVHAYYAATTRRYKNNN 1043 258 60 0.03 0.02 2.24 5.4E−01 2.8E−09
POU6F1 1.61 1.96 0.38 ENCODE RCATAAWTWAT 1059 257 63 0.03 0.02 2.13 6.8E−01 2.0E−08
VAX2 3.47 4.70 1.23 ENCODE BDNNRYTAATTAVBVS 813 221 56 0.03 0.01 2.06 6.2E−02 4.6E−07
ONECUT1 −6.29 2.88 9.15 HOCOMOCO DWYATTGATTWHDH 1644 361 92 0.05 0.02 2.04 1.0E+00 1.8E−10
ZNF740 5.85 5.48 −0.33 ENCODE MCCCCCCCAY 1275 413 106 0.05 0.03 2.03 3.6E−10 1.6E−11
ZFHX3 4.15 5.91 1.81 HOCOMOCO RTTAATWATTW 1514 346 89 0.05 0.02 2.03 9.7E−01 6.1E−10
RFX3 5.96 6.83 0.90 HOCOMOCO BGTTRCCATGGHRN 341 97 25 0.01 0.01 2.02 5.9E−02 1.1E−03

Protein Undiff.
Exp. log2
(CPM)

Diff. Exp.
log2
(CPM)

DE log2
(FC)

ChIP tissue
source

TF peak
number
total

All Enh.
overlap
(30,443)

Diff. Enh.
overlap
(7588)

Undiff. Enh.
overlap
(3954)

Freq. in
Diff.

Freq. in
Undiff.

OR Signif. Diff.
vs. all

Signif. Diff.
vs. Undiff.

EP300 6.56 6.70 0.18 Neural 47,966 4399 1134 213 0.15 0.05 2.77 7.6E−02 2.2E−47
REST 5.85 1.26 −4.54 Neural 57,775 5840 1566 312 0.21 0.08 2.62 1.0E−04 1.7E−57
ONECUT1 −6.29 2.88 9.15 ESC H9 50,519 3151 839 173 0.11 0.04 2.53 9.6E−03 1.1E−31
KAT2B 2.98 5.45 2.51 HepG2 2776 255 90 21 0.01 0.01 2.23 7.9E−05 5.6E−04
REST 5.85 1.26 −4.54 HCT166 4423 192 81 19 0.01 0.00 2.22 5.0E−08 9.7E−04
REST 5.85 1.26 −4.54 HepG2 5375 248 98 23 0.01 0.01 2.22 1.3E−07 3.2E−04
TAF1 0.12 5.67 5.74 Neural 22,267 1692 340 85 0.04 0.02 2.08 1.0E+00 2.7E−10
REST 5.85 1.26 −4.54 K562 7909 419 150 38 0.02 0.01 2.06 2.3E−07 3.5E−05
DUX4 NA NA NA HEK293 9020 355 96 25 0.01 0.01 2.00 1.6E−01 1.4E−03
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PD risk loci and are associated (by proximity) with only five additional
genes– SLC25A20, KLHDC8B, COL7A1, C3orf62, and CELSR3—which
were not already implicated previously (Table S5).

In the paper, 71 candidate risk genes were reported, which had been
associated by eQTL. Of these, 15 are not expressed in either LUHMES
condition, 49 are clearly expressed under both differentiation condi-
tions, and 7 are only expressed (> 1CPM) in a single condition. Of the
56 genes expressed in at least one LUHMES condition, 12 are more
highly expressed (> 4-fold) in differentiated cells, and 3 are more
highly expressed in undifferentiated cells. Whereas the 56 genes as a set
are not enriched for any gene ontology annotations, the 12 genes that
are up-regulated in differentiated LUHMES (ANK2, ATP6V0A1, CRHR1,
GALC, KLHL7, MAPT, SCN3A, SNCA, SYT4, TMEM163, TMEM175, and
TMEM229B) are enriched for the cell component categories of “synapse
part”, “synapse”, “synaptic vesicle”, “presynapse”, and “cytoplasmic
vesicle part”.

3. Discussion

In this study, we sought to determine both which gene regulatory
networks are activated during the differentiation of mesencephalic cells
into functional dopaminergic neurons and which regulatory elements
and target genes likely impinge on PD risk. We found that differentia-
tion of LUHMES cells resulted in statistically-significant differential
expression of 11,157 out of 14,317 (78%) high-expression (> 1 CPM)
genes. Of these, 4087 (29%) were strongly altered by at least 4-fold
(Fig. 3A). These gene expression profiles corresponded to (and were
almost certainly due to) a set of approximately 30,000 enhancers, of
which nearly 80% were unique to one of the two differentiation con-
ditions.

The spatial relationship between enhancers and gene expression
changes is clear for the gene set on average, with a halving of effect size
for every doubling of genomic distance between enhancers and gene
transcription start sites. This is similar to the relationships found by
other groups (Cao et al., 2017). The differentially expressed genes had a
mean of approximately 10–15 active enhancers within 1Mb (depending
on condition), and in our data, we cannot distinguish between a model
in which more-distant enhancer–gene pairs have increasingly weak
interactions with distance vs. a model in which distant enhancer–gene
pairs have increasingly less probable interactions of a large fixed effect
size. A comprehensive comparison of enhancer deletions would dis-
tinguish these possibilities. In the first model, most distant enhancer
deletions would lead to a small change in target gene expression. In the
second model, most distant deletions would result in no change to a
target gene but a small number of deletions would result in a very large
change. Our additive models relating expression fold-change to en-
hancer location explained only 10% of variability, and specific en-
hancer deletions by us (data not shown) and by others have led to vary
large changes irrespective of distance (Yao et al., 2015). However, both
models are relevant to understanding regulatory networks and to pre-
dicting likely outcomes of enhancer sequence polymorphisms.

The correlation between enhancer activation and gene regulation
provides circumstantial evidence to link specific enhancers to specific
nearby genes within a neuronal context. Our working hypothesis is that
enhancers do not control the expression of only single genes, as most
GWAS analyses imply, but that many genes are affected by a particular
locus, thus orchestrating overall disease risk. This is consistent with
ENCODE data which estimates that enhancers regulate an average of
2.5 genes (Mumbach et al., 2017). Parkinson's disease (like most GWAS
studied complex traits) has associated polymorphisms which are
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Fig. 5. Enrichment of PD rSNPs in enhancer elements. (A) Conceptual schematic conveying the intuition for comparing tissue-dependent regulatory element activity or accessibility
(shown as orange ovals) with rSNP genomic coordinates. Statistical enrichment (greater overlap than expected by chance) implies that SNPs are capable of imposing risk in enriched
tissue via specifically active regulatory elements and the given tissue may, therefore, be disease relevant. (B) Enrichment of all PD rSNPs or PD rSNPs with significant predicted TF motif
disruption (+Motif) in CTCF peaks or enhancer peaks present in all undifferentiated (L.undiff) or differentiated (L.diff) LUHMES cells. (C) Enrichment of rSNPs for multiple GWAS
disorders in LUHMES enhancers or Epigenomics Roadmap tissue and cell-type enhancers. Values are Z-score normalized odds ratios comparing the tissue specific enhancer overlap for
rSNPs vs. all 135 million dB144 SNPs for each disorder. Red indicates that the proportion of rSNP-enhancer overlap compared to all SNP-enhancer overlap is particularly high for that
disease. L.diff.incl: all enhancers in differentiated; L.diff.excl: exclusive enhancers, in differentiated but not undifferentiated; L.diff.up.genes: enhancers in differentiated but not un-
differentiated and close to the most unregulated genes; L.diff&undiff: shared enhancers present in both undifferentiated and differentiated LUHMES. Colors on top are standard for tissue
categorization, the full set of values is included as Table S4.
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primarily intergenic or intronic and non-coding. Therefore, the under-
lying causal gene expression changes, which mechanistically link risk
loci to PD, are likely due to differences in enhancer activity of the sort
which we are dissecting here. Enhancer activation profiles are char-
acteristic of, and drive the differences in, different tissues, and so sta-
tistically significant differences in risk SNP/enhancer overlap between
tissues is informative and can confirm that a tissue or cell type is disease
relevant (Corradin et al., 2016). Here we found that differentiated
LUHMES have significant enrichment for PD-risk SNPs in enhancers and
undifferentiated LUHMES cells do not. It is perhaps unsurprising that
undifferentiated cells do not show risk SNP enrichment; because PD is
accompanied by specific loss of a single type of neuronal tissue it seems
unlikely that undifferentiated neuronal precursor cells are relevant.
However, the finding that differentiated LUHMES cells do show more
PD-risk SNPs in enhancers than expected by chance indicates that PD
related processes are active in this neural model.

Further dissection of risk enhancers is important, though, and there
remain two basic ways that neuronal risk factors could be causal in PD.
Firstly, some loci may impair the ability of cells like LUHMES to become
fully differentiated. The effect of this for PD patients may be a reduced
basal number of functional, healthy dopaminergic neurons in the sub-
stantia nigra. There is evidence that a smaller starting population of
neurons predisposes a brain to the earlier display of Parkinson-like
symptoms from neuronal death (Pakkenberg et al., 1991; Rubin et al.,
2017). Interestingly, some genes including, CBFA2T2, NEUROG2,
NEUROD4, and TCF3, which are thought to be temporarily active
during the transition into fully differentiated neurons, are still ex-
pressed in our differentiated LUHMES cells (Aaker et al., 2009). Hence,
we are likely measuring both transitional as well as fully differentiated
cell signature activity, and as such, we may be capturing signals for
both the functioning of dopaminergic neurons and the differentiation
process itself.

The second explanation is that some risk loci alter processes that are
required for neuronal function but which are not active in precursor
cells. The enrichment of vesicle trafficking and synapse-related gene
pathways indicates that some risk loci are of this type. However, these
processes are also present in other neuronal types. This raises the
common question, then, of what makes PD cell death generally so
anatomically specific. Is there PD biology (perhaps involving the loci
not associated with vesicle transport) which is unique to dopaminergic
neurons such as LUHMES, or is disease due to confluence of multiple
factors that merely coincide frequently in cells of this kind?

LUHMES is known to be a relevant PD model but may be relevant
for other diseases as well. Comparing the overall enrichment of PD-risk
SNPs in enhancers in LUHMES cells to all Roadmap tissue enhancers
and to other neurodegenerative diseases indicated that LUHMES cells
are more enriched for risk SNPs in enhancers for multiple diseases than
any bulk Roadmap tissue alone (Fig. 5C). PD-risk SNPs are enriched in
enhancers of blood and brain tissues generally but are most enriched in
LUHMES. LUHMES cells also show greater PD rSNP enrichment in a
focused subsets of active differentiated enhancers relative to hippo-
campal atrophy or epilepsy, for instance. This suggests that the differ-
ential effects we have measured are more relevant to PD than these
other diseases. Interestingly, Alzheimer risk SNPs are more enriched in
LUHMES cells than in other Roadmap tissues, but they are most en-
riched in the category of enhancers that are active in both un-
differentiated LUHMES and differentiated LUHMES. One explanation
may be that, unlike in PD, genes common to multiple neuronal cell
types are affected by Alzheimer risk loci and so these are accompanied
by enhancers that remain stable after LUHMES differentiation. Inter-
estingly, LUHMES cells, in either differentiation state, use these risk
enhancer sets more clearly than Roadmap bulk tissue.

Finally, in this study we hoped to have identified target genes and
processes for PD relevant experiments in LUHMES cells. In theory, the
most direct way to identify SNP-associated gene targets is through eQTL
studies, which relate allele identity to tissue-specific gene expression

differences that are apparent in large populations of donors (Chang
et al., 2017). Unfortunately, well-known biases in these studies include
donor demographics, sample size, heterogeneous cell populations in
tissue samples, and statistical constraints that prevent discrimination of
effects in genes with sub-optimal baseline expression or variability le-
vels. Such biases currently cause this technique to be insufficient. The
problem is even more pressing for neurodegenerative diseases such as
Parkinson's and Alzheimer's, where at least some genetic risk is likely
intrinsic to a neuronal subpopulation of cells in the brain regions af-
fected. Noise from heterogeneous tissue is likely similar to what we saw
here in comparing Roadmap tissue enhancer/SNP enrichment. Like-
wise, we used our neuronal model to evaluate SNP–gene pairing
methods in which differentiated-specific enhancers were associated
with differentially expressed genes. We found that eQTL-based pairing
using GTEx data was less effective in capturing regulatory element/
gene-expression relationships. Instead, mere proximity or proximity
combined with CTCF binding location was more informative. As such,
we don't believe eQTL studies have currently captured reliable re-
lationships between risk loci and nearby genes that describe the activity
specific to neurons like LUHMES cells. By either proximity or proximity
combined with CTCF binding information, we predict up to 80 genes
(Table S5) are affected by the risk alleles of PD-risk SNPs which are
located within differentiated-specific enhancers. These genes are lar-
gely unrelated, leaving open the potential identification of new disease-
relevant processes. On the other hand, the enrichment for synapse and
vesicle trafficking categories indicates both that the risk-gene associa-
tion described here is meaningful and highlights the importance of
these categories to PD.

Our study validates the use of LUHMES as an in vitro model for the
study of mechanisms involved in PD risk. By replacing PD risk alleles at
enhancers identified here by using CRISPR/cas9, future insights in PD
biology can be gained.

4. Materials and methods

4.1. LUHMES culture

LUHMES cells were cultured essentially as done by (Scholz et al.,
2011). Briefly, the cells were incubated in a humidified 37 °C, 5% CO2

incubator on flasks pre-coated with 50mg/mL poly-L-ornithine (Sigma,
Cat # P3655) and 1mg/mL fibronectin (Sigma, Cat # F114) in water.
The coated flasks were incubated at 37 °C overnight, rinsed with water,
and allowed to dry before seeding cells. Cells were cultured in complete
growth medium containing Advanced DMEM:F12 (Thermo Fisher, Cat
# 12634-010) with 2mM L-glutamine (Thermo Fisher, Cat #
25030081), 1X N-2 supplement (Thermo Fisher, Cat # 17502-048), and
0.04mg/mL bFGF (Stemgent, Cat # 03-0002). Cells were allowed to
reach 80% confluency before passaging with 0.025% trypsin/EDTA.
Prior to differentiation, cells were seeded at 3.5× 106 per T75 flask
containing complete growth medium and incubated at 37 °C for 24 h.
For induction of differentiation, culture medium was changed to freshly
prepare DMEM:F12 with 2mM L-glutamine, 1X N-2, 1mM cAMP
(Carbosynth, Cat # ND07996), 1 mg/mL tetracycline (Sigma, Cat #
T7660), and 2 ng/mL glial cell line-derived neurotrophic factor (GDNF)
(Sigma, Cat # G1777).

4.2. Immunocytochemistry

LUHMES cells were grown as above and switched to differentiation
medium 48 h prior to being trypsinized and re-plated on coverslips
coated with PLO and fibronectin (as above) in 24 well plates at a
density of 50,000 cells per well. Cells were allowed to differentiate up
to a total of 6 days. Cells were fixed with 4% paraformaldehyde in 1×
PBS for 20min and processed for immunocytochemistry. First, non-
specific sites were blocked with 0.2% bovine serum albumin, 0.5%
Triton X-100, and 0.05% Tween 20 in PBS for 1 h at room temperature.
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Cells were then incubated with primary antibodies: TH (1:1000, Pel
Freez P40101-0); Tuj-1 (8 μg/mL, R&D Systems MAB1195) at 4 °C
overnight. Appropriate secondary antibodies (Alexa Fluor 488 or 594,
Invitrogen, Carlsbad, CA, USA) were used followed by incubation with
DAPI to stain the nucleus. The coverslip-containing stained cells were
washed twice with PBS and mounted on slides. Cells were viewed under
a NIKON Eclipse Ni-U fluorescence microscope (Nikon, Melville, NY,
USA); images were captured with a Retiga Exi digital camera using NIS
Elements AR 4.00.08 software (Nikon).

4.3. ChIP-seq

For ChIP experiments, we used previously published protocols (Rhie
et al., 2014). Briefly, about 1×107 cells were fixed by adding fresh
formaldehyde directly to the culture medium at a final concentration of
1%. The reaction was quenched with 10× (1.15M) glycine for 5min at
room temperature. Chromatin from fixed cells was sonicated using a
Bioruptor Pico (Diagenode, Cat # B01060001) with 30 s on and 30 s off
cycles to produce fragments between 200 and 500 base pairs. For im-
munoprecipitation, 100 μg of sonicated chromatin was used and 10 μg
(10%) was saved as an input control. To probe for active enhancers in
both undifferentiated and differentiated cells, samples were incubated
at 4 °C overnight with an H3K27ac primary antibody (Active Motif, Cat
# 39133) or an IgG control (Sigma, Cat # R9133). For CTCF sites, CTCF
(D31H2) XP (Cell Signaling Technology, cat # 3418) was used as pri-
mary antibody. For secondary antibody, A/G magnetic beads (Pierce,
Cat # 88802) were added to the samples prior to an additional in-
cubation for 2 h at 4 °C. The beads were then washed with a series of
salt buffers before elution. The immunoprecipitated and input control
DNA was purified using A QIAprep Spin Miniprep Kit (Qiagen, Cat #
27104).

4.4. Construction and sequencing of directional mRNA-seq libraries

Libraries were prepared by the Van Andel Research Institute
Genomics Core from 1 μg of material using the KAPA Stranded mRNA-
seq Kit (v4.16) (Kapa Biosystems, Wilmington, MA USA). RNA was
sheared to 250–300 bp. Prior to PCR amplification, cDNA fragments
were ligated to Bio Scientific NEXTflex Adapters (Bioo Scientific,
Austin, TX, USA). The quality and quantity of the finished libraries were
assessed using a combination of Agilent DNA High Sensitivity chip
(Agilent Technologies, Inc.), QuantiFluor dsDNA System (Promega
Corp., Madison, WI, USA), and Kapa Illumina Library Quantification
qPCR assays (Kapa Biosystems).

4.5. Differential gene expression analysis

In total, 12 biological replicates were sequenced: 6 were sequenced
using single-end libraries and 6 were sequenced with both single end
and paired-end sequencing libraries, generating a total of 18 RNA-seq
datasets. Briefly, a parental LUHMES culture was split into 6 cultures
and grown to 80% confluence, from which RNA was isolated, and each
culture was also passaged to new flasks. These 6 new cultures were
grown 24 h then switched to differentiation media, from which RNA
isolated 6 days later. These 12 samples were used to produce single-end
RNA libraries and 6 of the 12 (3 from undifferentiated and 3 from
differentiated (sample numbers 1–3 and 10–12)) were also used to
produce paired-end libraries. Following sequencing, fastq files were
aligned to HG19 using STAR v2.5 (Dobin and Gingeras, 2015). Align-
ments (bam files) were converted to feature counts using HTSeq v0.6.0
referenced against the ENSEMBLE annotation of HG19: Homo_-
sapiens.GRCh37.87.gtf counting against the feature “exon”, grouped by
“gene_id”, and using the strand parameter “reverse”. This set included
exon locations for 57,905 genomic entities including pseudogenes,
lncRNAs, and 20,356 protein coding genes. The resulting gene_id map
counts were normalized using edgeR (TMM) and tested for significant

differential expression with Limma and Voom, in R (v3.3.1) (Law et al.,
2014; Ritchie et al., 2015; Robinson and Oshlack, 2010). The normal-
ized count data for all 18 datasets revealed, through principle compo-
nent analysis (PCA), that there was very high similarity between paired-
end and single-end mapping relative to differentiation status (Fig. S2).
Therefore, the datasets were combined for analysis. However, Voom
weighted the single end sequencing counts more highly than paired-end
data – meaning statistical significance is largely independent of the
paired-end data sets. More complicated modeling designs, which
treated the paired-end and single-end libraries as separate design
variables, produced roughly the same end results. It should also be
noted that Voom recommends an initial filtering out of low count genes
prior to statistical modeling. We found that the significant DE results
differed little between different pre-filtering conditions, only serving to
alter the marginal DE cases and to reduce the gene set size, and so
elected to jointly evaluate all 57,905 genes without a filtering step. The
log2 FC and p-value for DE, as well as normalized log2CPM were de-
rived for each gene for each replicate and presented in Fig. S1. In total
57,905 genes were mapped and a conservative Bonferroni adjusted p-
value of 0.05 was used to define the significance threshold. An addi-
tional cutoff of at least +/−2 log2FC was used to define the “most”
differentially altered genes. In addition, for each gene a t-test was used
to determine whether expression was likely less than or equal to 0
log2(CPM) on average.

4.6. Construction and sequencing of ChIP-seq libraries

Libraries for Input and IP samples were prepared by the Van Andel
Genomics Core from 10 ng of input material and all available IP ma-
terial using the KAPA Hyper Prep Kit (v5.16) (Kapa Biosystems,
Wilmington, MA USA). Prior to PCR amplification, end-repaired and A-
tailed DNA fragments were ligated to Bio Scientific NEXTflex Adapters
(Bioo Scientific, Austin, TX, USA). The quality and quantity of the
finished libraries were assessed using a combination of Agilent DNA
High Sensitivity chip (Agilent Technologies, Inc.), QuantiFluor dsDNA
System (Promega Corp., Madison, WI, USA), and Kapa Illumina Library
Quantification qPCR assays (Kapa Biosystems). Sequencing (75 bp,
single end) was performed on an Illumina NextSeq 500 sequencer using
a 75-bp sequencing kit (v2) (Illumina Inc., San Diego, CA, USA). Base
calling used Illumina NextSeq Control Software (NCS) v2.0, and the
output of NCS was demultiplexed and converted to FastQ format with
Illumina Bcl2fastq v1.9.0.

4.7. Identification of ChIP-seq peaks

Two biological replicates with 2 technical replicates each were used
for input and ChIP for both H3K27Ac and CTCF. Following sequencing,
fastq files were aligned to the HG19 genome assembly using default
setting for BWA v0.7.15 (Li and Durbin, 2009). Aligned reads were
merged with Samtools and peaks were called using MACS2 v2.1 using a
liberal FDR cutoff of 0.1 (Zhang et al., 2008). Narrowpeaks were
aligned and an irreproducible discovery rate (IDR) of< 0.01 was used
for filtering (Li et al., 2011). The R package ChIPseeker was used with
TxDb·Hsapiens.UCSC.hg19.knownGene to define H3K27Ac peaks as
proximal promoters if within 100 bp of a gene TSS or as enhancers if
further than 2 kb from a TSS.

4.8. Shared enhancer or CTCF peak loci identification

Bedtools v2.26.0 was used to intersect CTCF and H3K27ac peaks
between differentiation conditions based on a default overlap of 1 bp
overlap (Quinlan and Hall, 2010). H3k27ac peaks that were present in
both conditions were merged to form the shared peak set. CTCF peaks
showed high overlap and so, except when otherwise indicated, the
undifferentiated and differentiated CTCF peak files were merged and
combined to generate the set of LUHMES CTCF peak locations.
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4.9. Enhancer–gene association

All highly differentially expressed genes (Bonferroni adjusted p-
value < 0.05, abs(log2FC) > 2) were paired with all LUHMES en-
hancers within 1.6 Mb. These enhancer–gene pairs where then filtered
according to the parameters specified in the text, i.e. removing no pairs
(distance only), removing pairs with a CTCF peak within (CTCF), re-
moving pairs not within predefined TAD region, or removing those not
independently associated by eQTL. Except for analysis shown in Fig. 5c,
enhancer peaks that were present in both differentiation conditions
(intersecting by at least 1 bp) were excluded from the further analysis. R
v3.3.1 based linear modeling and robust linear modeling was used to
construct a model relating enhancer count in different distance, as well
as initial gene expression to expression fold-change. Multiple bin sizes
and number were related to FC, and the derived coefficients were ag-
gregated and plotted by mid-bin distance to estimate the relative pre-
dictive contribution for an enhancer at varying distance. Because un-
differentiated enhancers reduced FC and differentiated enhancers
increased FC, the undifferentiated enhancer coefficients were inverted
and combined to produce 2 (similar) coefficients for each distance as
seen in Fig. 5c. The theoretical function fits the data with a residual
standard error of 0.028. This function relating gene fold change to
enhancer count was trained with gene-enhancer pairing based on
proximity only.

4.10. Gene ontology analysis

Gene ontology enrichment analysis was done using Panther and
String against the gene sets specified in the text (Franceschini et al.,
2013; Mi et al., 2013).

4.11. Transcription factor enrichment

DNA binding proteins with defined binding motifs were obtained
from MotifbreakR v 3.5 (Coetzee et al., 2015) by selecting those se-
quences which were annotated as Hocomoco, ENCODE, and Homer.
Uniprot IDs were converted to ensemble ID and those TFs which were
also expressed in LUHMES were examined further using the summar-
izePatternInPeaks function in the R package, ChIPpeakAnno V3.10.2.
For the TF binding data analysis, ChIP-seq binding peaks were obtained
from ReMap 2018 (Griffon et al., 2015) and all peaks were intersected
with LUHMES enhancers using with Bedtools v2.26.0. Intersection
counts were consolidated for each motif or for each ChIP-seq experi-
ment according to the specific-type of LUHMES enhancer set and R
v3.3.1 was used to determine the hypergeometric distribution p-value
comparing LUHMES enhancer subsets against all LUHMES enhancers
and fisher p-value comparing differentiated- vs. undifferentiated
LUHMES enhancers. In the text, TF enrichment is based on fisher p-
values filtered for a minimal odds ratio of 2.

4.12. GWAS risk SNPs

Three different overlapping sets of PD-risk SNPs were used. The
largest set (PD_all) consisted of combined risk SNPs obtained from
pdgene.org, NHGRI-EBI, and NCBI; were combined with LD SNPs
(r2 > 0.8) in Europeans using HapMap phase 3 data in RaggR (Barrett
et al., 2005) as described in (Pierce and Coetzee, 2017); and then were
filtered using Bedtools with the NCBI dbSNP build 144 generating
23,918 SNPs. This set was used to define the LUHMES enhancer and
CTCF peak enrichment of PD risk SNPs by intersecting SNPs with en-
hancers via Bedtools. This set was then reduced to the most significant
6869 SNPs by p-value for use in identifying specific LUHMES enhancers
and genes, again using Bedtools. The next set of PD-risk SNPs (as well as
all other disease-risk SNPs used in Fig. 5) were downloaded from the
GWAS catalog 04/2017, enlarged with LD SNPs as above, and filtered
with dbSNP144. This set was used for fair comparison between GWAS

conditions. The last set of PD-risk SNPs used was based on the newest
PD meta-analysis (Chang et al., 2017). Here the highest-significance
reported risk SNPs were combined with high-LD SNPs to make the
smallest of the three PD rSNP sets. For the enhancer–gene relationships
described in the text, this third set consisted of all SNPs, whereas for the
enrichment analysis in Fig. 5c, this set was first filtered by intersection
with dbSNP144.

4.13. Risk SNP enrichment

Enrichment of SNPs in regulatory elements was based on a hy-
pergeometric probability distribution comparing the ratio of all
dbSNP144 SNPs that overlap a set of coordinates which define en-
hancers or CTCF peaks vs. the subset of rSNPs that overlap that same set
of peaks. A random sample set of SNPs from the background set will
produce a similar ratio of overlap, while nonrandom set, with respect to
LUHMES enhancers, will be statistically significant. The heatmap in
Fig. 5C displays the relative relationship of these two ratios directly
(not the p-value) and has been normalized to z-scores for each disorder
separately. Table S4 contains the raw count data, ORs, and full name for
each cell type. For each of the PD risk SNP lists, rSNPs at the MAPT
locus were removed from analysis due to the large number of LD SNPs.
Roadmap enhancer regions are based on 12-mark 25-type segmentation
and SNP overlap was counted for segment types, “E13”, “E14”, “E15”,
“E16”, “E17”, “E18”. For Fig. 5B, SNPs were also queried for likely TF
motif interruption using MotifbreakR (Coetzee et al., 2015).

4.14. Sequence data

The data discussed in this publication have been deposited in NCBI's
Gene Expression Omnibus (Edgar et al., 2002) and are accessible
through GEO Series accession number GSE109706.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nbd.2018.02.007.

Acknowledgements

We acknowledge the Center for Neurodegenerative Science at the
Van Andel Research Institute for financial support. We thank JC
VanderSchans for technical assistance and thank Megan Bowman, Ben
Johnson, and Zachary Madaj of the Van Andel Research Institute
Bioinformatics and Biostatistics Core for technical assistance, helpful
discussion, and editing. We thank Marie Adams of the Van Andel
Research Institute Genomics Core for providing Next Generation
Sequencing facilities and services. We acknowledge technical editing by
David Nadziejka (VARI).

Conflict of interest statement

The authors declare no conflict of interest.

References

Aaker, J.D., et al., 2009. Feedback regulation of NEUROG2 activity by MTGR1 is required
for progression of neurogenesis. Mol. Cell. Neurosci. 42, 267–277.

Barrett, J.C., et al., 2005. Haploview: analysis and visualization of LD and haplotype
maps. Bioinformatics 21, 263–265.

Bras, J., et al., 2015. SnapShot: genetics of Parkinson's disease. Cell. 160 e1, 570.
Cao, Q., et al., 2017. Reconstruction of enhancer-target networks in 935 samples of

human primary cells, tissues and cell lines. Nat. Genet. 49, 1428–1436.
Chang, D., et al., 2017. A meta-analysis of genome-wide association studies identifies 17

new Parkinson's disease risk loci. Nat. Genet. 49, 1511–1516.
Coetzee, S.G., et al., 2015. motifbreakR: an R/Bioconductor package for predicting var-

iant effects at transcription factor binding sites. Bioinformatics 31, 3847–3849.
Coetzee, S.G., et al., 2016. Enrichment of risk SNPs in regulatory regions implicate diverse

tissues in Parkinson's disease etiology. Sci. Rep. 6, 30509.
Consortium, G.T., 2013. The genotype-tissue expression (GTEx) project. Nat. Genet. 45,

580–585.
Corradin, O., et al., 2016. Modeling disease risk through analysis of physical interactions

S.E. Pierce et al. Neurobiology of Disease 114 (2018) 53–64

63

http://pdgene.org
https://doi.org/10.1016/j.nbd.2018.02.007
https://doi.org/10.1016/j.nbd.2018.02.007
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0005
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0005
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0010
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0010
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0015
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0020
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0020
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0025
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0025
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0030
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0030
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0035
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0035
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0040
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0040
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0045


between genetic variants within chromatin regulatory circuitry. Nat. Genet. 48,
1313–1320.

DeFelipe, J., et al., 2002. Microstructure of the neocortex: comparative aspects. J.
Neurocytol. 31, 299–316.

Defossez, P.A., Gilson, E., 2002. The vertebrate protein CTCF functions as an insulator in
Saccharomyces cerevisiae. Nucleic Acids Res. 30, 5136–5141.

Dobin, A., Gingeras, T.R., 2015. Mapping RNA-seq reads with STAR. Curr. Protoc.
Bioinformatics 51 (11), 14 (1–19).

Duren, Z., et al., 2017. Modeling gene regulation from paired expression and chromatin
accessibility data. Proc. Natl. Acad. Sci. U. S. A. 114, E4914–E4923.

Edgar, R., et al., 2002. Gene Expression Omnibus: NCBI gene expression and hybridiza-
tion array data repository. Nucleic Acids Res. 30, 207–210.

Fahn, S., 2003. Description of Parkinson's disease as a clinical syndrome. Ann. N. Y. Acad.
Sci. 991, 1–14.

Franceschini, A., et al., 2013. STRING v9.1: protein-protein interaction networks, with
increased coverage and integration. Nucleic Acids Res. 41, D808–15.

Ghosh, A., Tyson, T., George, S., Hildebrandt, E.N, Steiner, J.A, Madaj, Z., et al., 2016.
Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurode-
generation in experimental models of Parkinson's disease. Sci. Transl. Med. 8 (368)
368ra174.

Griffon, A., et al., 2015. Integrative analysis of public ChIP-seq experiments reveals a
complex multi-cell regulatory landscape. Nucleic Acids Res. 43, e27.

Hollerhage, M., et al., 2017. Protective efficacy of phosphodiesterase-1 inhibition against
alpha-synuclein toxicity revealed by compound screening in LUHMES cells. Sci. Rep.
7, 11469.

Law, C.W., et al., 2014. voom: precision weights unlock linear model analysis tools for
RNA-seq read counts. Genome Biol. 15, R29.

Lebouvier, T., et al., 2009. The second brain and Parkinson's disease. Eur. J. Neurosci. 30,
735–741.

Lee, H.J., et al., 2014. Extracellular alpha—synuclein-a novel and crucial factor in Lewy
body diseases. Nat. Rev. Neurol. 10, 92–98.

Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25, 1754–1760.

Li, Q.H., et al., 2011. Measuring reproducibility of high-throughput experiments. Ann.
Appl. Stat. 5, 1752–1779.

Lopes da Fonseca, T., et al., 2015. The interplay between alpha-synuclein clearance and
spreading. Biomol. Ther. 5, 435–471.

Lotharius, J., et al., 2002. Effect of mutant alpha-synuclein on dopamine homeostasis in a
new human mesencephalic cell line. J. Biol. Chem. 277, 38884–38894.

Lotharius, J., et al., 2005. Progressive degeneration of human mesencephalic neuron-
derived cells triggered by dopamine-dependent oxidative stress is dependent on the
mixed-lineage kinase pathway. J. Neurosci. 25, 6329–6342.

Lu, Y., et al., 2016. Defining the multivalent functions of CTCF from chromatin state and
three-dimensional chromatin interactions. Nucleic Acids Res. 44, 6200–6212.

Mi, H., et al., 2013. Large-scale gene function analysis with the PANTHER classification
system. Nat. Protoc. 8, 1551–1566.

Mumbach, M.R., et al., 2017. Enhancer connectome in primary human cells identifies
target genes of disease-associated DNA elements. Nat. Genet. 49, 1602–1612.

Nalls, M.A., et al., 2014. Large-scale meta-analysis of genome-wide association data

identifies six new risk loci for Parkinson's disease. Nat. Genet. 46, 989–993.
Paiva, I., et al., 2017. Sodium butyrate rescues dopaminergic cells from alpha-synuclein-

induced transcriptional deregulation and DNA damage. Hum. Mol. Genet. 26,
2231–2246.

Pakkenberg, B., et al., 1991. The absolute number of nerve cells in substantia nigra in
normal subjects and in patients with Parkinson's disease estimated with an unbiased
stereological method. J. Neurol. Neurosurg. Psychiatry 54, 30–33.

Parker, S.C., et al., 2013. Chromatin stretch enhancer states drive cell-specific gene
regulation and harbor human disease risk variants. Proc. Natl. Acad. Sci. U. S. A. 110,
17921–17926.

Pierce, S., Coetzee, G.A., 2017. Parkinson's disease-associated genetic variation is linked
to quantitative expression of inflammatory genes. PLoS One 12, e0175882.

Pissadaki, E.K., Bolam, J.P., 2013. The energy cost of action potential propagation in
dopamine neurons: clues to susceptibility in Parkinson's disease. Front. Comput.
Neurosci. 7, 13.

Poewe, W., et al., 2017. Parkinson disease. Nat. Rev. Dis. Primers 3, 17013.
Quinlan, A.R., Hall, I.M., 2010. BEDTools: a flexible suite of utilities for comparing

genomic features. Bioinformatics 26, 841–842.
Ren, G., et al., 2017. CTCF-mediated enhancer-promoter interaction is a critical regulator

of cell-to-cell variation of gene expression. Mol. Cell 67, 1049–1058 (e6).
Rhie, S.K., et al., 2014. Nucleosome positioning and histone modifications define re-

lationships between regulatory elements and nearby gene expression in breast epi-
thelial cells. BMC Genomics 15, 331.

Ritchie, M.E., et al., 2015. limma powers differential expression analyses for RNA-se-
quencing and microarray studies. Nucleic Acids Res. 43, e47.

Robinson, M.D., Oshlack, A., 2010. A scaling normalization method for differential ex-
pression analysis of RNA-seq data. Genome Biol. 11, R25.

Rubin, A.J., et al., 2017. Lineage-specific dynamic and pre-established enhancer-pro-
moter contacts cooperate in terminal differentiation. Nat. Genet. 49, 1522–1528.

Ryan, S.D., et al., 2013. Isogenic human iPSC Parkinson's model shows nitrosative stress-
induced dysfunction in MEF2-PGC1alpha transcription. Cell 155, 1351–1364.

Scholz, D., et al., 2011. Rapid, complete and large-scale generation of post-mitotic neu-
rons from the human LUHMES cell line. J. Neurochem. 119, 957–971.

Schule, B., et al., 2009. Can cellular models revolutionize drug discovery in Parkinson's
disease? Biochim. Biophys. Acta 1792, 1043–1051.

Shen, Y., et al., 2012. A map of the cis-regulatory sequences in the mouse genome. Nature
488, 116–120.

Smirnova, L., et al., 2016. A LUHMES 3D dopaminergic neuronal model for neurotoxicity
testing allowing long-term exposure and cellular resilience analysis. Arch. Toxicol.
90, 2725–2743.

Spillantini, M.G., et al., 1997. Alpha-synuclein in Lewy bodies. Nature 388, 839–840.
Tyson, T., et al., 2016. Sorting out release, uptake and processing of alpha-synuclein

during prion-like spread of pathology. J. Neurochem. 139 (Suppl. 1), 275–289.
Verstraeten, A., et al., 2015. Progress in unraveling the genetic etiology of Parkinson

disease in a genomic era. Trends Genet. 31, 140–149.
Yao, L., et al., 2015. Demystifying the secret mission of enhancers: linking distal reg-

ulatory elements to target genes. Crit. Rev. Biochem. Mol. Biol. 50, 550–573.
Zhang, Y., et al., 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137.

S.E. Pierce et al. Neurobiology of Disease 114 (2018) 53–64

64

http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0045
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0045
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0050
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0050
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0055
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0055
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0060
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0060
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0065
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0065
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0070
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0070
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0075
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0075
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0080
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0080
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf5726
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf5726
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf5726
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf5726
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0085
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0085
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0090
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0090
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0090
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0095
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0095
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0100
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0100
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0105
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0105
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0110
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0110
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0115
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0115
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0120
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0120
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0125
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0125
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0130
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0130
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0130
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0135
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0135
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0140
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0140
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0145
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0145
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0150
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0150
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0155
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0155
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0155
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0160
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0160
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0160
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0165
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0165
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0165
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0170
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0170
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0175
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0175
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0175
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0180
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0185
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0185
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0190
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0190
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0195
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0195
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0195
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0200
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0200
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0205
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0205
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0210
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0210
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0215
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0215
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0220
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0220
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0225
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0225
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0230
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0230
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0235
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0235
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0235
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0240
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0245
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0245
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0250
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0250
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0255
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0255
http://refhub.elsevier.com/S0969-9961(18)30039-1/rf0260

	Parkinson's disease genetic risk in a midbrain neuronal cell line
	Introduction
	Results
	The LUHMES cell model
	Enhancer–gene relationships
	Role of transcription factors
	PD risk loci

	Discussion
	Materials and methods
	LUHMES culture
	Immunocytochemistry
	ChIP-seq
	Construction and sequencing of directional mRNA-seq libraries
	Differential gene expression analysis
	Construction and sequencing of ChIP-seq libraries
	Identification of ChIP-seq peaks
	Shared enhancer or CTCF peak loci identification
	Enhancer–gene association
	Gene ontology analysis
	Transcription factor enrichment
	GWAS risk SNPs
	Risk SNP enrichment
	Sequence data

	Acknowledgements
	Conflict of interest statement
	References




